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Abstract The acquisition of human genomic sequences is of increasing convenience and reduced expense. The sharing
of these data is critical for biomedical researchers to study genomic loci or variants that are potentially associated with
human diseases1. However, sharing genomic data broadly is impeded by privacy concerns. The statistical inference
techniques for the re-identification of genomic data donors have been extensively investigated in the literature2–5. The
Beacon services project is recently brought into view, aiming to test the willingness of data holders to share genomic
data in a simple technical context: a query to ask a specified nucleotide at a given position within a chromosome6,
also suffering from being compromised7, 8. In this paper, we introduce a real-time mitigation method to protect Beacon
services from re-identification attacks7, and show that it performs favorably in comparison with previous approaches
on mitigation efficiency, i.e., with lower re-identification risks and higher utility of Beacon database.

Introduction

With the help of high-throughput DNA sequencing techniques9, human genomes can now be sequenced with low
cost. Genomic datasets from large-scale projects such as 1000 Genomes Project10 and HapMap Project11 provided
valuable resources for biomedical researchers to study genetic basis of human diseases. In addition, many medical
institutes started to collect human genomic data from patients of various diseases, in particular complex diseases such
as cancer. However, access and sharing of these valuable data in the biomedical community are impeded by potential
privacy risks to the participants. Homer et al.2 showed that inference techniques could be utilized to identify the
presence/absence of an individual in a genomic dataset from aggregate statistics (e.g., allele frequencies), even when
the dataset contains thousands of human genomes. Numerous follow-up studies showed the existence of privacy risks
in other types of genomic data12–14, resulting in further reluctance of sharing human genomic data broadly for research
uses. Nonetheless, sharing human genomic data for research purpose is not commonly regulated by privacy laws and
policies15, 16, which is different from the scenario in clinical settings (e.g., biomedical data including genomic data is
regulated by the HIPPA compliance). Notably, the most sensitive genomic data largely overlap with those most useful
in biomedical research, e.g., human diseases are often associated with rare alleles that are carried by only a small
fraction of individuals in the population, which poses great challenges to protect the privacy of data donors while
preserving the utility of genomic data in biomedical research17, 18.

The Global Alliance for Genomics and Health (GA4GH), formed in 2013, serves as a platform for responsible genomic
and health data sharing with consistent policy and interoperable standards and protocols19. The GA4GH has been
taking the position of striking the balance between effective data sharing and responsible protection of individual
privacy. Hence, it is important to explore and understand potential privacy risks in human genomic data2–5. The Beacon
services6 is a demonstration project led by GA4GH, aiming to provide a general public web service for disseminating
human genomic data while ensuring sensitive information about participants is not leaked. A biomedical researcher
may query the presence of a genetic variant in a set of genomic databases, each is owned by an independent institute,
through the unified Beacon web service platform. The owner of each database can choose to register and host a Beacon
service without releasing the whole dataset, which significantly reduces the privacy concerns for the data owners to
share their data. The queries accepted by the Beacon services follow the forms like “Do you have any genomes
with nucleotide A at position 114, 235 on chromosome 2?”, while the responses from Beacon would be “Yes” or
“No” (True/False answer). With such information, the users would learn whether the queried variant is present in
any database registered at Beacon. No additional information (such as summary statistics of variants) is exposed to
queriers. At present, the variants supported by Beacon services are only single nucleotide polymorphisms (SNPs);
but the Beacon consortium plans to extend its services to other types of variants, including structural variations (SVs).
The genomic information shared by Beacon is limited, but still useful: users may take further steps to get access to
the whole genomic dataset (e.g., by signing a user agreement with the data owner) if they know some genomes in
a dataset carrying the variations of their interests. Overall, the Beacon services set an example of responsible and
effective genomic data sharing with technical simplicity.
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Even though Beacon services merely return the True/False answer for each query, genomic information leakage from
the target genomic database still exists. A re-identification approach devised by Shringarpure and Bustamante (SB
attack)7 assumes that a malicious user (attacker) has obtained the genomic sequence of a victim, and attempts to
determine if she is present in a target genomic database through a series of Beacon queries to the database. The
SB attack is an inference attack based on a log-likelihood ratio test (LRT) to assess if the probabilities of obtaining
the specific set of Beacon answers under two hypotheses (null hypothesis and alternative hypothesis) shown as in
Formula 1 are significantly different. The power of the test, i.e., Pr(rejectH0|H1is true), indicates the confidence of
the attackers can conclude that the victim (with queried variants) is present in the target database, which also measures
the re-identification risk of an individual genome in a genomic database.

