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ABSTRACT Newer ‘omics approaches, such as metatranscriptomics and metabolomics,
allow functional assessments of the interaction(s) between the gut microbiome and the
human host. However, in order to generate meaningful data with these approaches,
the method of sample collection is critical. Prior studies have relied on expensive and
invasive means toward sample acquisition, such as intestinal biopsy, while other studies
have relied on easier methods of collection, such as fecal samples that do not necessar-
ily represent those microbes in contact with the host. In this pilot study, we attempt to
characterize a novel, minimally invasive method toward sampling the human micro-
biome using mucosal cytology brush sampling compared to intestinal gut biopsy sam-
ples on 5 healthy participants undergoing routine screening colonoscopy. We com-
pared metatranscriptomic analyses between the two collection methods and identified
increased taxonomic evenness and beta diversity in the cytology brush samples and
similar community transcriptional profiles between the two methods. Metabolomics
assessment demonstrated striking differences between the two methods, implying a
difference in bacterial-derived versus human-absorbed metabolites. Put together, this
study supports the use of microbiome sampling with cytology brushes, but caution
must be exercised when performing metabolomics assessment, as this represents dif-
ferential metabolite production but not absorption by the host.

IMPORTANCE In order to generate meaningful metabolomic and microbiome data,
the method of sample collection is critical. This study utilizes and compares two
methods for intestinal tissue collection for evaluation of metabolites and micro-
biomes, finding that using a brush to sample the microbiome provides valuable
data. However, for metabolomics assessment, biopsy samples may still be required.
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The human intestinal microbiome is colonized by trillions of commensal microor-
ganisms (1), and alterations in microbiome composition (or dysbiosis) are associ-

ated with a wide variety of inflammatory, metabolic, and infectious human diseases
(2–4). The combination of metagenomic, metatranscriptomic, and metabolomic data
together with 16S rRNA taxonomic profiling enhances microbial community data, pro-
viding functional insights into the role of the human gut microbiome in disease (5).
Essential to such multiomics techniques is representative sample collection, where
samples can be obtained simply and efficiently and at low cost while providing high-
quality data.

The geographic landscape of microbial colonization in the intestine varies based on
microanatomic site (6, 7). Thus, studies of the gut microbiome require consideration
with regard to the collection method, as a difference between mucosal and luminal
inhabitants exists, and different collection methods consequently affect results. A num-
ber of various methods have been utilized in the literature, such as fecal sampling,
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tissue biopsy sample collection, or endoscopic brushing, each with advantages and
disadvantages as highlighted in a recent review article (8). The simplest and routinely
performed collection method involves fecal sampling, although some argue that it
does not represent the true mucosal microbiome (9, 10) sampled from the outer muco-
sal layer where most microbes inhabit (11, 12). Less frequently will the technique of
pinch biopsy sample collection be used due to cost, invasiveness, and subject discom-
fort. Prior studies have utilized pinch biopsy samples and have identified greater micro-
bial diversity with significant differences in diversity analyses compared to fecal sam-
ples (13).

Despite the available collection methods, the fundamental challenge of finding a
method of sampling that is noninvasive and cost-effective and provides an accurate
depiction of the mucosal microbial environment remains. To address these issues, we
propose a method using a cytology brush inserted in the rectum to brush the luminal
surface. The collection can be performed in the clinic and requires minimal equip-
ment and training, unlike anoscopy. No sedation or bowel preparation is required,
and the procedure can be performed in a few minutes, thus minimizing discomfort
for patients. Furthermore, the cost savings are significant compared to endoscopy
and aspiration capsule. Described here is a pilot study demonstrating the feasibility
of this method compared to endoscopic biopsy sample collection. We find that the
cytology brush method provides more bacterial DNA recovery but similar taxonomic
information compared to endoscopic biopsy sampling, although metabolomic analy-
sis demonstrates a differential metabolite profile indicative of the diverse mucosal
layer, including bacterial- and human-derived metabolites that differ from the deeper
biopsy samples.

