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2 Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10,
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Abstract: Herein, we present the application of fluorinated carbohydrate-derived building blocks
for α-hydroxy β-fluoro/β-trifluoromethyl and unsaturated phosphonates synthesis. Pudovik and
Horner–Wadsworth–Emmons reactions were applied to achieve this goal. The proposed pathway of
the key reactions is supported by the experimental results, as well as quantum chemical calculations.
The structure of the products was established by spectroscopic (1D, 2D NMR) and spectrometric
(MS) techniques. Based on our data received, we claim that the progress of the Pudovik and HWE
reactions is significantly influenced by the acidic protons present in the molecules as assessed by pKa

values of the reagent.

Keywords: fluorinated α-hydroxyphosphonates; fluorinated unsaturated phosphonates; fluorinated
building blocks; Pudovik; Horner–Wadsworth–Emmons

1. Introduction

The synthesis of biologically significant compounds is based mainly on the ability
to introduce an appropriate group of atoms into a target molecule [1,2]. An interesting
approach relevant to this case may be introduction of fluorine containing groups into
organic molecules. The relatively small size and electron properties of fluorine gave it
a versatile use as a bioisostere and hence it is commonly applied as a substitute for a
hydrogen atom. In addition, it is also an excellent mimetic of a carbonyl group, for ex-
ample in peptide chains [3–6]. Nature has not endowed us with numerous fluorinated
organic derivatives [7,8]. For this reason, synthesis in this area is the only way to ob-
tain such molecules. Due to its remarkable chemical and physical properties, fluorine
possessing compounds play an important role in biologically active molecules. This is
particularly important in the aspect of obtaining new drugs [9–15]. Phosphonic acid deriva-
tives are also among the known and used drugs (Fosfomycin 1, Figure 1). These deriva-
tives have found application as analogues of phosphates commonly occurring in living
organisms and involved in important biological processes (component of cell membranes—
Phosphatidylcholine 2, Figure 1) [16,17]. Replacement of a bridging oxygen atom (R-O-P)
in a phosphate group by a methylene group (-CH2-) can have significant biological effects.
This modification may affect greater stability because carbon-phosphorus bond cannot be
hydrolyzed by the enzyme that cleaves O-phosphate esters. For this reason, these isosteric
analogues can be better substrates due to their similarity in size and shape to natural
phosphates [18].
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Figure 1. Structures of Fosfomycin 1 and Phosphatidylcholine 2. 

In the literature, there are many examples of various properties and biological 
activities of phosphonic acid derivatives containing a hydroxyl group [19,20] and/or 
fluorine atom in α position to a phosphonate group [21–26]. These compounds are also 
isosteric analogues of natural products [27] and enzyme inhibitors (Figure 2) [19,28]. There 
are also examples of phosphonate derivatives having a fluorine atom in a β position to a 
phosphorus atom [24,29,30] and fluorinated or nonfluorinated unsaturated phosphonates 
[31–38]. 

 
Figure 2. Examples of synthetic hydroxyphosphonates [19]. 

The most reliable approaches widely used in the synthesis of both fluorine-
containing and non-fluorinated phosphonate derivatives are the Pudovik reaction (a) and 
the Horner–Wadsworth–Emmons olefination (b) (Scheme 1). The most frequently used 
method of α-hydroxyphosphonates synthesis is addition of dialkyl phosphite to a 
carbonyl compound, named after its discoverer—the Pudovik reaction [39,40]. HWE is a 
very highly stereoselective method for preparation of not only α,β-unsaturated 
phosphonates, but also other compounds, especially various types of natural product 
derivatives [41–45]. 

Figure 1. Structures of Fosfomycin 1 and Phosphatidylcholine 2.

In the literature, there are many examples of various properties and biological activi-
ties of phosphonic acid derivatives containing a hydroxyl group [19,20] and/or fluorine
atom in α position to a phosphonate group [21–26]. These compounds are also isosteric
analogues of natural products [27] and enzyme inhibitors (Figure 2) [19,28]. There are also
examples of phosphonate derivatives having a fluorine atom in a β position to a phosphorus
atom [24,29,30] and fluorinated or nonfluorinated unsaturated phosphonates [31–38].
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Figure 2. Examples of synthetic hydroxyphosphonates [19].

The most reliable approaches widely used in the synthesis of both fluorine-containing
and non-fluorinated phosphonate derivatives are the Pudovik reaction (a) and the Horner–
Wadsworth–Emmons olefination (b) (Scheme 1). The most frequently used method of
α-hydroxyphosphonates synthesis is addition of dialkyl phosphite to a carbonyl compound,
named after its discoverer—the Pudovik reaction [39,40]. HWE is a very highly stereose-
lective method for preparation of not only α,β-unsaturated phosphonates, but also other
compounds, especially various types of natural product derivatives [41–45].