H0 : The queried victim’s genome is not in the target database.

H1 : The queried victim’s genome is in the target database.
(1)

The log-likelihood statistic ofR is calculated by Equation 27, 8, whereR is the set of Beacon answersR = {x1, x2, ..., xn}
on a set of variants (SNPs). The equation could be further specified according to the hypothetical conditions H0 and
H1 (Equation 37, 8), where Di

N denotes the probability that none of the N individuals in the database carries the
queried SNP. Under H1, a genotyping error of δ is considered that allows a small probability of mismatches between
the SNPs in the target database and those known by the attacker. The LRT statistic Λ (Equation 47, 8) is computed by
the difference between LH0

(R) and LH1
(R).

L(R) =

n∑
i=1

xi log(Pr(xi = 1)) + (1− xi) log(Pr(xi = 0)) (2)

LH0
(R) =

n∑
i=1

xi log(1−Di
N ) + (1− xi) log(Di

N )

LH1
(R) =

n∑
i=1

xi log(1− δDi
N ) + (1− xi) log(δDi

N )

(3)

Λ = LH0
(R)− LH1

(R) (4)

The SB attack can be further strengthened by approximating the allele frequencies of SNPs in the target database using
those in a public genomic dataset, which is available in real world (e.g., through the 1000 Genomes Project10). Two
attack models based on this strengthened LRT attack were proposed by performing different query orders of SNPs
from the victim: the rare-first attack queries rare SNPs (the SNPs contained by only one genome in the database)
first8, while in the discriminative-first attack, the SNPs with higher discriminative power, i.e., a SNP’s capability to
distinguish the records in the target database from those in a reference dataset, were queried first20.

Mitigation methods were proposed to protect privacy risks in Beacon services from SB attack and other inference
attacks (e.g., the rare-first attack and the discriminative-first attack)8, 20, 21. The idea of these methods is to flip the
answers to the queries of some variants: for some queried SNPs present in the genome database, the Beacon will
answer “no” instead of “yes”, and thus hide the truth about the presence of such variant in the database from the
querier; on the other hand, for any variant absent in the database, the answer always remains “no” (unflipped). Note
that these methods will always give consistent answers for the same query, because Beacon queriers are anonymous.
In general, all these mitigation methods attempted to flip a small subset of queries to reduce the attack power measured
by the LRT test on the entire set of queries, assuming all the answers can be obtained by a potential malicious user;
but each method adopts a different approach to selecting the subset of queries. The performance of these methods can
be compared based on the number of queries with flipped answers (better methods flip the smaller number of answers)
and the remaining power of re-identification attack.
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A common pitfall of existing mitigation methods is that they do not distinguish the queries targeting different individ-
uals in the database, and thus select the queries with flipped answers solely based on their potential re-identification
power. In a realistic application scenario of Beacon, most queries are submitted by biomedical researchers with re-
search interests on different genomic variants. As a result, these variants are equally likely carried by each individual
in the database. The queries for the re-identification purpose, however, always target the same individual. Intuitively,
more protection should be made on the variants carried by the vulnerable individuals, whose variants have been queried
more than the others in the database. Only one previous mitigation method considers the vulnerability of individuals
in the database, i.e., the query budget per individual strategy8. However, this method removes all variants in an indi-
vidual genome from the database permanently, whenever it is detected vulnerable, which would significantly reduce
the data utility for open-access Beacon services. In this paper, we propose a Real-Time Flipping (RTF) method, which
monitors the vulnerability (i.e., the re-identification risk based on the query history) of each individual in the database
with increasingly numbers of queries and decides if the answer to a new query should be flipped (if the queried variant
is present) based on the entire query history. We compared the performance of the RTF method with other mitigation
methods using genomic database consisting of the 1000 Genome Project data. The results showed that, when various
query models (including the attack models such as rare-first and disciminative-first models and the model mimicking
the real-world Beacon queries22) are adopted, RTF flips answers for fewer than 10% rare SNPs (carried by only one
genome) or 4% of all SNPs in the database after millions of queries are made, while ensuring the re-identification con-
fidence for every individual is below a threshold. In contrast, the other methods need to flip answers for much more
queries, while the re-identification risks become high after thousands of queries are made. We implement the RTF
method along with two other mitigation methods in the secure-Beacon system23 extending the Beacon source code,
which is readily used for mitigating re-identification risks in sharing genomic data, in particular for those acquired
from vulnerable disease populations (e.g., Autism patients).

