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Abstract: Vitamin D, the sunshine vitamin, has received a lot of attention recently as  

a result of a meteoric rise in the number of publications showing that vitamin D plays a 

crucial role in a plethora of physiological functions and associating vitamin D deficiency 

with many acute and chronic illnesses including disorders of calcium metabolism, 

autoimmune diseases, some cancers, type 2 diabetes mellitus, cardiovascular disease and 

infectious diseases. Vitamin D deficiency is now recognized as a global pandemic. The 

major cause for vitamin D deficiency is the lack of appreciation that sun exposure has been 

and continues to be the major source of vitamin D for children and adults of all ages. 

Vitamin D plays a crucial role in the development and maintenance of a healthy skeleton 

throughout life. There remains some controversy regarding what blood level of  

25-hydroxyvitamin D should be attained for both bone health and reducing risk for 

vitamin D deficiency associated acute and chronic diseases and how much vitamin D  

should be supplemented. 
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1. Introduction 

Vitamin D has been produced by phytoplankton for more than 500 million years [1] and is  

thought to be the oldest of all hormones whose function initially could have been the protection of 

ultraviolet-sensitive macromolecules including proteins, DNA and RNA, when these early forms of 

life were exposed to sunlight for photosynthesis. Later, after the evolution of ocean dwelling animals 

with vertebral skeletons ventured onto land, the maintenance of calcium homeostasis was a major 

physiological problem (as opposed to living in the calcium-rich ocean). It was vitamin D that ensured 

the efficient intestinal calcium absorption from dietary sources and ultimately was essential for the 

development and maintenance of a calcified mammalian skeleton [2]. Obtaining vitamin D from either 

sunlight or diet is still critical for most vertebrates for their skeletal health [1,3–5]. Over time,  

vitamin D has evolved into a hormone having numerous extraskeletal effects by regulating up to 

estimated 2000 genes [6,7]. 

Ethnical and gender differences in skin pigmentation indicate the evolutionary importance of  

a sufficient vitamin D supply. The varying degrees of depigmentation that evolved in order to permit 

UVB-induced synthesis of previtamin D3 when hominids migrated outside the tropics can be 

considered as a compromise solution to the conflicting physiological requirements of vitamin D 

synthesis and photoprotection that differ depending on latitude and thus warrant different degrees of 

skin pigmentation. An evolutionary selection pressure towards a lighter skin coloration going along 

with a higher ability to produce vitamin D seems not only to be exerted by living in geographic regions 

with a lower UV intensity but also by being female. Gender differences in skin pigmentation with 

females being lighter skinned than males in all populations for which data about the skin reflectance 

was available could be explained by the higher needs of vitamin D during pregnancy and lactation [8]. 

2. Vitamin D—Sources 

The main sources of vitamin D are sunlight, supplements and diet [7] (Table 1). 

Table 1. Sources of vitamin D2 and vitamin D3 [7]. Note: This table is modified and 

reproduced with permission from [7], Copyright © 2007 Massachusetts Medical Society. 

Source 
Vitamin D Content 

IU = 25 ng 

 Chemical structures of vitamin D2 [9] and vitamin D3 [10]. 
 Vitamin D2 (Ergocalciferol) Vitamin D3 (Cholecalciferol) 
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Table 1. Cont. 

Natural sources  
Cod liver oil ~400–1000 IU/tsp vitamin D3 
Egg yolk ~20 IU/yolk vitamin D3 or D2 
Mackerel, canned ~250 IU/3.5 oz vitamin D3 
Salmon, canned ~300–600 IU/3.5 oz vitamin D3 
Salmon, fresh farmed ~100–250 IU/3.5 oz vitamin D3, vitamin D2 
Sardines, canned ~300 IU/3.5 oz vitamin D3 
Shiitake mushrooms, fresh ~100 IU/3.5 oz vitamin D2 
Shiitake mushrooms, sun dried ~1600 IU/3.5 oz vitamin D2 
Sunlight/UVB radiation ~20,000 IU equivalent to exposure to 1 minimal erythemal dose (MED) 

in a bathing suit. Thus, exposure of arms and legs to 0.5 MED is 
equivalent to ingesting ~3000 IU vitamin D3 

Tuna, canned 236 IU/3.5 oz vitamin D3 

Fortified foods  
Fortified breakfast cereals ~100 IU/serving usually vitamin D3 
Fortified butter 56 IU/3.5 oz usually vitamin D3 
Fortified cheeses 100 IU/3 oz usually vitamin D3 
Fortified margarine 429/3.5 oz usually vitamin D3 
Fortified milk 100 IU/8 oz usually vitamin D3 
Fortified orange juice 100 IU/8 oz vitamin D3 
Fortified yogurts 100 IU/8 oz usually vitamin D3 
Infant formulas 100 IU/8 oz vitamin D3 

Pharmaceutical Sources in the 
United States 

 

Drisdol (vitamin D2) liquid 8000 IU/mL 
Vitamin D2 (Ergocalciferol) 50,000 IU/capsule 

Supplemental Sources  
Multivitamin 400, 500, and 1000 IU vitamin D3 or vitamin D2 
Vitamin D3 400, 800, 1000, 2000, 5000, 10,000, 14,000, and 50,000 IU  

Exposure of human skin to solar UVB radiation (wavelengths: 290–315 nm) leads to the conversion 

of 7-dehydrocholesterol to previtamin D3 in the skin. Previtamin D3 is then rapidly converted to 

vitamin D3 (cholecalciferol) by temperature- and membrane-dependent processes [7,11,12] (Figure 1). 

Figure 1. Schematic representation of the synthesis and metabolism of vitamin D for 

regulating calcium, phosphorus and bone metabolism [7]. During exposure to sunlight,  

7-dehydrocholesterol in the skin is converted to previtamin D3. Previtamin D3 immediately 

converts by a heat dependent process to vitamin D3 [7,11,12]. Excessive exposure to 

sunlight degrades previtamin D3 and vitamin D3 into inactive photoproducts [13]. Vitamin 

D2 and vitamin D3 from dietary sources is incorporated into chylomicrons, transported by 

the lymphatic system into the venous circulation [14]. Vitamin D (D represents D2 or D3) 

made in the skin or ingested in the diet can be stored in and then released from fat cells.  

Vitamin D in the circulation is bound to the vitamin D binding protein which transports  

it to the liver where vitamin D is converted by the vitamin D-25-hydroxylase to  
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25-hydroxyvitamin D [25(OH)D]. This is the major circulating form of vitamin D that is 

used by clinicians to measure vitamin D status [7,15] (although most reference laboratories 

report the normal range to be 20–100 ng/mL, the preferred healthful range is  

30–60 ng/mL) [7]. It is biologically inactive and must be converted in the kidneys by the 

25-hydroxyvitamin D-1α-hydroxylase (1-OHase) to its biologically active form  

1,25-dihydroxyvitamin D [1,25(OH)2D] [7,15–17]. Serum phosphorus, calcium, fibroblast 

growth factors (FGF-23) and other factors can either increase (+) or decrease (−) the  

renal production of 1,25(OH)2D [7]. 1,25(OH)2D feedback regulates its own synthesis  

and decreases the synthesis and secretion of parathyroid hormone (PTH) in the  

parathyroid glands [6,7]. 1,25(OH)2D increases the expression of the  

25-hydroxyvitamin D-24-hydroxylase (24-OHase) to catabolize 1,25(OH)2D to the water 

soluble biologically inactive calcitroic acid which is excreted in the bile [7,18]. 