An efficient approach towards the synthesis of fluoro-containing compounds is through
modular assembly using fluorinated building blocks. In the recent study we investigated
application of the Claisen rearrangement reaction for construction of fluorine-containing
scaffolds [46]. Carbohydrates were used as starting compounds, which are a very valuable
source of building blocks, as well as chiral auxiliaries [47–52]. Specific intent of our present
research effort is using early obtained carbohydrate-derived building blocks to receive
new α-hydroxy β-fluoro/β-trifluoromethyl and unsaturated phosphonates via Pudovik
and Horner–Wadsworth–Emmons reactions. The modifiable functional groups of our
newly synthesized compounds give access for their further transformations. They can be
considered feasible tools for more complex molecule design.
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2. Results and Discussion

In the present studies we report synthesis of fluorine containing phosphonates, 14–15,
20–21. 1,2;5,6-Di-O-isopropylidene-α-D-mannitol 9 was used as a starting material and
successfully converted into 14–15, 20–21 via 12 and 18 (Scheme 2). Fluorinated ethers 11
and 12 were prepared using a strategy previously developed in our research group [46,48].

Allyl-vinyl ethers 12, as well as scaffolds bearing fluorine atoms resulting from Claisen
rearrangement 18 were used as excellent precursors for the synthesis of fluorinated phos-
phonates (Scheme 2). The former 12, depending on the olefin employed, can be yielded
as a single Z isomer or a Z/E mixture, and readily transformed to a carbonyl compound
13 by reacting with periodic acid. The aldehyde 13 after evaporation of solvent was pure
enough be subjected to subsequent reactions. For this purpose, tetraethyl methylenebis-
phosphonate was converted into appropriate anion with NaH and proceeded with pure
Z isomer of 13 to HWE protocol (Scheme 3). The reaction was carried out with 1.75 eq of
both tetraethyl methylenebisphosphonate and NaH in THF, for 15 h at room temperature.
Surprisingly, the reaction did not progress according to our assumption. On the basis of
1H, 13C NMR spectra of the obtained product 14, it can be concluded that in the initial
stage of the process, under basic conditions, the substrate 13 isomerized to intermediate
compound int-A, and afterwards the expected HWE reaction took place. In the following
Scheme 3, a pathway of the discussed transformation is proposed. The observed 1,3-shift
in the first step of the overall process is related to the presence of an acidic proton in the
α position to the carbonyl group of fluorinated β,γ-unsaturated aldehyde 13, which can
be abstracted under reaction conditions. In the literature, a few examples of this type of
isomerization of carbonyl compounds can be found, some of them occurring even with
very weak bases. [53–55] However, to the best of our knowledge, this is the first known
example of such a 1,3-shift involving β,γ-unsaturated aldehydes. As a result of HWE
reaction, between α,β-unsaturated aldehyde int-A and nucleophilic derivative of tetraethyl
methylenebisphosphonate, an α,β-unsaturated phosphonate with a fluorinated allyl group
14 was synthesized. In spectra of purified product 14, two sets of signals in the ratio 1:0.2
were observed. It is caused by the presence of two diene conformers: “s-cis” 14′ and
“s-trans” 14. Geometry of the double bond located directly to the phosphorus atom was
determined based on the NMR analysis, and is consistent with the expectations of the
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HWE outcome where the E isomer should be formed as the main product. [56] A coupling
constant value was crucial for the analysis- it was found to be 17 Hz, which confirmed the
trans relationship of the protons across the double bond.
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Scheme 3. Synthesis of 14.

In order to study the reactivity and diastereoselectivity of the reaction with another
nucleophilic agent, this time a mixture of Z/E isomers of aldehyde 13 was subjected to
the Pudovik reaction (Scheme 4). This time the reaction was carried out under very mild
conditions, without a solvent, and in the presence of stoichiometric amounts of diethyl
phosphite, and triethylamine at room temperature. The reaction, as described previously,
proceeded in an alkaline environment. In the first step, the double bond rearrangement was
observed, and then followed by the actual nucleophilic attack. The Pudovik reaction was
highly stereoselective, such a great selectivity can be explained by the Felkin-Ahn model
presented in Figure 3.
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Having results of both reactions, it can be concluded that the progress of those trans-
formations is strongly dependent on the presence of an acidic proton in the α position of
the carbonyl group in 13.

In the present work we show a second class of molecules that we functionalized-
these are the previously obtained by Claisen rearrangement α-fluoro-α-trifluoromethyl-
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γ,δ-unsaturated 18a/18a′ (1:0.65 ratio) and α-trifluoromethyl-γ,δ-unsaturated 18b/18b′

(1:1 ratio) alcohols [46]. These compounds were oxidized with quantitative yields to the
corresponding aldehydes 19a/19a′ and 19b/19b′ using Dess-Martin reagent. The reactions
were carried out under mild conditions at room temperature. Complete disappearance
of the substrates and selective formation of new products was observed after only 5 min.
Aldehydes 19a/19a′ and 19b/19b′ were isolated by simple extraction, and were pure enough
to be subjected to further transformations. Both fluorinated carbonyl compounds 19a/19a′,
19b/19b′ were subjected to HWE and Pudovik reactions under the same conditions as
described above as well.

The HWE reaction carried out on α-fluoro-α-trifluoromethyl-γ,δ-unsaturated 19a/19a′

derivatives proceeded as expected and yielded E olefins 20a/20a′ as the main products
(Scheme 5). In this case the coupling constant between the protons located at the newly
produced double bond was also 17 Hz. Unfortunately, an analogous reaction with α-
trifluoromethyl-γ,δ-unsaturated 19b/19b′ aldehydes provided only traces of the expected
HWE products 20b/20b′. These compounds were characterized on the basis of 1H, 19F, 31P
and HRMS spectra. 20b/20b′ occurred to be unstable during prolonged NMR experiments
(13C, 2D NMR). Perhaps, the initial abstraction of acidic proton occurs, and then highly
electrophilic and reactive structures are formed.
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Scheme 5. Synthesis of 20.