RESULTS
Cytology brush sampling provides improved bacterial DNA recovery and

microbial diversity. The primary goal of this study was to evaluate a novel less-inva-
sive method for microbiome sampling utilizing a cytology brush compared to colon
pinch biopsy sample collection. Therefore, we compared the bacterial microbiome in
paired cytology brushes to tissue biopsy samples in five individuals undergoing stand-
ard-of-care cancer screening colonoscopies. In all, an average of 20.7 million paired-
end reads were acquired per sample, with an average of 2.04 6 0.47 Gbp in the biopsy
group and 4.22 6 3.03 Gbp in the cytology brush group at a sequence length of
151 bp. The high standard deviation in the cytology brush group reflected a variable
amount of tissue collected. Paired-end reads were concatenated, and Kneaddata was
used to remove low-quality and human genome-derived reads. After quality control, a
total of 14.56 7.2 million reads remained in the biopsy samples and 41.76 31.9 million
reads in the paired cytology brush samples, of which 7.7 6 5.1 million reads remained
after removal of human reads in the biopsy group, and 36.3 6 29.8 million reads
remained in the cytology brush group (Table S1 in the supplemental material). Of
these, a total of 26.5 6 11.5% of filtered reads correlated with bacterial sequences in
the biopsy samples compared to 59.1 6 23.9% of reads in the brushes (Fig. 1A; P =
0.0256 by unpaired t test). After removal of human reads, the vast majority of remain-
ing sequences aligned to bacterial reads in both sample types that were used for
downstream analysis (96.1 6 2.9% in the biopsy samples and 97.9 6 3.5% in the cytol-
ogy brush samples), with the remaining reads of viral etiology discarded. As predicted,
these data support that the brush provides better collection of bacterial DNA than co-
lon biopsy sampling while minimizing host DNA reads, which may be important for
studies focused on bacterial taxa identification.

After using the HUMAnN 2.0 pipeline with MetaPhlAn 2.0, alpha diversity was
assessed using the MicrobiomeAnalyst software package comparing cytology brush
samples to biopsy samples. Alpha diversity on the species level was found to be similar
between the two groups, with higher evenness in the cytology brush group. Measures
of richness included the observed richness (P = 0.032; Fig. 1B) and Chao1 (P = 0.030;
Fig. 1C), and measures of evenness included the Shannon (P = 0.017; Fig. 1D) and
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FIG 1 Cytology brush sampling compared to biopsy samples results in higher abundance of bacteria-
derived sequence reads and increased diversity. Metatranscriptomic analysis of bacterial communities

(Continued on next page)
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Simpson (P = 0.017; Fig. 1E) diversity measures, which were all increased in the cytol-
ogy brush samples. Beta diversity was assessed as a measure of overall difference
between the two samples using the Bray-Curtis index method. An overall difference
was determined between the biopsy samples and the cytology brush samples (permu-
tational multivariate analysis of variance [PERMANOVA], R2 = 0.366, F = 4.62, P = 0.028;
Fig. 1F). The top two axes accounted for 84.3% of diversity in the Bray-Curtis index
analysis. Based on these findings, we observed an overall trend toward increased alpha
diversity in the cytology brush samples compared to biopsy samples as well as a differ-
ence in beta diversity between the two collection methods.

Taxonomic profiles minimally differ between collection methods. At the class
level, the highest prevalence was found to be Actinobacteria in the biopsy group (56.1 6

21.2% versus 22.36 14.9% in the brush group; P = 0.02; Table S2), while the highest prev-
alence in the brush group was Clostridia (47.7 6 10.8% versus 4.1 6 7.3% in the biopsy
group; P = 0.00007 and false-discovery rate [FDR] , 0.05). The discordance was persistent
at lower levels, such as the top 10 most abundant species (Table S3) and the four statisti-
cally significantly different species. The top 10 species were chosen as a simplistic measure
of the most abundant species present, eliminating others with very low abundance. The
most abundant species in the biopsy group was determined to be Propionibacterium
acnes (53.3 6 18.4% versus 13.7 6 12.2% in the brush group; P = 0.004 and FDR , 0.05),
while the most abundant species in the brush group was Faecalibacterium prausnitzii
(17.4 6 11.6% versus 2.3 6 3.4% in the biopsy group; P = 0.023). Two additional spe-
cies were found to be statistically significantly different between the two groups:
Streptococcus thermophilus (higher in the biopsy group; P = 0.031) and Ruminococcus
lactaris (higher in the brush group; P = 0.042), although they did not meet our thresh-
old for FDR correction. In all, there was minimal difference in terms of taxonomic
profiling between the two collection methods.