1,25(OH)2D enhances intestinal calcium absorption in the small intestine by stimulating the 

expression of the epithelial calcium channel (ECaC) and the calbindin 9K (calcium binding 

protein; CaBP) [7,19,20]. 1,25(OH)2D is recognized by its receptor in osteoblasts causing 

an increase in the expression of receptor activator of NFκB ligand (RANKL). Its receptor 

RANK on the preosteoclast binds RANKL which induces the preosteoclast to become  

a mature osteoclast. The mature osteoclast removes calcium and phosphorus from the bone 

to maintain blood calcium and phosphorus levels [7,17]. Adequate calcium and phosphorus 

levels promote the mineralization of the skeleton [7]. Note: This figure is reproduced with 

permission from [21], Copyright © 2007 Michael F. Holick. 
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The amount of vitamin D production in the skin depends on the incident angle of the sun and  

thus on latitude, season and time of the day. It is highest when the sun is in the zenith and a flattening 

of the incident angle leads to a reduced vitamin D production [17]. Whole body exposure to sunlight 

with one minimal erythema dose (MED), i.e., the minimal dose leading to pink coloration of  

the skin 24 h after exposure, leads to vitamin D levels comparable to oral intake of 10,000 to up to 

25,000 IU vitamin D2 [16,22]. However, sun exposure during most of the winter at latitudes above and 

below ~33 degrees North and South, respectively, doesn’t lead to any production of vitamin D3 in the  

skin [16,23] (Figure 2). Other factors influencing the cutaneous vitamin D production adversely are  

an increase in skin pigmentation, aging, especially age >65 years and the topical application of  

a sunscreen [17]. 

Figure 2. Influence of season, time of day, and latitude on the synthesis of previtamin D3 

in Northern (A and C) and Southern hemispheres (B and D). The hour indicated in C and 

D is the end of the 1-h exposure time. Note: This figure is reproduced with permission  

from [13], Copyright © 2010 Humana Press. 

 

The number of foods naturally containing vitamin D in significant amounts is very limited. Among 

these are oily fish such as salmon, sardines and tuna, and oils of the liver of some fish such as cod as 

well as sun-exposed mushrooms [7] (Table 1). To increase the content of vitamin D2 in mushrooms 

producers are irradiating them with UV radiation [24,25]. 

In the 1930s, the fortification of milk, sodas, bread and even beer became popular [26]; however, 

after several cases of presumed vitamin D intoxication in infants in the 1950s in Great Britain [27] 
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strict regulations limiting vitamin D fortification to only margarine were introduced in Europe [14,28]. 

Due to a relatively high prevalence of lactose intolerance leading to an avoidance of milk by  

many adults, the fortification of orange juice in the US was introduced as a novel approach of 

enhancing the vitamin D status of the public in the 2003 and proved to be as effective as oral 

supplementation [26,29]. Other fortified foods include margarine, yogurt, infant formula, butter, 

cheese and breakfast cereals [7] (Table 1). 

Vitamin D2 and vitamin D3 are available as oral over-the-counter supplements. In the US, only 

vitamin D2 is available as prescription drug [7,17]. Although there has been debate as to whether 

vitamin D2 is as effective as vitamin D3 in maintaining vitamin D status [30–36], other studies in 

children and adults have demonstrated that they are equally effective [29,37–40]. 

3. Vitamin D—Metabolism 

Vitamin D from cutaneous synthesis or dietary/supplemental intake, is transported to the fat where 

it can be stored or to the liver for the first step of activation, the hydroxylation to 25-hydroxyvitamin D 

[25(OH)D], which is the major circulating form of vitamin D [7,15] and measured to assess a patient’s 

vitamin D status [7,16,41,42] (Figure 1). 

25(OH)D is metabolized in the kidneys by the mitochondrial enzyme 25-hydroxyvitamin  

D-1α-hydroxylase (CYP27B1) to generate the systemically circulating active form, 1,25-dihydroxyvitamin 

D [1,25(OH)2D] [7,15–17]. The renal synthesis of 1,25(OH)2D is regulated by several factors 

including serum phosphorus, calcium, fibroblast growth factor 23 (FGF-23), parathormone (PTH) and 

itself [7]. CYP27B1 is also expressed extrarenally in a multitude of tissues [17,43], including bone, 

placenta, prostate, keratinocytes, macrophages, T-lymphocytes, dendritic cells, several cancer  

cells [44], and the parathyroid gland [45] and enables the production of 1,25(OH)2D. This active form 

of vitamin D is locally active and exerts auto- or paracrine effects [15,17]. 

1,25(OH)2D induces its own destruction by rapidly inducing the 25-hydroxyvitamin D-24-hydroxylase 

(CYP24A1), which leads to the multistep catabolism of both 25(OH)D and 1,25(OH)2D into 

biologically inactive, water-soluble metabolites including calcitroic acid [7,18] (Figure 1). 

4. Vitamin D Receptor (VDR)—Distribution and Function 

1,25(OH)2D, either produced in the kidneys [7] or extrarenally in the target tissues [15,17], is the 

ligand of the vitamin D receptor (VDR) whose widespread distribution across many tissues explains 

the myriad of physiological actions of vitamin D. By interacting with the VDR, a transcription  

factor [17,46], 1,25(OH)2D regulates directly and indirectly the expression of up to 2000 genes [6,7], 

many of whose promoters contain specific vitamin D response elements (VDRE). The VDR partners 

with other transcription factors, most importantly the retinoid X receptor (RXR) [47], and coactivators 

and corepressors provide target gene specificity [48–50]. A membrane-bound VDR may also exist and 

mediate more immediate, non-genomic actions of 1,25(OH)2D [44,51,52]. 

5. Prevalence of Vitamin D Deficiency and Insufficiency  

25(OH)D is the vitamin D metabolite that is measured to assess a patient’s vitamin D status [7,17]. 

Vitamin D deficiency is diagnosed when 25(OH)D <20 ng/mL [16,53], vitamin D insufficiency is 
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defined as 25(OH)D of 21–29 ng/mL, and 25(OH)D >30 ng/mL is considered sufficient, with  

40–60 ng/mL being the preferred range [16]. Vitamin D intoxication usually doesn’t occur until 

25(OH)D >150 ng/mL [7,16,23]. 

These reference values are in part based on the finding, that the decline of parathyroid hormone 

(PTH) concentrations with increasing 25(OH)D levels in adults reached its nadir asymptotically at a 

25(OH)D of ~30–40 ng/mL in several studies [7,16,23,54–56]. However, a recent cross-sectional analysis 

of more than 300,000 paired serum PTH and 25(OH)D levels revealed no threshold, even at 25(OH)D 

levels >60 ng/mL, above which a further increase of the 25(OH)D level failed to further suppress PTH 

levels. The analysis also showed a strong age-dependency of the PTH-25(OH)D relationship [57]. 

According to studies in Canada, 30%–50% of children and adults are vitamin D deficient [58–60]. 