Methods

In this section, we describe the workflow of the secure-Beacon system, and the real-time flipping method in comparison
with existing mitigation methods that are also implemented in the system.

Existing Mitigation Methods

As discussed in the Introduction section, several mitigation methods were proposed to mitigate the re-identification
risks in Beacon services. Here, we briefly review two methods, the Random Flipping8 (RF) method and the Strategic
Flipping20 (SF) method which were implemented in the secure-Beacon system and were compared with our method.
The other methods were not considered here for various reasons: the Query Budget method8 and the Greedy Account-
able method20 assume that each user utilizing Beacon service has an account, which is not adopted by the current
Beacon with the open-access mode (i.e., queries are submitted by anonymous users); on the other hand, the Random
Positions Elimination method21 and the Biased Randomized Response method21 were shown to perform worse than
the Strategic Flipping method in terms of the genomic data utility, i.e., the number of wrong answers (“yes” flipped to
“no”) to be returned under the same SB re-identification power of 0.6.24 Therefore, we focus on these two mitigation
methods (RF and SF), and compare them with our new method.

Random Flipping (RF) Method. The mechanism of the RF method is to randomly flip ε of rare SNPs in the beacon
database, where ε is a constant, representing the proportion of incorrectly answered cases among all queried rare
SNPs8. Previous studies showed that with ε ≥ 0.15, the power of the rare-first attack would not exceed 0.35 after
querying 10, 000 SNPs in the database.

Strategic Flipping (SF) Method. As proposed by Wan et al.20, the SF method flips the k percent of SNPs with the
greatest differential discriminative power, which measures the discriminative power before and after flipping a SNP.
As shown in the previous study, SF can keep the power of SB attack7 below 0.1 after querying 400, 000 SNPs in the
database, if k is set to be 5 or higher. We note that the discriminative power is calculated for each SNP in the database;
hence, the flipped answers by SF may not be limited to the queries of rare SNPs. The answers to the queries of some
common SNPs (shared by more than one genomes in the database) may also be flipped.
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Real-time Flipping (RTF) Method

We propose a real-time flipping (RTF) method to mitigate the re-identification risks. Similar as the previous RF
approach8, RTF attempts to hide some rare variants in the database: when these variants are queried, the answer “no”
instead of “yes” is returned. As shown in previous studies, by flipping a small fraction (15%) of rare SNPs, the RF
method can reduce the re-identification power to an insignificant level8. The RTF method aims at further improving it
by flipping the rare variants from more vulnerable individuals, whose variants were queried more frequently than other
individuals. To achieve this goal, the RTF method monitors and records internally the vulnerability of each individual
in the database by conducting the log-likelihood ratio test (LRT) based on the answers (including some flipped) to
previously queried variants carried by the individual ∗. For each new query of a rare variant in the database, RTF will
decide if the answer should be flipped depending on the vulnerability of the individual carrying the variant: the answer
will be flipped if the vulnerability is sufficiently high after releasing the presence of this variant. After the answer is
returned, the vulnerability of this individual would not be increased.

