
Counteranions in the Stimulation Solution Alter the Dynamics of
Exocytosis Consistent with the Hofmeister Series
Xiulan He and Andrew G. Ewing*

Cite This: J. Am. Chem. Soc. 2020, 142, 12591−12595 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We show that the Hofmeister series of ions can be used to explain the cellular changes in exocytosis observed by
single-cell amperometry for different counteranions. The formation, expansion, and closing of the membrane fusion pore during
exocytosis was found to be strongly dependent on the counteranion species in solution. With stimulation of chaotropic anions (e.g.,
ClO4

−), the expansion and closing time of the fusion pore are longer, suggesting chaotropes can extend the duration of exocytosis
compared with kosmotropic anions (e.g., Cl−). At a concentration of 30 mM, the two parameters (e.g., t1/2 and tfall) that define the
duration of exocytosis vary with the Hofmeister series (Cl− < Br− < NO3

− ≤ ClO4
− < SCN−). More interestingly, fewer (e.g., Nfoot/

Nevents) and smaller (e.g., Ifoot) prespike events are observed when chaotropes are counterions in the stimulation solution, and the
values can be sorted by the reverse Hofmeister series (Cl− ≥ Br− > NO3

− > ClO4
− > SCN−). Based on ion specificity, an adsorption-

repulsion mechanism, we suggest that the exocytotic Hofmeister series effect originates from a looser swelling lipid bilayer structure
due to the adsorption and electrostatic repulsion of chaotropes on the hydrophobic portion of the membrane. Our results provide a
chemical link between the Hofmeister series and the cellular process of neurotransmitter release via exocytosis and provide a better
physical framework to understand this important phenomenon.

Specific ion effects have attracted increasing scientific and
technologic interests due to their broad applications in a

wide range of fields such as biology,1,2 colloids,3 macro-
molecules,4,5 nanomaterials,6−9 two-phase interfaces,10−12

ionic liquids,13 and gels.14 More interesting, there is a
reoccurring trend of specific ion effects, the Hofmeister series,
and it is also the earliest reported and the most studied.15,16

Kosmotropic and chaotropic ion properties are observed in the
species that span the Hofmeister series (e.g., Cl− < Br− <
NO3

− < ClO4
− < SCN−). These effects have been studied in

biological systems (e.g., proteins,17,18 lipids,1,19 peptides,20,21

biochannels,22 enzymes23,24), physiochemical systems (e.g.,
colloids,3 polymers4,5), and engineering systems (e.g., nano-
materials,6−9 interfaces10−12,25). In addition to regulating the
biological microenvironment (e.g., pH),26,27 there is an ion-
species-dependent effect of these anions on the activity of
bioenzymes, which is expected to be used in the design of
antiinfactives.28−31 The permeability of inorganic anions,
across the blood−brain barrier differs along the Hofmeister
series.32 Especially, Br− has been used to treat epilepsy.33,34

Moreover, the biological process of exocytosis has been studied
to examine the effect of ions on release.35−37 However, these
studies were focused on bivalent cations (e.g., Ca2+, Ba2+, Sr2+,
Zn2+) used to depolarize the membrane.38−41 The influence of
the Hofmeister anion series on exocytosis has not been
investigated to date, although several papers have reported that
these ions should strongly influence the structure or behavior
of specific cellular components.19−22

In this paper, we studied the effects of the Hofmeister
monovalent anion series on the exocytotic release of
catecholamines from isolated adrenal chromaffin cells (see
Supporting Information S1). For these studies, single-cell

amperometry (SCA) was used to monitor exocytosis at the top
of individual cells in culture. Exocytosis was triggered by
stimulating the adrenal chromaffin cells with a 30 s 30 mM K+

solution which included different counterions (i.e., Cl−, Br−,
NO3

−, ClO4
−, or SCN−), eventually leading to a train of peaks

in the amperometric recording. Interestingly, it appears that K+

stimulation with different counterions rapidly modulates the
exocytosis process in a manner that is completely consistent
with the Hofmeister series. Analysis of the exocytotic release
peaks reveals that the counteranions in the stimulation solution
regulate the fusion pore geometry, the duration of its opening,
and closure.
Potassium stimulation of the cells with different counter-

anions appears to influence the exocytotic ability by chaotropic
effects. Typical SCA amperometric traces obtained for
exocytosis are shown in Figure 1 (left). Each trace represents
a train of current transients following each stimulus, in which
each current transient corresponds to a single vesicle release
event. Several parameters that define the exocytosis process
can be obtained from each individual exocytotic event (Figure
S1), including Imax, the peak amplitude, t1/2, the half peak
width, trise, the 25−75% of rise time, tfall, the 75−25% of fall
time. The corresponding average peaks obtained from the
typical traces for stimulation with 30 mM K+ and Cl−, Br−
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NO3
−, ClO4