The National Health and Nutrition Examination Surveys 2001–2006 showed a prevalence of vitamin D 

deficiency of 33% [60,61]. Studies in Indian school children revealed a prevalence of severe vitamin D 

deficiency (<9 ng/mL) in more than 35% [62] and over 80% of pregnant women in India had  

25(OH)D levels <22.5 ng/mL [63]. Also reports from Africa [64], Australia [65], Brazil [66],  

Middle East [67,68], Mongolia [69], and New Zealand [70] documented a high risk for vitamin D 

deficiency in both adults and children [60,71]. 

Based on these findings, it has been estimated that 1 billion people worldwide are vitamin D 

deficient or insufficient [7,60] (Figure 3A–C). 

Figure 3. (A) Prevalence at risk of vitamin D deficiency defined as a 25-hydroxyvitamin D 

<12–20 ng/mL by age and sex: United States, 2001–2006. (B) Mean intake of vitamin D 

(IU) from food and food plus dietary supplements from Continuing Survey of Food Intakes 

by Individuals (CSFII) 1994–1996, 1998 and the Third National Health and Nutrition 

Examination Survey (NHANES III) 1988–1994. (C) Reported incidence of vitamin D 

deficiency defined as a 25-hydroxyvitamin D <20 ng/mL around the globe including 

Australia (AU), Canada (CA), China (CH), India (IN), Korea (KR), Malaysia (MA), 

Middle East (ME), Mongolia (MO), New Zealand (NZ), North Africa (NA),  

Northern Europe (NE), United States (USA) [60]. Note: This figure is reproduced with 

permission from [60], Copyright © 2012 The Endocrine Society. 

 A 
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Figure 3. Cont. 

 

 

6. Vitamin D and Calcium and Phosphorus Metabolism 

Vitamin D plays an important role in the calcium and phosphorus metabolism and helps ensure 

adequate levels of these minerals for metabolic functions and bone mineralization [7]. 1,25(OH)2D 

increases the efficiency of intestinal calcium absorption from 10%–15% to 30%–40% by interacting 

with the VDR-RXR and thereby promoting the expression of an epithelial calcium channel and  

a calcium-binding protein [7,19,20]. Based on several experiments conducted in rodents [72,73] it has 

been estimated that 1,25(OH)2D also increases the intestinal phosphorus absorption from 50%–60% to 

approximately 80% [7,14]. 

Vitamin D also mediates indirect effects on calcium and phosphorus by regulating the PTH levels. 

The parathyroid glands have CYP27B1 activity and the local production of 1,25(OH)2D using 

25(OH)D as substrate could inhibit the synthesis of PTH [74]. However, 25(OH)D could also directly 

suppress PTH synthesis by directly activating the VDR [75]. Vitamin D deficiency is associated with 

B 

C 
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lower levels of serum-ionized calcium, a stimulus leading to increased PTH levels. Conversely, higher 

calcium levels that are associated with higher 25(OH)D levels, suppress the PTH secretion. PTH 

increases tubular calcium and decreases renal phosphorus reabsorption [14] (Figure 1). PTH also 

stimulates the production of 1,25(OH)2D with the above mentioned effects on calcium and  

phosphorus homeostasis [7,14]. Moreover, both PTH and 1,25(OH)2D stimulate osteoblasts to 

mobilize skeletal calcium stores [7,17] (Figure 1). Vitamin D deficiency leads to secondary 

hyperparathyroidism with PTH-enhanced 1,25(OH)2D production and is often associated with normal 

to high 1,25(OH)2D levels [7]. 

7. Bone Health 

In the mid-1600s most children living in the crowded and polluted industrialized cities in Northern 

Europe developed a severe bone-deforming disease, rickets, that was characterized by growth 

retardation, enlargement of the epiphyses of the long bones, deformities of the legs, bending of the 

spine, knobby projections of the ribcage, and weak and toneless muscles [14,76] (Figure 4). Autopsy 

studies in children in the Netherlands and Boston in the early 1900s showed a rickets prevalence of 

80%–90% [14]. In the 19th and 20th century, the major discoveries regarding the pathogenesis and 

prevention of rickets were made. In 1822, the importance of sun exposure for the prevention and cure 

of rickets was recognized by Sniadecki [77]. In 1890, these observations were extended and the 

recommendation of sun baths to prevent rickets was promoted by Palm [78]. In 1919,  

Huldschinski [79,80] found that exposing children to UV radiation from a sun quartz lamp (mercury 

arc lamp) or carbon arc lamp was effective in treating rickets. In 1918, Mellanby et al. [81] prevented 

rickets in puppies with cod liver oil. McCollum et al. [82] called this new nutritional factor vitamin D. 

Hess and Weinstock [83] and Steenbock and Black [84] observed that UV irradiation of various foods 

and oils imparted antirachitic activity [14]. 

Vitamin D sufficiency is pivotal for normal skeletal development both in utero [7,85] and in 

childhood [14], and for achieving and maintaining bone health in adults [23]. This is due to the fact 

that vitamin D sufficiency leads to an adequate calcium-phosphorus product (Ca2+ × HPO42−) resulting 

in an effective bone mineralization [14]. Maternal vitamin D insufficiency during pregnancy was 

associated with a significant reduction in bone mineral acquisition in infants [85] that still persisted  

9 years after birth [86]. In children whose epiphyseal plates haven’t closed, vitamin D deficiency with 

25(OH)D levels <15 ng/mL causes chondrocyte disorganization and hypertrophy at the mineralization 

front as well as skeletal mineralization defects. This results in bone deformities and short stature, the 

typical signs of vitamin D deficiency rickets [14,87]. 

In adults low 25(OH)D and high PTH also lead to a low serum calcium × phosphorus product, 

resulting in osteomalacia, i.e., a defective mineralization of the collagen matrix causing a reduction of 

structural support and being associated with an increased risk of fracture [17,28]. Results from the 

National Health and Nutrition Examination Survey III (NHANES III) showed that bone density in the 

hip was directly related to the serum 25(OH)D level in both genders of all ethnicities [88,89].  

A German study examined 25(OH)D serum levels and transiliac crest bone specimens of  

675 individuals mainly in the 6th and 7th decade of life (401 males, mean age 58.7 ± 17 years, and  

274 females, mean age: 68.3 ± 17.3 years) dying of unnatural death, such as a motor vehicle accident. 
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The bone biopsies were taken within 48 h after death as well as the blood samples. Various previous 

experiments had shown that the 25(OH)D serum levels were stable for at least 10 days postmortem. 

While there’s no uniformly accepted osteoid volume cut-off for the histologic diagnosis of osteomalacia, 

the study showed a prevalence of osteomalacia of over 25% when using a threshold of >2% osteoid 

volume/bone volume (OV/BV) for the diagnosis of osteomalacia and a prevalence of >43% when 

using a threshold of 1.2% OV/BV as described by Delling in 1975 [90]. Osteomalacia was absent in all 

individuals with 25(OH)D >30 ng/mL, suggesting this as minimum serum level for maintenance of 

bone health. However, no minimum 25(OH)D level could be determined that was inevitably associated 

with mineralization defects [91]. 