The workflow of the RTF method is laid out in Figure 1a. When a new query to a rare variant in the database is
received, we start from assessing the privacy risk of the individual carrying the variant, and the decision whether
or not the answer should be flipped will depend on the p-value of LRT (denoted as pe) using previously queried
variants from the individual. If the p-value is greater than 0.05 (i.e., the re-identification risk below the significance
of 0.05), the answer will not be flipped, which implies that in this case, the individual has low vulnerability, and thus
no mitigation action is taken to protect her. In addition, if the p-value has not changed (within variations of 0.001)
for 50 consecutive queries of rare SNPs from the target individual, the answer will not be flipped. In this case, the
target individual’s vulnerability is not expected to change by additional queries of her rare variants. In contrast, if the
p-value of LRT is smaller than 0.05 and varies in each step, implying the vulnerability of the target individual is high,
the answer will be flipped with a probability proportional to an extreme function that models the difference between
the LRT scores of the target individual (lltarget) and a group of control individuals (llcontrol). Specifically, we compute
pe as the percentage of LRT scores in the control group (llcontrol) equal to or smaller than that of the target individual
(lltarget), and the probability of flipping the answer is set to be 1− pe (rounded to 1 decimal).

Experiments And Results

In this section, we describe the experimental settings and the comparison results from two evaluation criteria: the
re-identification risk and the data utility.

Experiments

To investigate the performance of the RTF mitigation methods and to align with the experimental settings of the al-
ternative methods, we simulate a Beacon services database using a cohort of 1, 235 individuals, which are randomly
selected from 2, 470 non-relative individuals in Phase 3 of 1000 Genomes Project10. The database contains a total of
3, 992, 219 variants from Chromosome 10, in which 1, 588, 903 (39.8%) are rare variants. The control cohort (indi-
viduals not included in the database) harbors 300 genomes randomly selected from the remaining 1, 235 individuals.
We choose the moderate control group size to reduce the pre-processing time and the potential information leakage of
the control cohort. The parameters in the other mitigation methods are set as their defaults: ε = 0.15 in RF; k = 5 in
SF.8, 20

Figure 1b shows the workflow implemented in secure-Beacon and used in the experiments. When a new query is
received, it is first to be checked if the target variant is present in the database. If it is not in the database, no mitigation
method would be applied. If the query is present in the database but has been queried previously, the previous answer
to this query will be returned without further alteration (and no mitigation method would be applied). Otherwise, all
three mitigation methods will be applied, among which RTF and RF are applied only to rare variants, and SF is applied
to both the rare and common variants.

As discussed previously20, the query order has a strong impact on the performance of mitigation methods. To evaluate
this impact on RTF in comparison with the SF and RF methods, we simulated the queries following four patterns: (1)

∗Note that the same answer will be returned for the same query when it is submitted again (potentially by a different anonymous user).
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(b) Secure-Beacon Workflow
Figure 1: (a) RTF mitigation method. The method flips the answers to some rare SNPs. The vulnerability of each individual in
the database is monitored using the LRT scores on previously queried variants. The decision of flipping the answer to the query of
a rare variant is made based on the vulnerability of the target individual who carries the rare variant. The vulnerability of the target
individual is updated and recorded internally after the answer is returned. (b) The secure-Beacon workflow. Three methods (RF, SF
and RTF) were implemented for mitigating re-identification risks in an open-query Beacon system. For a newly-received query, the
true answer (“yes” or “no”) is first obtained. If query has been previously answered, the same answer will be returned. Otherwise,
the mitigation procedure is activated. Note that RF and RTF are applied to rare variants while SF may be applied to both rare and
common variants (see Text for details).