Aldehydes 19a/19a′ and 19b/19b′ were also subjected to the Pudovik reaction (Scheme 6).
When the derivatives containing an α-fluoro-α-trifluoromethyl-γ,δ-unsaturated moiety
19a/19a′ were used as substrates, the corresponding hydroxy phosphonates 21a/21a′ were
obtained with good yield. A very high diastereoselectivity of the process was observed this
time. The reaction led to only one new stereogenic center on a carbon atom bonded to a
phosphorus atom. The reaction with the second aldehydes 19b/19b′, resulted in a slight
reduction in the yield of the products 21b/21b′. This may also be related to the presence of
an acidic proton located adjacent to the -CF3 group.
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Scheme 6. Synthesis of 21.

In order to explain and investigate the unexpected reactions of aldehydes 13 and
19b/19b′, we decided to perform quantum mechanical calculations to determine their pKa
values.

DFT Calculations
The aim of the calculations was to obtain calculated value of pKa to estimate the acid

strength of 2-((2,3,3,3-tetrafluoroprop-1-en-1-yl)oxy)but-3-enal 13 and α-trifluoromethyl-
γ,δ-unsaturated aldehyde 19b in comparison to other organic acids whose pKa were
measured in aqueous solution. Energy calculations were performed within DFT framework
at M062X/6-31+G(d) level of theory [57,58]. This method and basis set was used by Zeng
et al. [59] for similar calculations which resulted in calculated values of pKa. We also
conducted frequency analysis [60] to access thermochemistry data needed, and to verify
that the geometry optimization led to the potential energy minimum. Calculations were
carried out in vacuo and aqueous solution with use of the Polarizable Continuum Model
(PCM) [61]. All quantum mechanics calculations were performed with the GAUSSIAN
09 [62] available within Pl-Grid infrastructure. To calculate pKa we used thermodynamic
cycle depicted in Figure 4 below.
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Such a type of thermodynamic cycle was recommended in papers by Liptak et al. and
by Zeng et al. [59,63]. We applied methodology presented in those articles in our work. To
calculate pKa we used equation (Equation (1)) proposed by Zeng et al. [59] included below.

pKa = A
∆Gaq

RTln10
+ B (1)

where:
∆Gaq—solution phase free energy
R—gas constant
T—temperature
A & B—linear parameters
Parameters A and B were determined on the basis of known pKa values for five

chemical compounds: formic acid, trifluoroacetic acid, dimethyl malonate, acetone and
chloroacetone. These compounds were also optimized in vacuo and water solution, and on
the basis of information gathered from frequency analyses we were able to calculate pKa
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values for each structure. Calculated and known experimental values of pKa of formic acid,
trifluoroacetic acid, dimethyl malonate, acetone and chloroacetone are gathered in Table 1
below.

Table 1. Values of known experimental pKa, calculated pKa and calculated pKa with included
obtained for Equation (1) parameters A and B.

Exp. pKa [64] Calc. pKa

Formic Acid 3.8 3.7
Trifluoroacetic Acid 0.2 0.8
Dimethyl Malonate 13.5 11.9
Acetone 20.0 19.7
Chloroacetone 16.5 17.9
2-((2,3,3,3-tetrafluoroprop-1-en-1-yl)oxy)but-3-enal 13 - 13.3
α-trifluoromethyl-γ,δ-unsaturated aldehyde 19b - 15.1

As shown in Table 1 values of calculated pKa differed slightly from experimentally
measured values of pKa (values of empirical parameters A and B needed in Equation (1).
were 0.3541 and −0.3387 for parameters A and B, respectively). The calculated values
of pKa for 2-((2,3,3,3-tetrafluoroprop-1-en-1-yl)oxy)but-3-enal 13 and α-trifluoromethyl-
γ,δ-unsaturated aldehyde 19b were 13.3 and 15.1, respectively. Obtained pKa values
suggest that acidity of 13 is similar to acidity of dimethyl malonate (experimental pKa
value 13.5), while acidity of 19b is greater than the acidity of chloroacetone (experimental
pKa value 16.5). Examples of use of, weak bases such as K2CO3, Et3N, and NaH to
abstract acidic protons from dimethyl malonate or chloroacetone can be found in the
literature. [65–68] Thus, the obtained calculated results of pKa values of 13 and 19b correlate
with experimental observations, in which under the reaction conditions the abstraction of
acidic proton can be observed in the first step of the reaction.

3. Conclusions

In conclusion, starting from conveniently obtained via Claisen rearrangement fluori-
nated scaffolds 18 or allyl-vinyl ethers 12, new α-hydroxy β-fluoro/β-trifluoromethyl and
unsaturated phosphonates have been achieved. The key reactions proceeded under mild
conditions with good yields. The unexpected progress of the reactions has been correlated
with quantum mechanical calculations and indicates connection with pKa values of the
molecules 13 and 19b/19b′. To the best of our knowledge of the ever-growing interest in flu-
orinated phosphonates as enzyme inhibitors, the compounds obtained in this research can
serve as material for future synthetic studies. These compounds have been also prepared
as examples to illustrate the synthetic potential of fluorinated derivatives 12 and 18.