One possible explanation is that obtaining a single blood level of 25(OH)D doesn’t provide 

information about the long-term vitamin D status of the individual. It is possible that for example  

that the subject became ill during the winter and stopped ingesting foods containing vitamin D or 

decreased sun exposure during the summer that would acutely lower blood levels of 25(OH)D without 

causing osteomalacia. 

Figure 4. Sister (right) and brother (left) ages 4 years and 6.5 years, respectively, 

demonstrating classic knock-knees and bow legs, growth retardation, and other skeletal 

deformities [14]. Note: This figure is reproduced with permission from [14], Copyright © 

2006 American Society for Clinical Investigation. 

 

8. Osteoporosis and Fractures 

As a decrease in 25(OH)D leads to secondary hyperparathyroidism associated with osteoclastogenesis 

and an increase in bone resorption exceeding osteoblast-mediated bone formation [88], this can 

precipitate and exacerbate osteopenia and osteoporosis in adults [17,92,93]. 

Osteoporosis has a prevalence of ~1/3 in women 60–70 years of age and of ~2/3 in women 80 years 

of age or older [7]. It’s estimated that currently 10 million Americans have osteoporosis with  
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1.5 to 2 million osteoporosis-related fractures annually [94]. An osteoporosis-related fracture will be 

experienced by one in eight men over age 50 years in their lifetime [95]. 

Vitamin D promotes bone health by maintaining the PTH levels in a physiologically healthy level, 

stimulating osteoblastic activity, and promoting bone mineralization as well as reducing risk of falls 

thereby reducing risk of fracture [93,96]. 

According to data from the Women’s Health Initiative [97], the odds ratio of risk for hip fracture 

was inversely related to the serum 25(OH)D level [88]. There’s evidence that patients with 25(OH)D 

levels >30 ng/mL have a lower risk of fracture. Several studies have been conducted to evaluate the 

effect of vitamin D supplementation on the fracture risk, with some studies showing a significant 

reduction of the risk of fractures while others didn’t [98]. One of these showed that the 

supplementation with calcium (1200 mg) and vitamin D3 (800 IU/day) decreased the number of hip 

fractures by 43% (p = 0.043) and the total number of nonvertebral fractures by 32% [99]. The 

RECORD study however, did not show a reduction in fracture risk with supplementation with  

vitamin D (800 IU/day), or calcium (1000 mg/day), or both [100], but often compliance was poor and 

serum 25(OH)D levels were not measured at the end of the study in most participants [7,98,100].  

A meta-analysis of more than 30,000 participants did show that supplementation with vitamin D  

(≥792 IU/day) led to a significant reduction in the risk of fracture; the risk of hip fracture was reduced 

by 30%, the risk of any non-vertebral fracture by 14% [98–106]. 

9. Muscular Health and Falls  

Vitamin D exerts multiple effects on muscle health [107]. Its active form 1,25(OH)2D could be 

produced locally in muscle cells as suggested by the recent identification of CYP27B1 bioactivity in 

regenerating mouse muscle and skeletal muscle cells [108], however other studies have failed to detect 

this enzyme in muscle cells [109]. 1,25(OH)2D is thought to modulate muscle function via the VDR, 

which seems to be expressed in skeletal muscles [109–113], by regulating gene transcription and 

promoting de-novo protein synthesis [107]. Also, rapid non-genomic pathways involving  

a membrane-bound vitamin D receptor could exist and affect the calcium handling involving the 

sarcoplasmic reticulum and the calcium signaling in muscle cells [109]. Several studies indicate that 

the muscle function depends on the VDR genotype in the muscle cell [114,115]. The possibility of  

a direct interaction between 25(OH)D and the VDR has been proposed in CYP27B1−/− cells [109,116]. 

However, the existence of a VDR in muscle cells is discussed highly controversially, as a more recent 

study failed to detect the VDR in muscle cells and as the antibodies used for immunocytochemical 

staining to detect the VDR in previous studies have been shown to be not exclusively specific for the 

VDR and could explain potentially false-positive results in these previous studies [117].  

Vitamin D deficiency is associated with diffuse muscle pain, muscle weakness [7,118], 

predominantly in the proximal muscle groups [115], and a reduction in performance speed [107,119]. 

This is caused by muscle atrophy of mainly type II muscle fibers [115]. Proximal muscle weakness in 

severe vitamin D deficiency could also be caused by secondary hyperparathyroidism and resultant 

hypophosphatemia [60,106,120]. 

There is a positive association between 25(OH)D, lower extremity function, proximal muscle 

strength and physical performance [107,121,122]. Muscle strength [123] and postural and dynamic 
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balance [124] were increased by vitamin D supplementation [107]. The effect of vitamin D 

supplementation on the risk of falls was examined in a randomized, controlled multi-dose study, 

showing that the supplementation of 800 IU/day lowered the adjusted-incidence rate ratio of falls by 

72% compared to those taking placebo over 5 months [125]. A meta-analysis of 8 randomized 

controlled trials (n = 2426) showed that supplemental vitamin D of 700–1000 IU/day or a serum 

25(OH)D of ≥24 ng/mL reduced the risk of falls by 19% and 23% respectively. No benefit was 

observed with lower supplemental doses or lower serum 25(OH)D concentrations [126]. 

10. Cancer 

Living at higher latitudes with lower UV exposure and thus lower vitamin D production is 

associated with an increased risk for the occurrence of a variety of cancers and with an increased 

likelihood of dying from them, as compared to living at lower latitudes [7,17,127,128]. A recent 

review of ecological studies associating solar UVB exposure-vitamin D and cancers found strong 

inverse correlations with solar UVB irradiance for 15 types of cancer: bladder, breast, cervical, colon, 

endometrial, esophageal, gastric, lung, ovarian, pancreatic, rectal, renal, and vulvar cancer; and 

Hodgkin’s and non-Hodgkin’s lymphoma [129]. 

An inverse association between 25(OH)D and the incidence of several cancers and mortality from 

these cancers has been shown in case-control studies, prospective and retrospective studies [130–140], 

especially for cancers of the colon, breast and prostate [7]. Regarding colon cancer, the Nurses’ Health 

cohort study (n = 32,826) showed an inverse association of the odds ratios for colorectal cancer with 

the median 25(OH)D serum levels. At 16.2 ng/mL the odds ratio was 1 and 0.53 at 39.9 ng/mL  

(p ≤ 0.01) [7,140]. 

These associational studies have certain limitations regarding the establishment of a causality 

between vitamin D status and a reduced risk of cancer, e.g., as low serum 25(OH)D levels are also 

linked with confounding factors related to higher cancer risk, including obesity (vitamin D is 

sequestered in adipose tissue), and lack of physical activity (correlated with less time outdoors and less 

solar exposure) [138]. However, a population-based, double-blind, randomized placebo-controlled trial 

of 4 years duration with more than thousand postmenopausal women, whose principal secondary 

outcome was cancer incidence, showed that the supplementation with calcium (1400–1500 mg/day) 

and vitamin D3 (1100 IU/day) reduced the relative risk (RR) of cancer by ~60% (p < 0.01). The 

repetition of a cancer free survival analysis after the first 12 months revealed, that the relative risk for 

the calcium + vitamin D group was reduced by ~77% (confidence interval [CI]: 0.09–0.60; p < 0.005). 