Random Order, where the variants are queried in a random order; (2) Rare-first Order, where the variants are queried
in the increasing order of their allele frequencies; (3) Discriminative-first Order, where the variants are queried in the
decreasing order of their discriminative level20; (4) Typical User Order, where the variants were queried in the order
emulating a typical honest beacon user behavior. All four query patterns were emulated with the 3, 992, 219 SNPs
from chromosome 10 in Phase 3 reported in the 1000 Genomes Project10. To simulate query pattern (4), we generate
queries based on the frequency distribution of the queries to the variants with various allele frequencies, which was
obtained from the queries to the Beacon browser of ExAC22 logs over a period of 12 weeks. 1, 345, 291 queries in
total are asked on 934, 680 SNPs in ExAC under Open Database License (ODbL). Table 1 shows the distribution of
queried SNPs in terms of their allele frequencies. We note that in the ExAC statistics, the second category “<0.001 not
singleton” is specified as “0.0001 - 0.001”. This range overlaps with the allele frequency of singletons (rare variants)
for the size of the simulated database. Alternatively, we emulate queries for this category by defining the modified
range.

To further investigate the behavior of RTF, RF and SF under query patterns that are more frequently used in real
world (Random Order and Typical User Order), we included more variants (in the genomes from the same Bea-
con cohort) in the database and performed additional queries under Random Order and Typical User Order: a total
of 1, 054, 447 variants from Chromosome 21 are imported into the database, among which 39.2% are rare variants
(similar to that of Chromosome 10). The re-identification risk and the data utility of three mitigation methods were
evaluated respectively. The results indicate that the behavior of the mitigation methods remains stable after a large
number of queries (> 1 million) were performed (see Results section for details).

The log-likelihood statistics of control group are required for computing the LRT score. In RTF, for the sake of
computing efficiency, these statistics were computed in advance before performing query experiments, where they
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Table 1: Proportions of queries in each allele frequency range

Allele frequency Singleton < 0.001 not singleton 0.001 - 0.01 0.01 - 0.05 0.05 - 0.5 0.5 - 1
Queries in ExAC 0.434 0.418 0.0076 0.023 0.033 0.014

are recorded individually in a table when every new query is performed based on each of the four query patterns,
respectively. During the experiment, for each new query (to a variant from the target genome in the database), the
corresponding control group log-likelihood statistics (with the same set of queried SNPs) are extracted from the pre-
computed and used in the LRT assessment. In addition, the location of SNPs (chromosome and positions) and the final
returned answers (“yes” or “no”, flipped or not) of the queried variants are recorded in a reference table for further
queries to the same SNPs, as mentioned in the Methods section.

Evaluations

To evaluate the mitigation methods, we assume the size of Beacon services database (the total number of genomes
in the database) and the minor allele frequencies in the beacon database are known to potential malicious users. In
reality, we note that the minor allele frequencies in beacon services database are not publicly accessible, but could be
approximated by using public genomic datasets (e.g., 1000 Genomes Project10).

The performance of RTF in comparison to RF and SF is evaluated in terms of the re-identification risk (measured by
the power of LRT) and the data utility (measured by the total number of flipped answers). A method is preferred if it
has lower risk (i.e., lower power of LRT) and higher data utility (fewer number of flipped answers).

Re-identification Risk. We evaluate the power of LRT by the percentage of re-identified genomes at a 5% false
positive rate8, which also represents the confidence of re-identification. The greater power indicates the higher re-
identification risk.

Utility. To serve the purpose of Beacon services which is to share as much genomic information, the mitigation
method should hide only the minimum amount of information (i.e., the variants present in the database), and thus
returning the un-modified answers to the queries by most users to variants of their interests. To achieve this goal, we
define the utility of the database as Equation 5. To better evaluate the data utility with increasing number of queries,
we computed the utility of each mitigation method with the number of flipped answers (Equation 6) .

utility = 1− the number of flipped answers
the total number of queries

(5)

percentage of flipped answers =
the number of flipped answers

the total number of queries
(6)

Computational Environment. For a mitigation method to be practical, it should be very efficient to make the flipping
decision so that the Beacon platform can return the answers to queriers instantly. Therefore, we evaluate the running
time of RTF on a 2.60GHz Intel Xeon CPU and 8GB memory, except for pre-processing steps, which can be conducted
only once in advance. The running time of the alternative flipping methods were not measured, because their mitigation
step could be calculated in advance before any query is submitted.