4. Materials and Methods
4.1. General Methods

1H NMR, 13C NMR, 19F NMR, 31P NMR and 2D-NMR spectra were performed on
Bruker ASCEND 400 (400 MHz) and Bruker ASCEND 600 (600 MHz) spectrometers.
Chemical shifts of 1H NMR were expressed in parts per million downfield from TMS as
an internal standard (δ = 0) in CDCl3. Chemical shifts of 13C NMR were expressed in
parts per million downfield and upfield from CDCl3 as an internal standard (δ = 77.0).
Chemical shifts of 19F NMR were expressed in parts per million upfield from CFCl3 as an
internal standard (δ = 0) in CDCl3. 31P NMR chemical shifts were expressed in parts per
million in CDCl3. High-resolution mass spectra were recorded by electron spray (MS-ESI)
technique using QToF Impact HD Bruker spectrometer. Reagent grade chemicals were
used and solvents were dried by refluxing with sodium metal-benzophenone (THF) and
distilled under an argon atmosphere. All moisture sensitive reactions were carried out
under an argon atmosphere using oven-dried glassware. Reaction temperatures below 0 ◦C
were obtained using a bath cooling (dry ice/iso-propanol). Thin-layer chromatography
(TLC) was performed on Merck Kieselgel 60-F254 with EtOAc/hexane as developing
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systems. Visualization of the reactions products was achieved using UV light (254 nm)
and a standard procedure (solution of phosphomolybdenic acid or solution of potassium
permanganate). Merck Kieselgel 60 (230–400 mesh) was used for column chromatography
(more detailed data in Supplementary Materials).

4.2. General Procedure of Periodic Acid Oxidation Synthesis of 13

A solution of 12/12′ (1 equiv.) and H5IO6 (2 equiv.) in EtOAc (5 mL) was stirred for
4.5 h. The mixture was filtered, and the filtrate was evaporated to give the crude product
as a creamy oil. The crude product was used for the next step [69].

4.3. General procedure of Dess-Martin oxidation Synthesis of 19

The Dess-Martin periodinane (1.2 equiv.) was added to a stirred solution of 18 (1 equiv.)
in 5 mL of CH2Cl2 at RT. After 5 min the solution was diluted with CH2Cl2 and a mixture
of sat. NaHCO3 and aq. Na2S2O3 (1:1) 5 mL. After stirring for 5 min the phases were
separated. Organic phases were dried (Na2SO4) and concentrated to give oils which were
used without further purification [70].

4.4. General Procedure of HWE Reaction Synthesis of 14 and 20

Tetraethyl methylenediphosphonate (1.75 equiv.) was added dropwise to a mixture of
sodium hydride (60% dispersion in oil, 1.75 equiv.) in 2 mL of dry THF at 0 ◦C under argon.
The reaction mixture was stirred for 10 min at 0 ◦C and then stirred at room temperature for
20 min. The reaction mixture was cooled to 0 ◦C, a solution of aldehyde 13/13′ (1.75 equiv.)
in 1 mL of dry THF was added, and the resulting solution was stirred at room temperature
for 15 h. The reaction mixture was concentrated, and the residue was purified using column
chromatography (n-hexane/ethyl acetate 90:10→ 50:40) [71].

Diethyl ((1E,3E)-3-(((E)-2,3,3,3-tetrafluoroprop-1-en-1-yl)oxy)penta-1,3-dien-1-yl)
phosphonate (14/14′): Colorless oil (73 mg, 39 %, ratio 1:0.2): Major: 1H NMR (400 MHz,
Chloroform-d) δ = 6.95 (dd, J = 21.9, 17.0 Hz, 1H, PCH=CH), 6.39 (dq, J = 18.5, 1.1 Hz, 1H,
OCH=CFCF3), 5.81 (t, J = 17.3 Hz, 1H, PCH=CH), 5.66 (dq, J = 7.2, 1.7 Hz, 1H, =CHCH3),
4.13 (q, J = 7.1 Hz, 2H, OCH2CH3), 1.83 (d, J = 7.2 Hz, 3H, =CHCH3), 1.34 (t, J = 7.0 Hz, 3H,
OCH2CH3). 13C NMR (101 MHz, Chloroform-d) δ = 151.33 (d, J = 25.0 Hz, CH=CO), 142.00
(d, J = 7.8 Hz, OCH=CFCF3), 134.34 (dq, J = 251.9, 39.4 Hz, OCH=CFCF3), 132.89–132.66 (m,
PCH=CH), 123.54 (s, CH=CH3), 119.52 (dq, J = 269.1, 34.5 Hz, CF3), 114.10 (d, J = 191.8 Hz,
PCH=CH), 62.18 (d, J = 5.6 Hz, OCH2CH3), 61.98 (d, J = 5.5 Hz, OCH2CH3), 16.28 (s, 2 ×
OCH2CH3). 11.52 (s, CH3). 31P NMR (162 MHz, Chloroform-d) δ = 18.33 (s). 19F NMR (376
MHz, Chloroform-d) δ = −71.47 (d, J = 14.7 Hz, CF3), −160.73 (dq, J = 18.2, 14.5 Hz, F).
Minor: 1H NMR (400 MHz, Chloroform-d) δ = 6.92 (dd, J = 21.8, 17.1 Hz, 1H, PCH=CH),
6.53 (dq, J = 18.1, 1.1 Hz, 1H, OCH=CFCF3), 5.99 (t, J = 16.9 Hz, 1H, PCH=CH), 5.67 (dq,
J = 7.2, 2.0 Hz, 1H, =CHCH3), 4.10 (q, J = 7.2 Hz, 2H, OCH2CH3), 2.07 (d, J = 8.3 Hz, 3H,
=CHCH3), 1.26 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz, Chloroform-d) δ = 152.04
(d, J = 25.0 Hz, CH=CO), 140.65 (d, J = 7.8 Hz, OCH=CFCF3), 134.34 (dq, J = 251.9, 39.4
Hz, OCH=CFCF3), 132.39–132.24 (m, PCH=CH), 120.56 (s, CH=CH3), 119.52 (dq, J = 269.1,
34.5 Hz, CF3), 118.23 (d, J = 190.6 Hz, PCH=CH), 62.18 (d, J = 5.6 Hz, OCH2CH3), 61.98
(d, J = 5.5 Hz, OCH2CH3), 16.22 (s, 2 × OCH2CH3). 11.50 (s, CH3). 31P NMR (162 MHz,
Chloroform-d) δ = 16.82 (s). 19F NMR (376 MHz, Chloroform-d) δ = −71.59 (d, J = 14.6 Hz,
CF3), −159.14 (dq, J = 18.4, 14.6 Hz, F). HRMS (ESI) calcd. for C12H18F4O4P ([M + H]+):
333.0879, found: 333.0873.