Multiple regression models also showed that both treatment and serum 25(OH)D concentrations were 

significant, independent predictors of cancer risk [137]. 

Mounting evidence suggests a biological plausibility for anti-carcinogenic effects of vitamin D, 

which could explain these results. 1,25(OH)2D, which has been shown to be produced locally by 

various cancer cells metabolizing the substrate 25(OH)D [38], inhibits carcinogenesis by several 

mechanisms [141]. 1,25(OH)2D exerts anti-proliferative effects on cancer cells by promoting  

cyclin-dependent kinase (CDK) inhibitor synthesis, and by influencing several growth factors and their 

signaling pathways including insulin-like growth factor 1 (IGF-1), transforming growth factor β 

(TGFβ), Wnt/β-catenin, MAP kinase 5 (MAPK5) and nuclear factor κB (NF-kB) [142] (Figure 5). 
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Figure 5. Metabolism of 25-hydroxyvitamin D [25(OH)D] to 1,25 dihydroxyvitamin D 

1,25(OH)2D for non-skeletal functions. When a monocyte/macrophage is stimulated 

through its toll-like receptor 2/1 (TLR2/1) by an infective agent such as Mycobacterium 

tuberculosis (TB), or its lipopolysaccharide (LPS) the signal upregulates the expression of 

vitamin D receptor (VDR) and the 25-hydroxyvitamin D-1-hydroxylase (1-OHase). 

25(OH)D levels >30 ng/mL provides adequate substrate for the 1-OHase to convert it to 

1,25(OH)2D. 1,25(OH)2D returns to the nucleus where it increases the expression of 

cathelicidin which is a peptide capable of promoting innate immunity and inducing  

the destruction of infective agents such as TB. It is also likely that the 1,25(OH)2D 

produced in the monocytes/macrophage is released to act locally on activated T (AT) and 

activated B (AB) lymphocytes which regulate cytokine and immunoglobulin synthesis 

respectively [143–147]. When 25(OH)D levels are ~30 ng/mL, it reduces risk of many 

common cancers [130–140]. It is believed that the local production of 1,25(OH)2D in the 

breast, colon, prostate, and other cells regulates a variety of genes that control proliferation. 

Once 1,25(OH)2D completes the task of maintaining normal cellular proliferation and 

differentiation, it induces the 25-hydroxyvitamin D-24-hydroxylase (24-OHase).  

The 24-OHase enhances the metabolism of 1,25(OH)2D to calcitroic acid which is 

biologically inert [7,18]. Thus, the local production of 1,25(OH)2D does not enter the 

circulation and has no influence on calcium metabolism. The parathyroid glands have  

1-OHase activity [45] and the local production of 1,25(OH)2D inhibits the expression and 

synthesis of PTH [74]. The production of 1,25(OH)2D in the kidney enters the circulation 

and is able to downregulate renin production in the kidney [148,149] and to stimulate 

insulin secretion in the β-islet cells of the pancreas [148,150]. Note: This figure is 

reproduced with permission from [21], Copyright © 2007 Michael F. Holick.  
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Apoptosis is characterized as programmed cell death permitting the removal of damaged cells 

including cancer cells in multicellular organisms without impairing the cellular microenvironment. 

Defective apoptosis plays a major role in the development and progression of cancer [151]. It has been 

shown, that both immunobiological mechanisms of cancer immunosurveillance and cancer 

immunoediting [152], as well as chemotherapeutic agents and radiation, utilize the apoptotic pathway 

to induce cancer cell death [151,153]. 1,25(OH)2D3 might exert anti-carcinogenic effects by promoting 

various pro-apoptotic mechanisms including the downregulation of the anti-apoptotic gene  

Bcl-2 [154] and by upregulating of the pro-apoptotic gene Bax [155], 1,25(OH)2D3 induces 

differentiation, partly by reducing the expression of the c-myc oncogene [141,156]. It regulates the 

prostaglandin (PG) metabolism and signaling, thus decreasing PG-mediated promotion of 

carcinogenesis [141,157]. It suppresses tumor angiogenesis, e.g., mediated by 1,25(OH)2D’s effects on 

the PG synthesis and by regulating the expression of crucial factors controlling the angiogenesis. 

1,25(OH)2D3 suppresses tumor invasion and metastasis by various mechanisms [141], e.g., by 

decreasing the expression and activity of cell invasion-associated serine proteases and 

metalloproteinases and inducing their inhibitors [158], and by inducing E-cadherin expression, 

contributing to adhesive properties of cells [141,159]. Other effects mediated by 1,25(OH)2D are 

thought to be the induction of autophagy as process to trigger the death of cancer cells and to block 

tumor growth and by inducing enzymes involved in antioxidant defense mechanisms and  

DNA-repair [142]. 1,25(OH)2D also regulates androgen and estrogen receptor signaling, thereby 

inhibiting tumor growth of some sex hormone-dependent tumors such as prostate and breast cancer. It 

has also been shown to reduce the expression of aromatase, thereby inhibiting breast cancer growth [141]. 

11. Vitamin D and Cardiovascular Risk 

Most epidemiological and prospective studies as well as meta-analyses [148,160–163] suggest a 

significant inverse association between 25(OH)D serum levels and cardiovascular risk. The prospective 

Intermountain Heart Collaborative Study with more than 40,000 participants revealed that 25(OH)D 

<15 ng/mL compared to 25(OH)D >30 ng/mL was associated with highly significant increases in the 

prevalence of type 2 diabetes mellitus, hypertension, hyperlipidemia, and peripheral vascular disease, 

coronary artery disease, myocardial infarction, heart failure, and stroke (p < 0.0001), as well as with 

incident death (all-cause mortality was used as primary survival measure), heart failure, coronary artery 

disease/myocardial infarction (p < 0.0001), stroke (p = 0.003), and their composite (p < 0.0001) [164]. 

A meta-analysis examining the association between vitamin D status and the risk of cerebrovascular 

events including >1200 stroke cases found that the pooled relative risk for stroke was 52% higher 

when comparing 25(OH)D levels ≤12.4 ng/mL with 25(OH)D levels >18.8 ng/mL [165]. 

Many of these associations are well established, causation however is yet to be proven [166]. 

Individuals spending less time exercising outdoors in the sun, e.g., have a higher risk of developing 

cardiovascular diseases, and those individuals also will likely have lower 25(OH)D levels 

coincidentally [166,167]. Also, obesity, a condition associated with cardiovascular disease [168], is 

associated with a lower vitamin D status due to a sequestration and volumetric dilution of the 

lipophilic vitamin D in the fat tissue [23,166,169,170], potentially explaining the described 

correlations [166]. Despite these limitations many studies suggest a biological plausibility for the 

beneficial effects of vitamin D on cardiovascular risk factors and cardiovascular health. 
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The vitamin D receptor is present in endothelium, vascular smooth muscle, and  

cardiomyocytes [162,166] and may protect against atherosclerosis through the inhibition of macrophage 

cholesterol uptake and foam cell formation, reduced vascular smooth muscle cell proliferation, and 

reduced expression of adhesion molecules in endothelial cells [166] and through inhibition of cytokine 

release from lymphocytes [162]. Several meta-analyses indicate an inverse association between 

vitamin D status and hypertension [171]. Studies showed, that antihypertensive effects were associated 

with raising 25(OH)D levels with vitamin D supplementation [172–174] or UVB exposure [175]. 