Metatranscriptomics analysis illustrates minimal functional differences between
collection methods. Metatranscriptomics data were analyzed to assess transcribed
pathway differences between the two groups. In general, overall Kyoto Encyclopedia
of Genes and Genomes (KO) metabolism pathway distribution was largely similar com-
paring the two groups, with no significant differences identified (Fig. 2A). Within spe-
cific individual pathways, the top 10 most abundant hits were then compared (Fig. 2B);
two transcripts were significantly different between the two groups: K02703
(Photosystem II P680 reaction center D1 protein; P = 0.02; higher in the biopsy group)
and K02961 (small subunit ribosomal protein S17; P , 0.05; higher in brush group;
Fig. 2C). The top 10 pathways were again analyzed as a measure of overall abundance
given the significantly large numbers of pathways identified. Together, these data
demonstrate minimal differences in metatranscriptomic profiling between the biopsy
sample and cytology brush collection methods.

Metabolite profiles diverge between sample collection methods. Given that our
microbiome data from cytology brush collection were similar to data from biopsy sam-
ples, we next sought to compare collection methods for evaluation of metabolites. In
contrast, evaluation of metabolomics data revealed stark differences between the col-
lection methods. Principal-coordinate analysis (PCoA) revealed pronounced separation
between the two sample methods with good intragroup correlation, although brushes
demonstrated higher variability (Fig. 3A). Assessment of the specific 114 metabolite
profiles revealed striking differences between the two collection methods (Fig. S1 and
S2), which are further highlighted within the top 25 most abundant metabolites, as

FIG 1 Legend (Continued)
was performed on paired cytology brush samples and colon pinch biopsy samples from five healthy
participants undergoing colonoscopy. (A) Percentage of sequencing reads broken down in terms of
bacterial, human, and trimmed reads between sample types. (B to E) Alpha diversity calculated in
MicrobiomeAnalyst using the methods of observed species richness (B), Chao1 (C), Shannon (D), and
Simpson (E). Values for each subject are shown as a symbol, and bars represent the group means 6
standard error of the mean (SEM). Noted P values were determined by unpaired Student’s t test. (F)
Beta diversity was calculated by the Bray-Curtis dissimilarity index and shown by PCoA.
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FIG 2 Metatranscriptomic analyses reveal minimal differences between collection methods. (A) Metatranscriptomics
data were assessed for differences in overall pathways between biopsy sample and brush groups, demonstrating

(Continued on next page)
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determined by relative tissue abundance (Fig. 3B). After using a fold change of 2.0 and
FDR correction of 0.1, a total of 11 metabolites were identified as being significantly
different based on a volcano plot (Fig. S2, Table S4). These were largely ubiquitous
metabolites in both humans and bacteria, without any bacteria-specific metabolites to
compare production versus absorption. Put together, our data reveal differential find-
ings with regard to metabolite profiles between the two sample collection methods of
biopsy samples and cytology brush, providing an intriguing difference compared to
our metatranscriptomics findings.

DISCUSSION

Associations between the human gut microbiome and the host immune system
are characterized in numerous diseases, including autoimmune disease (14–16). The
ability to study this association is predicated on appropriate methods of sample col-
lection and ensuring samples are an accurate representation of the question at
hand. In this study, we start to ask the fundamental question of whether sampling
techniques result in different answers based on how collection is performed. We
aimed to test a new method of less invasive collection that uses cytology brush
scrapings of the gut mucosal layer and compared it to colon pinch biopsy sampling
by using a multiomics approach. Our findings indicate that a similar metatranscrip-
tomic signature can be identified, but metabolomic profiles indicate very different
findings, suggesting that bacterially produced and human-absorbed metabolites are
significantly different.

One striking finding is that cytology brush scrapings of the gut mucosal layer dem-
onstrate a significantly increased bacterial read count with transcriptomics sequencing
compared to tissue biopsy samples. Our data indicate that 59.1% of the sequencing
reads in the brush group correspond to bacterial nucleic acid versus 26.5% of the bi-

FIG 2 Legend (Continued)
no difference as determined by ANOVA with Kruskal-Wallis post hoc test. (B and C) The top 10 most abundant
transcriptional pathways (B) were identified and compared between the two groups with a statistical difference in
K02703 and K02961 (*, P , 0.05), as determined by Kruskal-Wallis post hoc test and demonstrated in C comparing
the two different sample collection methods of biopsy specimen versus cytology brush.