Diethyl ((1E,5E)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-fluoro-3-(trifluoromethyl)
hexa-1,5-dien-1-yl)phosphonate (20a/20a′): Colorless oil (82 mg, 72%, ratio:1:0.65): Major:
1H NMR (400 MHz, Chloroform-d) δ = 6.62 (dddd, J = 23.0, 20.4, 17.1, 6.2 Hz, 1H, CH=CHP),
6.19 (t, J = 17.1, 1H, CH=CHP), 5.64 (dd, J = 15.6, 6.2 Hz, 1H, CH=CHCH2), 5.61 (dd,
J = 15.5, 6.0 Hz, 1H, CH=CHCH2), 4.46 (q, J = 7.6 Hz, 1H, CHCH=CH), 4.16–4.03 (m, 4H, 2
×OCH2CH3), 4.06 (dd, J = 8.2, 6.1 Hz, 1H, OCHH), 3.56 (t, J = 8.1 Hz, 1H, OCHH), 2.89–2.74
(m, 1H, CHHCF), 2.71–2.51 (m, 1H, CHHCF), 1.40 (s, 3H, CH3), 1.36 (s, 3H, CH3), 1.35–1.32
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(m, 6H, 2 × OCH2CH3). 13C NMR (101 MHz, Chloroform-d) δ = 141.44 (dd, J = 10.6, 7.8 Hz,
CH=CHP), 134.77 (s, CH=CHCH2), 123.40 (dd, J = 185.7, 8.8 Hz, CH=CHP), 123.08 (d, J =
4.2 Hz, CH=CHCH2), 122.36 (dq, J = 284.3, 30.3 Hz, CF3), 109.45 (s, C(CH3)2), 93.76 (dq,
J = 194.4, 31.2 Hz, CF), 76.24 (s, CHCH=CH), 69.27 (s, OCH2), 62.34 (d, J = 5.5 Hz, 2 ×
OCH2CH3), 35.16 (d, J = 22.3 Hz, CH2CF), 26.58 (s, CH3), 25.81 (s, CH3), 16.40–16.22 (m,
2 × OCH2CH3). 31P NMR (162 MHz, Chloroform-d) δ = 14.96 (s). 19F NMR (376 MHz,
Chloroform-d) δ = −80.24 (d, J = 7.3 Hz, CF3), −177.00 (dq, J = 7.1, 2.2 Hz, F). Minor: 1H
NMR (400 MHz, Chloroform-d) δ = 6.62 (dddd, J = 23.0, 20.4, 17.1, 6.2 Hz, 1H, CH=CHP),
6.19 (t, J = 17.1, 1H, CH=CHP), 5.64 (dd, J = 15.6, 6.2 Hz, 1H, CH=CHCH2), 5.61 (dd,
J = 15.5, 6.0 Hz, 1H, CH=CHCH2), 4.48 (q, J = 7.9 Hz, 1H, CHCH=CH), 4.16–4.03 (m, 4H, 2
×OCH2CH3), 4.06 (dd, J = 8.2, 6.1 Hz, 1H, OCHH), 3.56 (t, J = 8.1 Hz, 1H, OCHH), 2.89–2.74
(m, 1H, CHHCF), 2.71–2.51 (m, 1H, CHHCF), 1.41 (s, 3H, CH3), 1.38 (s, 3H, CH3), 1.35–1.32
(m, 6H, 2 × OCH2CH3). 13C NMR (101 MHz, Chloroform-d) δ = 141.29 (dd, J = 11.0, 8.2 Hz,
CH=CHP), 134.83 (s, CH=CHCH2), 128.48 (dd, J = 186.8, 9.0 Hz, CH=CHP), 122.96 (d, J =
4.0 Hz, CH=CHCH2), 122.36 (dq, J = 284.3, 30.3 Hz, CF3), 109.51 (s, C(CH3)2), 93.63 (dq, J =
194.4, 31.3 Hz, CF), 76.22 (s, CHCH=CH), 69.27 (s, OCH2), 62.29 (d, J = 5.7 Hz, OCH2CH3),
62.20 (d, J = 5.7 Hz, OCH2CH3), 35.15 (d, J = 19.8 Hz, CH2CF), 26.58 (s, CH3), 25.80 (s, CH3),
16.40–16.22 (m, 2 × OCH2CH3). 31P NMR (162 MHz, Chloroform-d) δ = 14.95 (s). 19F NMR
(376 MHz, Chloroform-d) δ = −80.27 (d, J = 7.3 Hz, CF3), −176.85 (dq, J = 7.0, 2.1 Hz, F).
HRMS (ESI) calcd. for C16H25F4O5PNa ([M + Na]+): 427.1273, found: 427.1270.