Results

Re-identification Risk. We performed LRT on each individual in the database (1, 235 cases in total) and measured the
power of LRT with increasing number of queries. For RTF, the power trend does not vary significantly under different
query patterns, because the re-identification risks are updated based on the p-values of LRT. In contrast, RF and SF
perform differently given various query patterns, which agrees with the previous findings20: RF yields dominant result
(less power) under Rare-first Order while SF performs better under the other three query patterns. Accordingly, we
compare RTF to RF under Rare-first Order and to SF under the remaining three query orders. Under Rare-first Order,
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RF does not yield great power (< 0.1) until 1, 000 rare SNPs are queried when the power increases to 1.0. Under
Random Order, Discriminative-first Order and Typical User Order, SF does not yield great power (< 0.1) until 1, 000
rare SNPs are queried when the power increases to 1.0. For RTF, it does not yield great power (< 0.1) across the
process when ∼ 120, 000 rare SNPs are queried: the power of LRT remains < 0.05 (false positive rate) until 1, 000
rare SNPs are queried when the power increases to ∼ 0.3, which is still an acceptable risk level8. Based on Raisaro et
al.8, a power larger than 0.6 indicates an existing re-identification risk and the greater power suggests the increasing
re-identification risk. There is a 100% re-identification risk when the power reaches 1.0. We note that in the simulated
database, the rate of rare SNPs on each individual is ∼ 0.004, which means the total number of SNPs queried on an
individual is ∼ 250, 000 (the scale used in Raisaro et al.8), and the total number of SNPs queried among the whole
database is ∼ 3, 600, 000 (the scale used in Wan et al.20). For both cases, RTF allows for much more queries to be
made than two previous methods (RF and SF) while still keeping the re-identification risks low.

Utility. The percentages of flipped rare SNPs and total flipped SNPs are shown in Figure 2 and Figure 3, respectively.
In Figure 2, we notice that the trends are almost the same for Random Order, Rare-first Order and Discriminative-first
Order, when the number of queried rare SNPs are about the same. Under Typical User Order, the trend is slightly
different because the proportion of queries to rare SNPs among all queries is different. This observation is consistent
with the formulation of LRT, where each rare SNP contributes the same amount to the overall re-identification risk
because only its allele frequency and the answer are used7. For the total number of flipped queries in the database, the
figures vary across different query order because the rare SNPs are queried at various steps in different query patterns.
The trends of the number of flipped answers to rare SNPs and that of total number of flipped SNPs agree with each
other. The slope of each line indicates proportion of flipped answers. RTF flips more SNPs at the beginning of the
query sequence. However, in terms of rare SNPs, RTF flips fewer than RF after∼ 250, 000 queries, and fewer than SF
after ∼ 400, 000 queries; in terms of all the SNPs in the database, RTF flips fewer than RF after ∼ 600, 000 queries,
and fewer than SF after 800, 000 − 1, 000, 000 queries. Under Discriminative-first Order, RTF always flips much
fewer than RF and SF. We note that the RF and SF lines are computed based on their mechanisms, rather than the
experimental results that may contain some artificial fluctuations at the beginning of query sequences.

Computational Efficiency. For the implementation of RTF, each mitigation step is performed at back end with no
impact on answering subsequent queries. Furthermore, this step only takes 0.15 seconds in average for each query.
Although it is slower than the operation time of returning an answer (< 0.001 seconds in average), it is still practical
in a real-world Beacon system.

Conclusion

In this paper, we propose a real-time mitigation method that enables the Beacon services for sharing human genomic
data while protecting the participants’ privacy from re-identification attempts, including SB attack and other strength-
ened attacks. Our method monitors privacy risks of each individual in the database and decides if answers should be
flipped for the queries to variants of each individual respectively, to achieve high efficacy of risk mitigation i.e., lower
re-identification risk and higher data utility. We also implement efficient algorithms that enable the mechanism to be
embedded into a Beacon web platform, resulting in a practical secure-Beacon system for providing strong privacy
protection in Beacon services when it is used for sharing highly sensitive human genomic data.
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