FIG 3 Assessment of metabolomics reveals striking differences between collection methods. Broad screening of metabolites was performed by UHPLC
mass spectrometry comparing biopsy samples and cytology brushes. (A) A PCoA of the metabolite data for all 114 identified metabolites within the two
groups is shown. (B) The top 25 identified metabolites based on t test demonstrated as a heat map with a P value of ,0.05 and an FDR of ,0.05.
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opsy group (Fig. 1A). This finding suggests that the low bacterial read count from gut
biopsy samples with a much higher human nucleic acid count must be removed for
assessing the microbiome. Our cytology brush method therefore appears to better
sample the mucosal microbiome without human contamination, resulting in a signifi-
cantly increased bacterial nucleic acid content compared to the biopsy method. A simi-
lar result was observed in ileal pouch sampling (17). In general, alpha diversity trends
toward an increase in the cytology brush group by all measures, meeting significance
just under a P value of ,0.05. This is likely a reflection of the small sample size in this
pilot study, but these findings also correlate with previous literature assessing micro-
bial diversity across the gut mucus layer compared to the lumen (18).

With regard to beta diversity, our findings suggest greater diversity in the cytology
brush group than in the biopsy sample group (Fig. 1F). This finding is likely a reflection
of the different layers of the gut being assessed, as the biopsy sample tends to be
deeper than the more superficial brush, which may include luminal and mucosal com-
ponents. Another likely reason for this finding may be the higher sequencing depth as
well as bacterial content recovered by the brush, which leads to a higher concentration
of bacterially sequenced reads than more human reads that are removed from the bi-
opsy sample group.

Assessing the transcriptomics data demonstrates minor differences with regard to
higher-order bacterial identification as well as species identification (Tables S2 and
S3 in the supplemental material). The greater microbial diversity on a species level in
the brush group and less variability in the biopsy sample group may be due to the
more superficial sampling provided by the brush as reflected by the higher alpha and
beta diversity shown in Fig. 1. Prior methods have attempted using similar cytology
brushes during endoscopic procedures (17, 19, 20), with similar results to ours in that
endoscopic brushes resulted in higher bacterial-to-host DNA content with no signifi-
cant taxonomic differences (17). Other attempts to assess differences in taxonomic
profiling among sampling methods have looked at fecal samples compared to colo-
nic biopsy samples using 16S in healthy participants and identified differences in
alpha diversity richness (reduced in feces), beta diversity (reduced in feces), and
numerous bacterial phyla differences (Proteobacteria and Verrucomicrobia were sig-
nificantly reduced in feces) (21). Similarly, prior attempts to compare standard rectal
swabs to biopsy samples have identified mixed results having similar taxonomic
profiling (22, 23) versus different taxonomic profiling (higher diversity as determined
by richness, evenness, and Shannon’s diversity and greater amounts of Lactobacillus
and Eubacteria in the swabs than in biopsy samples) (24), although our study appears
to be the first to attempt using a cytology brush to scrape the mucosal layer and pro-
vide transcriptomic information.

Metatranscriptomics provides functional insights regarding the microbial com-
munity, and the end products are the proteins and other biochemicals produced. In
this regard, metabolomics profiling can supplement transcriptomic data. Previous
studies have identified a number of different microbial-produced metabolites that
influence the host immune system, such as short-chain fatty acids, riboflavin metab-
olites, and tryptophan metabolites (25–27), which highlights the importance of
methods to study this interaction. Our findings demonstrate a striking difference
between sample methods in the metabolite profile as a whole (Fig. S1) as well as by
PCoA and the top 25 most abundant metabolites (Fig. 3). This finding is not unex-
pected given that different layers of the gut tissue are being analyzed, that is, intes-
tinal tissue with the associated mucous layer in the biopsy samples versus the asso-
ciated mucous layer itself in the brush samples. The differences in the collections
highlight an important caveat in assessing the bacteria-derived metabolome: signifi-
cant differences exist between metabolites that are produced and what is absorbed,
and the results of these data must be considered when critically analyzing future
similar studies of gut metabolomics.
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Limitations. This study has a number of limitations that must be considered. First,
as this is a pilot study for proof of concept, the number of participants that were
recruited was low, and thus adjustment for potential confounding factors was not per-
formed. These participants were also undergoing routine colonoscopy with bowel
prep. Therefore, it is unclear how the microbiome of these participants may be differ-
ent compared to other studies that rely on stool samples, as we are only assessing the
mucosal layer and not all bacteria present in the gut. Repeating this study using partic-
ipants that have not undergone bowel prep will be of interest. The hypothesis in ques-
tion relied on metatranscriptomics analysis, which is only one potential ‘omics method
for microbiome profiling, and others, such as 16S sequencing or metagenomics, could
also be performed. Another significant limitation is the lack of technical replicates from
the same participant to study how the methods compare with regard to precision.
Lastly, there was not a control arm in this study that included a stool sample for addi-
tional method comparison, and this was purposely chosen due to the practical inability
to perform this analysis prior to bowel prep and concern for temporal differences in
sample acquisition.