Diethyl ((1E,5E)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-(trifluoromethyl)hexa-1,5-
dien-1-yl)phosphonate (20b/20b′): Colorless oil (8 mg, 16 %, ratio 1:0.9): Major: 1H NMR
(400 MHz, Chloroform-d) δ = 6.87 (dd, J = 29.4, 1.9 Hz, 1H, CH=CHP), 5.72 (t, J = 17.2, 1H,
CH=CHP), 5.80–5.66 (m, 1H, CH=CHCH2), 5.48 (dd, J = 15.4, 7.4 Hz, 1H, CH=CHCH2),
4.48 (q, J = 7.0 Hz, 1H, CHCH=CH), 4.09 (q, J = 6.9 Hz, 4H, 2 × OCH2CH3), 4.08 (dd, J =
8.1, 6.2 Hz, 1H, OCHH), 3.55 (q, J = 8.2 Hz, 1H, CHCF3), 3.52 (t, J = 7.9 Hz, 1H, OCHH),
3.20–2.94 (m, 2H, CH2CHCF3), 1.41 (s, 3H, CH3), 1.38 (s, 3H, CH3), 1.33 (t, J = 7.0 Hz, 6H,
2 × OCH2CH3). 31P NMR (162 MHz, Chloroform-d) δ = 18.76–18.35 (m). 19F NMR (376
MHz, Chloroform-d) δ = −65.53 (s, 3F, CF3). Minor: 1H NMR (400 MHz, Chloroform-d)
δ = 7.24 (dd, J = 22.3, 17.4 Hz, 1H, CH=CHP), 5.72 (t, J = 17.2, 1H, CH=CHP), 5.80–5.66
(m, 1H, CH=CHCH2), 5.62 (dd, J = 15.4, 7.4 Hz, 1H, CH=CHCH2), 4.45 (q, J = 7.1 Hz,
1H, CHCH=CH), 4.09 (q, J = 6.9 Hz, 4H, 2 × OCH2CH3), 4.07 (dd, J = 8.2, 7.2 Hz, 1H,
OCHH), 3.55 (q, J = 8.2 Hz, 1H, CHCF3), 3.52 (t, J = 7.9 Hz, 1H, OCHH), 3.20–2.94 (m, 2H,
CH2CHCF3), 1.40 (s, 3H, CH3), 1.37 (s, 3H, CH3), 1.33 (t, J = 7.0 Hz, 6H, 2 × OCH2CH3). 31P
NMR (162 MHz, Chloroform-d) δ = 18.76–18.35 (m). 19F NMR (376 MHz, Chloroform-d) δ =
−65.44 (s, 3F, CF3). HRMS (ESI) calcd. for C16H26F3O5PNa ([M + Na]+): 409.1368, found:
409.1371.

4.5. General Procedure of Pudovik Reaction Synthesis of 15 and 21

TEA (1.0 equiv.) was added under an argon atmosphere to a mixture of stirred
solution of diethyl phosphite (1.0 equiv.) and an aldehyde 13 or 19 (1.0 equiv.). The
reaction mixture was stirred at room temperature overnight, then was diluted with 20 mL
of water and extracted with ethyl acetate (3× 15 mL). The organic layers were washed with
NaClsat., dried over MgSO4 or Na2SO4, filtrated and concentrated under reduced pressure.
The residue was purified using column chromatography (chloroform/methanol 100:0→
100:0.5) [26].