Mechanistically, this effect could be partly mediated by vitamin D’s capability to suppress the 

levels of PTH, which can cause arrhythmias and lead to myocardial hypertrophy and increased blood 

pressure [148,176]. 1,25(OH)2D3 has also been shown to suppress the levels of renin and could 

contribute to vitamin D’s potential antihypertensive properties [148,149].  

A meta-analysis examining the association between vitamin D status or vitamin D supplementation, 

and incident type 2 diabetes showed that individuals with 25(OH)D levels >25 ng/mL compared to 

those with 25(OH)D <14 ng/mL had a 43% lower risk of developing type 2 diabetes and  

that a vitamin D supplementation with >500 IU/day compared to <200 IU/day reduced the risk by  

13% [177]. In the Nurses’ Health Study >83,000 women were followed-up prospectively and it was 

shown, that a combined daily intake of >1200 mg calcium and >800 IU vitamin D was associated with 

a 33% lower risk of type 2 diabetes with RR of 0.67 (CI: 0.49–0.90) compared with an intake of  

<600 mg calcium and 400 IU vitamin D [178]. A prospective study following-up more than  

2000 participants showed, that the risk of progression from prediabetes to diabetes was reduced by 

62% when comparing the highest quartile of 25(OH)D levels with the lowest quartile [179,180]. 

This could be explained by experimental findings indicating that vitamin D exerts various 

antidiabetic effects. The VDR is expressed in pancreatic beta cells and 1,25(OH)2D stimulates insulin 

secretion [148,150]. Improvement in vitamin D status also leads to a improvement of insulin 

sensitivity, mediated for example by upregulation of insulin receptors [148], and modulates 

inflammation, which is also thought to play a role in type 2 diabetes [150,179] (Figure 5). 

12. Vitamin D’s Role in Autoimmune Disease 

Ecological studies have shown that the prevalence of certain autoimmune diseases was associated 

with latitude, suggesting a potential role of sunlight exposure, and thus vitamin D production, on the 

pathogenesis of type 1 diabetes mellitus, multiple sclerosis and Crohn’s disease [181]. The increased 

prevalence at higher latitudes has been shown for multiple sclerosis (MS) [181,182], inflammatory 

bowel disease [183], rheumatoid arthritis [184] and type 1 diabetes [181,182,185]. 

A few case-control studies relate the vitamin D status to the risk of developing these autoimmune 

diseases [181]. One of them, a prospective, nested case-control study analyzed serum samples and the 

data of disability databases of more than seven million US military personnel, and showed, that among 

whites (148 cases, 296 controls), the risk of multiple sclerosis significantly decreased with increasing 

levels of 25(OH)D (odds ratio for a 20 ng/mL increase in 25(OH)D was 0.59 (95% CI: 0.36–0.97). 

When comparing the highest quintile of 25(OH)D with the lowest, the odds ratio for developing MS 

was 0.38 (95% CI: 0.19–0.75; p = 0.006), with an particularly strong inverse association for 25(OH)D 

levels measured before age 20 years [186]. 



Nutrients 2013, 5 126 

 

 

A study addressing vitamin D’s effect on multiple sclerosis showed the safety of high-dose vitamin 

D (~14,000 IU/day). It appeared to have immunomodulatory effects including a persistent reduction in 

T-cell proliferation and resulted in a trend for fewer relapse events [187]. When examining the 

association between 25(OH)D serum levels and the relapse rate in MS patients before and after 

supplementation with ~3000 IU vitamin D per day, a significant strong inverse relationship between 

the relapse incidence rate and the 25(OH)D level (p < 0.0001) was found [188]. 

An inverse association between maternal 25(OH)D levels and the risk for type 1 diabetes in the 

offspring has been shown in a population-based, nested cohort study of ~30,000 pregnant women. 

Compared to the upper quartile of 25(OH)D levels, the odds of type 1 diabetes in the women with the 

lowest quartile was more than twofold higher [189]. A birth-cohort study with >10,000 children 

showed, that regular supplementation with 2000 IU vitamin D per day in the first year of life was 

associated with a 88% reduction of the risk for type 1 diabetes later in life when compared to those 

without supplementation [190]. However, another study did not show a statistically significant 

association between taking cod liver oil or other vitamin D supplements in the first year of life and the 

risk of type 1 diabetes mellitus [191]. 

Merlino et al. [192] showed in a prospective cohort study of 29,368 women of ages 55–69 years 

without a history of rheumatoid arthritis at study baseline, that greater intake (highest versus lowest 

tertile) of vitamin D was inversely associated with risk of rheumatoid arthritis (RR 0.67; 95% CI: 

0.44–1.00; p for trend =0.05). 

These associations indicate a contributory role of vitamin D in the pathophysiology of autoimmune 

diseases. This is further supported by various experimental findings showing vitamin D’s capability to 

regulate chemokine production, counteracting autoimmune inflammation and to induce differentiation 

of immune cells in a way that promotes self-tolerance. This involves the enhancement of the innate and 

the inhibition of the adaptive immune system by regulating the interactions between lymphocytes and 

antigen presenting cells. By increasing the quantity of Th2 lymphocytes and by inducing proliferation 

of dendritic cells with tolerance properties, vitamin D exerts anti-inflammatory and immunoregulatory 

effects [181]. 

Immune cells possess both the enzymatic machinery to produce 1,25(OH)2D and a VDR. This 

could explain, why certain polymorphisms in the VDR gene seem to affect the risk for multiple 

autoimmune diseases, the time of onset of disease and disease activity [181,193–197]. 

13. Vitamin D and Infectious Diseases 

The plethora of effects of vitamin D on regulating the immune system plays a role in fighting 

infectious diseases [198]. Vitamin D enhances the innate immunity against various infections [143], 

especially tuberculosis, influenza and viral upper respiratory tract infections [198]. 

Historically, cod liver oil (one of only a few natural sources of vitamin D) was given to tuberculosis 

patients in 19th and 20th century [199–201]. Later in the nineteenth century, tuberculosis patients were 

treated in sanatoriums with heliotherapy, i.e., sun exposure. In 1903, Niels Ryberg Finsen was awarded 

the Nobel prize for medicine “in recognition of his contribution to the treatment of diseases, especially 

lupus vulgaris (tuberculosis of the skin), with concentrated light radiation, whereby he has opened a 

new avenue for medical science” [199,202]. After vitamin D had been identified as the active 
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ingredient in cod-liver oil [199,203], vitamin D2 was used successfully in the treatment of lupus 

vulgaris in several studies. In 1946 a report in Proc. R. Soc. Med. [204] stated that there was no room 

for doubt that calciferol (vitamin D) in adequate dosage will cure a substantial proportion of cases of 

lupus vulgaris [199,204]. In 1947 the first reference to successful treatment of pulmonary tuberculosis 

with vitamin D was published [199,205]. In the wake of the antibiotic era both heliotherapy and 

vitamin D therapy for treating tuberculosis patients were quickly forgotten [199,206]. However recent 

studies have suggested that vitamin D may have an important role to play in reducing risk for acquiring 

one of the most common and deadly infectious diseases that plague third world countries [206]. 