−, and SCN− as counterions are also shown in
Figure 1 (right panels), showing that stimulus by kosmotropic
counterions (e.g., Cl−) leads to narrower exocytosis events,
whereas stimulus by other chaotropic counterions (e.g.,
ClO4

−) leads to broader or longer-lasting events.
To further study the effects of monovalent anionic

counterions on exocytosis, the peak parameters obtained
from the different counterions used during stimulation were
analyzed. As previously reported,42 the distribution of the
exocytotic parameters is asymmetric and strongly deviates from
Gaussian behavior, hence we chose the median for statistical
analysis. The peak parameters for the main release events are
summarized and analyzed in Figure 2 (p values are listed in
Tables S1−S4). As shown in Figure 2A−C, a significant
increase in the value of trise, t1/2, and tfall is observed after K+

stimulation including chaotropic counterions (e.g., ClO4
−),

compared with the stimulation including kosmotropic counter-
ions (e.g., Cl−). This implies that the opening and closing of
the fusion pore after stimulation in the presence of chaotropes
(e.g., ClO4

−) has been decelerated and the pore stays open for
a longer time compared to kosmotropes (e.g., Cl−) in the cell
stimulation buffer.43−45 Moreover, the event duration (i.e., t1/2,
tfall) ranged over the entire Hofmeister series (Cl− < Br− <
NO3

− ≤ ClO4
− < SCN−). As shown in Figure 2D, when cells

are stimulated with high potassium and the counterion is
moved from a kosmotrope (e.g., Cl−) to a chaotrope (e.g.,
ClO4

−), a significant increase in Imax for exocytosis is observed
with the exception of SCN−. Correspondingly, the number of
molecules (Nmolecules) is summarized in Figure S2A (p values
are listed in Table S5). As the counteranions were changed
only in the stimulation solution, we assume there is no effect

on the composition of vesicles and their content inside the
cells during this acute application. We also studied the number
of events and found there is little difference between
counterions (Figure S2B, p values are listed in Table S6).
Figure S2C,D is the log-normal frequency histograms of
Nmolecules released per event, which provides a near-Gaussian
distribution with similar standard deviation but different mean
values for the distributions.
Exocytosis originates from the fusion of the cell and vesicle

membranes.35,46,47 Therefore, the structure and composition of
both the cell and vesicle membranes (e.g., lipid bilayer, lipid
rafts and biochannels) are closely related to the dynamic
process of exocytosis.46,47 To explain the exocytotic
Hofmeister series data, we propose an adsorption−repulsion
mechanism. The model in Figure 3A suggests a mechanism
where the kosmotropes (e.g., Cl−), which are believed to be

Figure 1. Left: Typical traces obtained from 30 mM K+ stimulated
chromaffin cells, including different counter-anions (e.g., Cl−, Br−,
NO3

−, ClO4
−, SCN−). Right: Average peaks obtained from the

corresponding typical traces.

Figure 2. Scheme showing the peak analysis, comparisons of (A) trise,
(B) t1/2, (C) tfall, and (D) Imax from SCA with chromaffin cells (n =
30) stimulated by 30 mM K+ including different counteranions (e.g.,
Cl−, Br−, NO3

−, ClO4
−, and SCN−). Pairs of data sets were compared

with t test; ***, p < 0.001; **, p < 0.01; *, p < 0.05.

Figure 3. Illustration of a proposed adsorption-repulsion mechanism,
showing chaotropic anions that adsorb on the hydrophobic part of the
lipid layer by chaotropic effects leading to a swollen lipid bilayer and
loosening of the structure of the lipid layer by electrostatic repulsion.
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“water structure makers”, are strongly hydrated (i.e., ΔhydCl
− =

−419 kJ/mol, the hydration enthalpy of Cl−) and have
stabilizing and salting-out effects on proteins and macro-
molecules likely to be in the membrane.2,8,48,49 Hence, the
kosmotropes prefer to combine with H2O rather than entering
the lipid bilayer. On the other hand, chaotropes (Figure 3B)
hold fewer H2O molecules and have a less-structured hydration
shell (e.g., ClO4

−, ΔhydClO4
− = −263 kJ/mol) and are known

to destabilize folded proteins via a salting-in behavior.2,8,48,49

The chaotropes are then more hydrophobic and prefer the
bilayer interior inducing lipid bilayer swelling, explained by
chaotropic effects or hydrophobic interaction.19,50−52 A “cone-
shape” species results if we treat the single lipid molecule and
the ions surrounded it as a whole, and when the cell membrane
has more conical phospholipids, this slows exocytosis.39 Then,
electrostatic repulsion between the penetrating chaotropic
anions and lipid headgroups leads to a change in the
headgroup tilt and a looser lipid bilayer, which also slows
down exocytosis.53 Therefore, these two factors can both
increase the duration of exocytosis leading to a range of event
durations (i.e., t1/2, tfall) related to the Hofmeister series (Cl− <
Br− < NO3