Conclusion. Our results testing use of a cytology brush demonstrate the ability
to sample the gut mucosal microbiome. We find that numerous different ‘omics
approaches are able to be carried out through this sampling method and provide in-
triguing initial results to be attempted in further studies. Taxonomic profiling dem-
onstrates minor differences, and transcriptional analysis is comparable between the
two methods, thus demonstrating the importance of experimental design and hy-
pothesis generation toward sampling method for these types of studies. Metabolite
assessment demonstrates a clear difference between the gut mucous layer and the
tissue, and this distinction can be used for future studies that aim to understand the
role of bacterially derived metabolites and how they are absorbed in the gut. In con-
clusion, we demonstrate early promising results of this new technique and find new
advances in the field of studying gut-microbiome interactions that provide potential
for future use.

MATERIALS ANDMETHODS
Sample collection. Five healthy individuals were recruited through the University of Colorado gas-

troenterology (GI) clinic between December 2019 and February 2020. Participants were identified from
the endoscopy schedule as undergoing routine screening colonoscopy. Inclusion criteria included any
subject over the age of 18 undergoing routine colonoscopy. Exclusion criteria included use of antiplate-
let drugs or chronic anticoagulation, use of immunomodulatory medications, nonsteroidal anti-inflam-
matory drugs 7 days before colonoscopy, active malignancy, decompensated cirrhosis, chronic kidney
disease on dialysis, or history of inflammatory bowel disease. Patients were identified from the colono-
scopy schedule, and written informed consent was obtained just prior to the procedure. This study was
conducted according to the principles within the Declaration of Helsinki. All study procedures were
approved by the Colorado Multiple Institutional Review Board (protocol number 14-2012).

Patients prepared for colonoscopy by standard protocol the night prior. Following conscious seda-
tion per routine care, one cytology brush (Fisher, 22-281660) was inserted 3 cm beyond the anal verge,
pressed against the lateral wall, and rotated two full turns. The brush was then placed into 500 mL of
RNAlater (Thermo Fisher) in a 1.5-mL Eppendorf tube and stored on ice. A second cytology brush was
then inserted 3 cm beyond the anal verge against the opposite lateral wall, rotated two times, and
placed in 500 mL of phosphate-buffered saline (PBS) on ice. Lastly, routine colonoscopy was performed
with four pinch biopsy specimens obtained at approximately the same depth as the cytology brushes.
One biopsy specimen sample was placed in RNAlater, and the remaining three samples were placed in
PBS and then on ice. All samples were then taken to the laboratory and frozen at280°C immediately.

Microbial RNA isolation, library prep, and metatranscriptomics sequencing. RNA was isolated
using the AllPrep Power fecal DNA/RNA kit (Qiagen). For initial input, brushes in RNAlater were vortexed
at maximum speed for 15 s, and 200 mL of this suspension was used. The manufacturer’s protocol was
then followed with the exception of incubating samples for 15 min in the presence of lysis buffer and 25
mL of dithiothreitol (DTT) prior to removal of solid tissue for the biopsy samples, followed by homogeni-
zation of samples for both methods in the same manner. Quality control was performed using a Thermo
Scientific NanoDrop 2000 spectrophotometer, ensuring 260/280-nm light ratios of .1.8 for all samples.
Libraries were then constructed using 5 to 10 ng of RNA for each sample and using the Next Ultra II
directional RNA library prep kit with rRNA depletion (New England Bioscience) in a paired-end fashion
with 2 � 150-bp paired-end reads. Libraries underwent quality control via tape station prior to multi-
plexing at a concentration of 4 nM, and sequencing was performed on an Illumina MiSeq platform (San
Diego, CA, USA) at the University of Colorado Genomics core with .6 Gbp of data output per sample.
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Actual sequencing depth was determined by FastQC and is presented in Table S1 in the supplemental
material.