Diethyl ((2Z)-1-hydroxy-2-((2,3,3,3-tetrafluoroprop-1-en-1-yl)oxy)but-2-en-1-yl)
phosphonate (15/15′): Colorless oil (46 mg, 49%, ratio 1:0.1): Major: 1H NMR (400 MHz,
Chloroform-d) δ = 6.63 (dd, J = 19.0, 1.2 Hz, 1H, OCH=CFCF3), 5.50 (dq, J = 7.0, 3.6 Hz,
1H, =CHCH3), 4.75 (bs, OH), 4.46 (d, J = 12.5 Hz, 1H, PCHOH), 4.20 (q, J = 7.2 Hz, 2H,
OCH2CH3), 1.72 (d, J = 7.1 Hz, 3H, =CHCH3), 1.34 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR
(101 MHz, Chloroform-d) δ = 150.02 (d, J = 4.0 Hz, CH(OH)=CO), 134.00 (m, OCH=CFCF3),
133.53 (dq, J = 249.4, 39.2 Hz, OCH=CFCF3), 119.87 (dq, J = 268.8, 34.6 Hz, CF3), 114.09 (d, J
= 9.4 Hz, =CHCH3), 68.98 (d, J = 161.5 Hz, CH(OH)=CO), 63.81 (d, J = 7.0 Hz, OCH2CH3),
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63.23 (d, J = 7.3 Hz, OCH2CH3), 16.26 (d, J = 5.9 Hz, OCH2CH3), 16.29 (d, J = 5.9 Hz,
OCH2CH3),10.43 (d, J = 1.5 Hz, CH3). 31P NMR (162 MHz, Chloroform-d) δ = 19.87 (s).
19F NMR (376 MHz, Chloroform-d) δ = −71.40 (d, J = 14.7 Hz, CF3), −163.22 (dq, J =
19.1, 15.0 Hz, F). Minor: 1H NMR (400 MHz, Chloroform-d) δ = 6.99 (d, J = 8.8 Hz, 1H,
OCH=CFCF3), 5.50 (dq, J = 7.0, 3.6 Hz, 1H, =CHCH3), 4.75 (bs, OH), 4.46 (d, J = 12.5 Hz,
1H, PCHOH), 4.20 (q, J = 7.2 Hz, 2H, OCH2CH3), 1.71 (d, J = 6.9 Hz, 3H, =CHCH3), 1.35
(t, J = 6.6 Hz, 3H, OCH2CH3). 13C NMR (101 MHz, Chloroform-d) δ = 150.02 (d, J = 4.0
Hz, CH(OH)=CO), 134.00 (m, OCH=CFCF3), 133.53 (dq, J = 249.4, 39.2 Hz, OCH=CFCF3),
119.87 (dq, J = 268.8, 34.6 Hz, CF3), 114.09 (d, J = 9.4 Hz, =CHCH3), 68.91 (d, J = 161.4 Hz,
CH(OH)=CO), 63.76 (d, J = 6.7 Hz, OCH2CH3), 63.19 (d, J = 7.4 Hz, OCH2CH3), 16.26 (d, J
= 5.9 Hz, OCH2CH3), 16.29 (d, J = 5.9 Hz, OCH2CH3),10.35 (d, J = 1.6 Hz, CH3). 31P NMR
(162 MHz, Chloroform-d) δ = 19.95 (s). 19F NMR (376 MHz, Chloroform-d) δ = −68.45 (d, J
= 11.4 Hz, CF3), −180.98 (dq, J = 11.4, 8.9 Hz, F). HRMS (ESI) calcd. for C11H17F4O5PNa
([M + Na]+): 359.0647, found: 359.0648.

Diethyl ((E)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-fluoro-1-hydroxy-2-(trifluoromethyl)
pent-4-en-1-yl)phosphonate (21a/21a′): Colorless oil (68mg, 87 %, ratio 1:0.65): Major: 1H
NMR (400 MHz, Chloroform-d) δ = 5.77–5.73 (m, 1H, CH=CHCH2), 5.61 (d, J = 6.8 Hz, 1H,
CH=CHCH2), 4.67 (td, J = 7.3, 1H, OH), 4.44 (q, J = 7.1 Hz, 1H, CHCH=CH), 4.36–4.25 (m,
1H, CHP), 4.22–4.06 (m, 4H, 2 × OCH2CH3), 4.01 (dd, J = 8.2, 6.2 Hz, 1H, OCHH), 3.52
(dd, J = 7.9, 2.3 Hz, 1H, OCHH), 3.08–2.92 (m, 1H, CHHCF), 2.92–2.74 (m, 1H, CHHCF),
1.35 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.28 (t, J = 7.0 Hz, 6H, 2 × OCH2CH3). 13C NMR
(101 MHz, Chloroform-d) δ = 133.24 (s, CH=CHCH2), 125.32 (d, J = 5.9 Hz, CH=CHCH2),
127.63–118.60 (m, J = 287.3 Hz, CF3), 109.35 (s, C(CH3)2), 95.75–92.17 (m, CF), 76.52 (s,
CHCH=CH), 69.26 (s, OCH2), 67.64 (dd, J = 163.9, 29.3 Hz, CP), 63.86 (d, J = 4.2 Hz, 2 ×
OCH2CH3), 63.40 (d, J = 7.2 Hz, OCH2CH3), 32.63 (d, J = 20.4 Hz, CH2CF), 26.57 (s, CH3),
25.81 (s, CH3), 16.30 (“t”, J = 5.8 Hz, 2 × OCH2CH3). 31P NMR (162 MHz, Chloroform-d) δ
= 18.41–18.20 (m). 19F NMR (376 MHz, Chloroform-d) δ =−76.49–−76.61 (m, CF3), −174.27
(ddh, J = 27.8, 13.4, 6.7 Hz, F). 19F{1/H} NMR (376 MHz, Chloroform-d) δ = −76.53 (dd, J
= 6.5, 3.3 Hz, CF3), −174.26 (p, J = 6.6 Hz, F). Minor: 1H NMR (400 MHz, Chloroform-d)
δ = 5.83–5.77 (m, 1H, CH=CHCH2), 5.58 (d, J = 6.8 Hz, 1H, CH=CHCH2), 4.67 (td, J =
7.3, 1H, OH), 4.44 (q, J = 7.1 Hz, 1H, CHCH=CH), 4.36–4.25 (m, 1H, CHP), 4.22–4.06 (m,
4H, 2 × OCH2CH3), 4.01 (dd, J = 8.2, 6.2 Hz, 1H, OCHH), 3.50 (dd, J = 7.9, 2.3 Hz, 1H,
OCHH), 3.08–2.92 (m, 1H, CHHCF), 2.92–2.74 (m, 2H), 1.35 (s, 3H, CH3), 1.31 (s, 3H, CH3),
1.28 (t, J = 7.0 Hz, 6H, 2 × OCH2CH3). 13C NMR (101 MHz, Chloroform-d) δ = 133.18 (s,
CH=CHCH2), 125.32 (d, J = 5.9 Hz, CH=CHCH2), 127.63–118.60 (m, J = 287.3 Hz, CF3),
109.33 (s, C(CH3)2), 95.75–92.17 (m, CF), 76.59 (s, CHCH=CH), 69.22 (s, OCH2), 67.61 (dd, J
= 163.0, 28.9 Hz, CP), 63.78 (d, J = 4.4 Hz, OCH2CH3), 63.38 (d, J = 7.3 Hz, OCH2CH3), 32.59
(d, J = 20.9 Hz, CH2CF), 26.58 (s, CH3), 25.81 (s, CH3), 16.30 (t, J = 5.8 Hz, 2 × OCH2CH3).
31P NMR (162 MHz, Chloroform-d) δ = 18.41–18.20 (m). 19F NMR (376 MHz, Chloroform-d)
δ = −76.41–−76.49 (m, CF3), −174.95 (dtt, J = 28.0, 13.4, 6.7 Hz, F). 19F{1/H} (376 MHz,
Chloroform-d) δ = −76.45 (dd, J = 6.4, 3.3 Hz, CF3), −174.94 (p, J = 6.7 Hz, F). HRMS (ESI)
calcd. for C15H25F4O6PNa ([M + Na]+): 431.1223, found: 431.1226.