One case-control study examining the association between vitamin D status and tuberculosis 

showed, that the mean 25(OH)D levels were statistically significant different (p < 0.005) between 

patients with pulmonary and extrapulmonary tuberculosis (10.7 ng/mL) and controls (19.5 ng/mL) [207]. 

In another study, 25(OH)D levels <10 ng/mL were significantly associated with active tuberculosis 

(OR 2.9; 95% Cl: 1.3–6.5; p = 0.008) [208]. A meta-analysis showed, that low serum 25(OH)D levels 

were associated with higher risk of active tuberculosis, and that the pooled effect size in random 

effects meta-analysis was 0.68 (95% CI: 0.43–0.93), representing a medium to large effect [209].  

A double-blind, placebo-controlled study in Mongolian school children (n = 120) examining the effect 

of vitamin D supplementation (800 IU/day) on tuberculin skin test conversion to positive showed  

a trend towards fewer conversions in the vitamin D group (p = 0.06), suggesting a potential role of 

vitamin D in reducing the rate of acquisition of latent tuberculosis infection [210]. 

Several interventional studies examining the effect of vitamin D supplementation in patients with 

active tuberculosis have been conducted. Some of them showed an improved immunity against 

mycobacteria [211], a significantly improved sputum conversion rate and a higher rate of radiological 

improvement [212], and a significantly hastened sputum culture conversion in participants with the tt 

genotype of the TaqI vitamin D receptor polymorphism [213]. There was also a higher rate of 

tuberculosis symptom improvement and a significantly higher weight gain (p < 0.005) in children [214].  

A prospective, randomized placebo-controlled trial examining the effect of adjunctive vitamin D 

supplementation in patients receiving antimicrobial therapy showed that vitamin D supplementation 

led to an accelerated sputum smear conversion and an accelerated resolution of inflammation [215]. 

Another study however in which three doses of 100,000 IU vitamin D3 each were given during 

8 months did not lead to a reduction in the clinical severity score or mortality [216]. 

Some studies examined the effect of vitamin D supplementation on the risk of influenza [217,218]. 

In 1981, R. Edgar Hope-Simpson proposed that a “seasonal stimulus” was intimately associated 

with solar radiation and explained the remarkable seasonality of epidemic influenza [219,220]. As the 

vitamin D status changes during the seasons, it has been suggested, that vitamin D could be this 

“seasonal stimulus” [219]. A randomized trial of vitamin D3 supplementation (1200 IU/day) in school 

children (n = 334) showed a significantly reduced risk for influence A as determined by both antibody 

and sputum testing compared to the placebo group (RR 0.58; 95% CI: 0.34–0.99; p = 0.04) [218]. 

One study using questionnaires to retrospectively determine the occurrence of influenza-like disease 

in participants of 10 different clinical trials (n = 569), receiving 1111–6800 IU/day, however did not 

show a significant difference in the incidence and severity of influenza-like disease [217]. 

The NHANES III study (n > 18) revealed an inverse association between serum 25(OH)D levels 

and recent upper respiratory tract infections (URTI). Lower 25(OH)D levels were independently 
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associated with recent URTI compared with 25(OH)D levels of ≥30 ng/mL (OR 1.36; 95% CI:  

1.01–1.84 for <10 ng/mL and OR 1.24; 95% CI: 1.07–1.43 for 10 to <30 ng/mL). In individuals with 

asthma or chronic obstructive airway disease this association was stronger (OR of 5.67 in asthma 

respectively OR of 2.26 in chronic obstructive airway disease) [221]. A study in Finish men (n = 800) 

found a significant association between 25(OH)D serum levels <16 ng/mL and significantly more days 

of absence from duty due to respiratory infections (p = 0.004) [222]. In Indian children (n = 150) vitamin D 

deficiency has been associated with a significantly higher risk of acute lower respiratory infections [223]. 

A study with >200 participants whose primary endpoint was the effect of vitamin D supplementation 

on bone loss also revealed, that the vitamin D3 supplementation for 2 years with 800 IU/day and for 

1 year with 2000 IU/day was associated with a significantly reduced risk of cold and influenza 

symptoms, an effect that was magnified with the supplementation of 2000 IU/day [198,224].  

Other studies however did not show a statistically significant difference, possibly due to poor 

compliance [225,226]. Certain VDR polymorphisms were also associated with a significantly 

increased risk of acute lower respiratory tract infections [227]. 

Several mechanisms could explain vitamin D’s potentially beneficial effects on infectious diseases. 

Monocytes and macrophages can sense pathogen-associated molecular patterns (PAMPs) of,  

e.g., tuberculosis by utilizing their toll-like receptors (TLRs). This induces both VDR and CYP27B1, 

which increases the local production of 1,25(OH)2D that is dependent on the serum 25(OH)D 

concentration [145,228]. 1,25(OH)2D enhances the innate immune system by inducing the production 

of antimicrobial peptides like cathelicidin, reactive oxygen species by the (reduced) nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase and potentially reactive nitrogen species by 

inducible nitric oxide synthase (iNOS), and by inducing autophagy [143–147] (Figure 4). 

14. Vitamin D and Respiratory Diseases 

Although some studies did not find a consistent association between 25(OH)D levels in cord blood, 

maternal vitamin D intake or status during pregnancy and the risk for asthma in childhood [229–236], 

in children with asthma, 25(OH)D levels seem to correlate positively with asthma control [237] and 

lung function [238], and inversely with corticosteroid use [239]. A few interventional studies 

examining vitamin D’s effect on asthma exist [229]. One of them showed as secondary outcome that 

vitamin D3 supplementation (1200 IU/day) in school children was associated with a significant  

83% reduced risk for asthma exacerbations [218]. Presumably vitamin D’s immunmodulatory and 

pulmonary effects could play a role [229]. 

15. Prevention and Treatment of Vitamin D Deficiency  

According to the Endocrine Society Practice Guidelines a screening for vitamin D deficiency by 

measuring the 25(OH)D serum level is only recommended for individuals at risk (the most important 

risk factors are listed in Figure 6), and not for the general population [16]. To prevent vitamin D 

deficiency, the Institute of Medicine (IOM) recommends, that infants should immediately receive  

a daily supplementation of vitamin D of 400 IUs during the first year of life. Individuals between  

1 and 70 years should receive 600 IU of vitamin D daily and adults >70 years should receive a daily 

dose of 800 IU vitamin D [53] (Table 2). The serum 25(OH)D level increases for every 100 IU/day by  
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~0.6–1.0 ng/mL [29,37,240,241]. The doses recommended by IOM will likely increase the 25(OH)D 

level to 20 ng/mL, which they considered to be adequate for bone health, but not to levels >30 ng/mL, 

as recommended by the Endocrine Society. 

That’s why the Endocrine Society recommended in its Practice Guidelines that infants during their 

first year of life receive a daily supplementation of 400–1000 IU (up to 2000 IU is safe), children and 

adolescents between 1 and 18 years a daily supplementation of 600–1000 IU (up to 4000 IU is safe), 

and adults >18 years a daily supplementation of 1500–2000 IU (up to 10,000 IU is safe) for the 

prevention of vitamin D deficiency [16,53] (Table 2). 