− ≤ ClO4
− < SCN−). However, there are two

opposing effects on Imax induced by “cone-shape” lipids (e.g.,
decreasing Imax) and looser lipid (e.g., increasing Imax),
respectively.39,53 Thus, we assume the magnitude of Imax is
controlled by the difference in the two factors and does not in
this case exactly follow the Hofmeister series. Although anionic
effects could also alter the pore dynamics caused by SNARE
proteins, we deliberately only introduce the different counter-
anions in the stimulation solution, so we assume there is only
time for extracellular effect on the cell membrane. As the
SNARE proteins are internal to the cell, we assume there is a
minimal effect here.
To further confirm the rationale of the proposed

adsorption−repulsion mechanism, the prespike feet (PSF),
which are thought to be caused by the initial formation and
stabilization of the membrane fusion pore, were examined. To
prevent issues with poor signal-to-noise ratios, only peaks with
a foot current (Ifoot) larger than 2 pA were used for analysis.
The relation between the PSF and the initial fusion pore has
been established and widely applied.54−56 The parameters for
the PSF were analyzed according to the procedure presented in
Figure S1. As shown in Figure 4 (p values are listed in Tables
S7−S10), there is an inhibitory effect on the PSF when
chaotropic counterions are present. There are fewer events
with PSF (i.e., the probability of PSF, Nfoot/Nevents, Figure 4A),
smaller feet (i.e., Ifoot, Figure 4B; the number of molecules in
foot, Nmolecules in foot, Figure 4C), and shorter events (i.e., tfoot,
Figure 4D) for cells stimulated with chaotropic counterions
(e.g., ClO4

−) than for the kosmotropic counterions (e.g., Cl−)
in the stimulation buffer. The magnitude of these effects, in
fact, follows the reverse Hofmeister series (Cl− ≥ Br− > NO3

−

> ClO4
− > SCN−). The smaller percentage of feet with

chaotropic species might be affected by the signal cutoff for
foot detection, but we also see significant difference even if we
use no cutoff, where there is more background (Figure S3).
It has been demonstrated that Ifoot is only related by the

geometric parameters of the fusion pore (i.e., Ifoot is
proportional to Rpore

2/Lpore, where Rpore and Lpore are the
radius and length of the initial pore) with an assumption that
there is a constant catecholamine concentration in chromaffin
cell vesicles.57 This further suggests that chaotropic counter-
ions influence the initial pore so that fewer molecules are

released, and this could be via a smaller and longer pore. We
hypothesize that cone-shape lipids in chaotrope-induced
swelling of cell membranes favor stalk formation,47 which
decreases Ifoot along the Hofmeister series. However, the
stability of the pore (i.e., tfoot) is controlled by local molecular
factors (e.g., SNARE proteins) and cell membrane physi-
ochemical features (e.g., curvature).58 Thus, we assume there
are two adverse effects to make a small difference on tfoot
between counteranions, in which outer “cone-shape” and
looser bilayer increase tfoot, and inner “cone-shape” lipid
decreases tfoot, respectively.

53,59

We used adrenal chromaffin cells to study the effects of the
monovalent anionic Hofmeister series on exocytotic release by
SCA, showing a novel trend in exocytosis dynamics. The
cellular response follows the Hofmeister series for the anionic
counterions to potassium ion stimulation. The probability of
PSF, the magnitude of Ifoot, and the duration of exocytosis
events depend on the counteranions according to their
position in the Hofmeister series. Interestingly, the magnitude
of dynamic exocytosis parameters (e.g., t1/2, and tfall) follows
the Hofmeister series order (Cl− < Br− < NO3

− ≤ ClO4
− <

SCN−), but, in contrast, the probability of PSF and the
magnitude of Ifoot follow an anti-Hofmeister series order (Cl−

≥ Br− > NO3
− > ClO4

− > SCN−). We propose a mechanism
based on adsorption−repulsion, in which chaotropic anions
enter the lipid bilayer and adsorb on the hydrophobic part via
chaotropic effects, resulting in a loosening of the lipid structure
from electrostatic repulsion. Our results provide a link between
the Hofmeister series and the processes that regulate
membrane structure and neurotransmitter release. We believe
that our results are of importance for further progress in
understanding the role of ion specificity, which manifests itself
in many physicochemical and biological phenomena.
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Figure 4. Foot parameters obtained from SCA with chromaffin cells
(n = 30) stimulated by 30 mM K+ solution including different
counteranions (e.g., Cl−, Br−, NO3

−, ClO4
−, and SCN−): (A) Nfoot/

Nevents, (B) Ifoot and (C) Nmolecules in foot, and (D) tfoot. Pairs of data
sets were compared with t test; ***, p < 0.001; **, p < 0.01; *, p <
0.05.
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