Data processing and taxonomic analysis. Manual inspection of sequenced reads was performed
using FastQC v0.11.9 for all samples. Paired-end reads were then concatenated, and quality control was
conducted with Kneaddata 0.7.5 (http://huttenhower.sph.harvard.edu/kneaddata) using Trimmomatic
v0.39 (28) and Bowtie2 v2.3.5 (29) to remove unwanted human genome reads and low-quality sequen-
ces. The processed reads were then entered into the HUMAnN 2.0 pipeline (30) using MetaPhlAn v2.0
(31), which does not account for paired-end relationships, with gene profiling abundance performed
using the UniRef90 full universal database. Output data in reads per kilobase were then converted to
copies per million prior to downstream application using the command humann2_renorm_table. Alpha
diversity was determined on a species level using MicrobiomeAnalyst (32, 33) with the observed, Chao,
Shannon, and Simpson methods. Beta diversity between the two groups was assessed utilizing Bray-
Curtis dissimilarity and visualized with a principal-coordinate analysis (PCoA) plot. PERMANOVA was per-
formed with MicrobiomeAnalyst of the beta diversity clustering. All analyses in MicrobiomeAnalyst were
performed on rarefied data.

Functional analysis. HUMAnN 2.0 was used with default settings to obtain gene family abundance
for each sample individually prior to combining and normalizing based on sequencing depth. Analysis was
performed after renaming normalized gene families to Kyoto Encyclopedia of Genes and Genomes (KO)
pathways (humann2_regroup_table). Metatranscriptomic abundance was assessed using the functional di-
versity profile on MicrobiomeAnalyst, and top pathways were identified through read abundance.

Metabolomics. Metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) of tis-
sue collected by cytology brush versus by biopsy was performed by the University of Colorado
Metabolomics Core. Cytology brush samples in PBS were spun at 4°C for 10 min at 18,213 relative cen-
trifugal force (rcf). Then, the brush was removed, and centrifugation was repeated. PBS was aspirated
and replaced with 100 mL of ice-cold 5:3:2 methanol:acetonitrile:water (MeOH:MeCN:water [vol/vol/vol]).
For biopsy sample tissue, samples were centrifuged twice for 10 min at 18,213 rcf at 4°C, and then PBS
was aspirated and replaced with 700 mL of MeOH:MeCN:water. Extracted samples were vortexed for
30 min at 4°C and centrifuged once as before, and then an aliquot of supernatant was transferred to an
autosampler vial for analysis. Samples were analyzed on a Thermo Vanquish ultra-high-performance liq-
uid chromatographer (UHPLC) coupled to a Thermo Q Exactive mass spectrometer. Metabolites were
separated on a 5-min C18 gradient with positive and negative (separate runs) electrospray ionization.
Data acquisition and analysis were performed as previously described (34, 35). Quality control was
assessed using technical replicates injected every 10 runs. Resulting .raw files were converted to .mzXML
format using RawConverter, and metabolites were assigned and peak areas integrated using Maven
(Princeton University) in conjunction with the KO database and an in-house standard library of greater
than 600 compounds. The targeted data analysis focused on metabolites involved in central carbon and
nitrogen metabolism and yielded measurements of 114 metabolites. No post hoc normalization was per-
formed; data are available upon request. Samples were normalized relative to each other based on the
same initial starting weight of tissue.

Data analysis. Taxonomic and metatranscriptomic profiling was performed using MicrobiomeAnalyst
software. For taxonomy alpha diversity, a Student’s t test was utilized using the methods of Chao, Shannon,
and Simpson and the observed species index as they passed Shapiro-Wilk normality tests. Beta diversity
was assessed utilizing Bray-Curtis dissimilarity and visualized with a principal coordinate analysis (PCoA)
plot. Relative abundances of taxonomic differences were compared using Wilcoxon signed-rank tests and
adjusted with an FDR of 0.05. PERMANOVA was performed using MicrobiomeAnalyst software of the beta
diversity clustering. Metabolomics assessment was performed using MetaboAnalyst software following log
transformation (36). Statistical assessments were done with an analysis of variance (ANOVA) with Kruskal-
Wallis post hoc or paired t test where noted.

Data availability. Raw data for the metabolomics and metagenomics sequencing will be made
available upon request to the corresponding author. Sequencing data are publicly assessable in the
National Library of Medicine’s Sequence Read Archive accession PRJNA758430.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.6 MB.
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