Figure 6. A Schematic representation of the major causes for vitamin D deficiency and 

potential health consequences. Note: This figure is reproduced with permission from [21], 

Copyright © 2007 Michael F. Holick. 

 

Table 2. Recommendations of the Institute of Medicine and the Endocrine Society Practice 

Guidelines for daily vitamin D supplementation to prevent vitamin D deficiency. This table 

is reproduced with permission from [16], Copyright © 2011 The Endocrine Society. 

 
IOM Recommendations 

Endocrine Society’s 

Recommendations 

Life Stage 

Group 
AI EAR RDA UL 

Daily Allowance 

(IU/day) 

UL (IU)

Infants       

0 to 6 months 400 IU (10 μg)   1000 IU (25 μg) 400–1000 2000 

6 to 12 months 400 IU (10 μg)   1500 IU (38 μg) 400–1000 2000 

Children       

1–3 years  400 IU (10 μg) 600 IU (15 μg) 2500 IU (63 μg) 600–1000 4000 

4–8 years  400 IU (10 μg) 600 IU (15 μg) 3000 IU (75 μg) 600–1000 4000 
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Table 2. Cont. 

* Mother’s requirement 4000–6000 (mother’s intake for infant’s requirement if infant is not receiving 400 IU/day);  

AI = Adequate Intake; EAR = Estimated Average Requirement; IU = International Units; RDA = Recommended Dietary 

Allowance; UL = Tolerable Upper Intake Level. 

However, obese individuals, patients with malabsorption syndromes, and patients on glucocorticoids, 

anti-seizure and AIDS medications may require higher doses of vitamin D than individuals without 

these conditions [16]. The Endocrine Society’s Clinical Practice Guidelines also recommended 

sensible sun exposure, which for most individuals is the main physiological source of vitamin D, and 

provided a list of the foods rich in vitamin D, and encouraged taking a daily vitamin D supplement to 

ensure adequate 25(OH)D levels. 

The Endocrine Society’s Practice Guidelines also recommended treatment strategies for patients 

with vitamin D deficiency depending on age and underlying medical conditions. For vitamin D 

deficient infants 0–1 years old, a treatment with 2000 IU/day of vitamin D2 or vitamin D3 or with 

50,000 IU of vitamin D2 or vitamin D3 once weekly for 6 weeks was suggested, followed by 

maintenance therapy of 400–1000 IU/day. For vitamin D deficient children aged 1–18 years who are 

vitamin D deficient, treatment with 2000 IU/day of vitamin D2 or vitamin D3 or with 50,000 IU of 

vitamin D2 once a week, both for at least 6 weeks, was suggested, followed by maintenance therapy of 

600–1000 IU/day. Vitamin D deficient adults should be treated with 50,000 IU of vitamin D2 or 

vitamin D3 once a week for 8 weeks or with ~6000 IU/day of vitamin D2 or vitamin D3, followed by 

maintenance therapy of 1500–2000 IU/day. In obese patients, patients with malabsorption syndromes, 

and patients on medications affecting vitamin D metabolism, two to three times higher doses are  

Males       

9–13 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 600–1000 4000 

14–18 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 600–1000 4000 

19–30 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

31–50 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

51–70 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

>70 years  400 IU (10 μg) 800 IU (20 μg) 4000 IU (100 μg) 1500–2000 10,000 

Females       

9–13 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 600–1000 4000 

14–18 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 600–1000 4000 

19–30 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

31–50 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

51–70 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

>70 years  400 IU (10 μg) 800 IU (20 μg) 4000 IU (100 μg) 1500–2000 10,000 

Pregnancy       

14–18 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 600–1000 4000 

19–30 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

31–50 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

Lactation *       

14–18 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 600–1000 4000 

19–30 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 

31–50 years  400 IU (10 μg) 600 IU (15 μg) 4000 IU (100 μg) 1500–2000 10,000 
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(at least 6000–10,000 IU/day) of vitamin D to treat vitamin D deficiency are recommended, followed 

by maintenance therapy of at least 3000–6000 IU/day [16]. This strategy of giving 50,000 IU of 

vitamin D twice monthly to treat or prevent recurrence of vitamin D deficiency or insufficiency was 

without any toxicity for up to six years [242] (Figure 7). 

Figure 7. (A) Mean serum 25-hydroxyvitamin D [25(OH)D] levels in all patients: includes 

patients treated with 50,000 IU vitamin D2 every 2 weeks (maintenance therapy, n = 81), 

including those patients with vitamin D insufficiency who were initially treated with  

8 weeks of 50,000 IU vitamin D2 weekly prior to maintenance therapy (n = 39). Error bars 

represent standard error of the mean, mean result over 5 years shown. Time 0 is initiation 

of treatment, results shown as mean values averaged for 6 month intervals. When mean 

25(OH)D in each 6 month group was compared to mean initial 25(OH)D, a significant 

difference was shown with p < 0.001 up until month 43 and p < 0.001 when all remaining 

values after month 43 were compared to mean initial 25(OH)D. (B) Mean serum 25(OH)D 

levels in patients receiving maintenance therapy only: Levels for 37 patients who were 

vitamin D insufficient (25(OH)D levels <30 ng/mL) and 5 patients who were vitamin D 

sufficient (25(OH)D levels ≥30 ng/mL) who were treated with maintenance therapy of 

50,000 IU vitamin D2 every two weeks. Error bars represent standard error of the mean, 

mean result over 5 years shown. Time 0 is initiation of treatment, results shown as mean 

values averaged for 6 month intervals. When mean 25(OH)D in each 6 month group were 

compared to mean initial 25(OH)D, a significant difference was shown with p < 0.001 up 

until month 37 and p < 0.001 when all remaining values after month 43 were compared to 

mean initial 25(OH)D. (C) Serum calcium levels: Results for all 81 patients who were 

treated with 50,000 IU of vitamin D2. Error bars represent standard error of the mean. Time 

0 is initiation of treatment, results shown as mean values averaged for 6 month intervals. 

Normal serum calcium: 8.5–10.2 mg/dL. Note: This figure is reproduced with permission 

from [242], Copyright © 2009 American Medical Association. 
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Figure 7. Cont. 

 

 

However, certain conditions like granulomatous conditions [243], genetic disorders [244] or rare 

polymorphisms of enzymes involved in vitamin D metabolism [245] are associated with an increased 

risk for vitamin D toxicity. 

16. Conclusion 

What continues to be needed are randomized controlled interventional studies with high power and 

using sufficiently high doses of vitamin D examining vitamin D’s effects on various health outcomes.  

However, the present body of evidence of experimental findings, ecological, case-control, retro- and 

prospective observational and interventional studies is substantial and suggests a pivotal role of 

vitamin D for a plethora of physiological functions and health outcomes including neuropsychiatric 

disorders [246], justifying the recommendation to enhance children’s and adults’ vitamin D status by 

following recommendations for sensible sun exposure, ingesting foods that contain vitamin D and 

vitamin D supplementation. Increasing the vitamin D status worldwide in the general adult and 

children population without rare conditions associated with an increased risk for vitamin D toxicity 

will help improve their overall health and well-being (Figure 6). 
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