Diethyl ((E)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxy-2-(trifluoromethyl)pent-
4-en-1-yl)phosphonate (21b/21b′): Colorless oil (54 mg, 69%, ratio 1:1): Major/Minor: 1H
NMR (400 MHz, Chloroform-d) δ = 5.95–5.82 (m, 1H, CH=CHCH2), 5.65–5.55 (CH=CHCH2),
4.50 (q, J = 8.0, 7.5 Hz, 1H, CHCH=CH), 4.36 (dd, J = 13.1, 6.9 Hz, 1H, CHP), 4.28–4.16 (m,
4H, 4H, 2 × OCH2CH3), 4.09 (ddd, J = 7.8, 5.4, 1.4 Hz, 1H, OCHH), 3.58 (td, J = 7.9, 3.9 Hz,
1H, OCHH), 2.80–2.68 (m, 1H, CHHCHCF3), 2.68–2.57 (m, 1H, CHHCHCF3), 2.56–2.45 (m,
1H, CHCF3), 1.44 (s, 3H, CH3), 1.40 (s, 3H, CH3), 1.39–1.34 (m, 6H, 2 × OCH2CH3). 31P
NMR (162 MHz, Chloroform-d) δ = 21.41 (s). Major: 13C NMR (101 MHz, Chloroform-d) δ =
131.59 (s, CH=CHCH2), 130.23 (s, CH=CHCH2), 129.79–128.38 (m, CF3), 109.22 (s, C(CH3)2),
76.81 (s, CHCH=CH), 69.35 (s, OCH2), 65.30 (dd, J = 167.5, 2.8 Hz, CP), 63.20 (d, J = 2.4
Hz, OCH2CH3), 63.13 (d, J = 2.4 Hz, OCH2CH3), 45.13–43.97 (m, CCF3), 26.64 (s, CH3),
26.13 (s, CH2CHCF3), 25.85 (s, CH3), 16.47 (s, OCH2CH3), 16.42 (s, OCH2CH3). 19F NMR
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(376 MHz, Chloroform-d) δ = −67.82 (d, J = 3.2 Hz, CF3). Minor: 13C NMR (101 MHz,
Chloroform-d) δ = 131.34 (s, CH=CHCH2), 130.23 (s, CH=CHCH2), 129.79–128.38 (m, CF3),
109.21 (s, C(CH3)2), 76.81 (s, CHCH=CH), 69.30 (s, OCH2), 65.27 (dd, J = 167.5, 2.9 Hz,
CP), 63.40 (d, J = 4.5 Hz, OCH2CH3), 63.33 (d, J = 4.5 Hz, OCH2CH3), 45.05–44.11 (m,
CCF3), 26.63 (s, CH3), 25.85 (s, CH3), 25.82 (s, CH2CHCF3), 16.38 (s, OCH2CH3), 16.36 (s,
OCH2CH3). 19F NMR (376 MHz, Chloroform-d) δ = −67.96 (d, J = 3.6 Hz, CF3). HRMS
(ESI) calcd. for C15H26F3O6PNa ([M + Na]+): 413.1317, found: 413.1320.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175404/s1, Copies of NMR spectra, DFT coordinates.
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