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Abstract: Nowadays, type II diabetes mellitus, more specifically ensuing diabetic nephropathy, and
severe COVID-19 disease are known to be closely associated. The exact mechanisms behind this asso-
ciation are less known. An implication for the angiotensin-converting enzyme 2 remains controversial.
Some researchers have started looking into other potential actors, such as neuropilin-1, mitochondrial
glutathione, vitamin D, and DPP4. In particular, neuropilin-1 seems to play an important role in
the underlying mechanism linking COVID-19 and diabetic nephropathy. We suggest, based on the
findings in this review, that its up-regulation in the diabetic kidney facilitates viral entry in this
tissue, and that the engagement of both processes leads to a depletion of neuropilin-1, which was
demonstrated to be strongly associated with the pathogenesis of DN. More studies are needed to
confirm this hypothesis, and research should be directed towards elucidating the potential roles of all
these suggested actors and eventually discovering new therapeutic strategies that could reduce the
burden of COVID-19 in patients with diabetic nephropathy.

Keywords: diabetic nephropathy; COVID-19; immune actors; Neuropilin-1; ACE-2; mitochondrial
glutathione; vitamin D; DPP4

1. Introduction

It is recognized today that type II diabetes mellitus (T2DM) patients are at risk of a
more aggressive course of the COVID-19 disease with a higher hospitalization rate and
longer duration of hospital stay [1]. Indeed, several studies have already shown a close
relationship between diabetes and mortality due to COVID-19, with 1.75 (pooled Odds
Ratios (OR) = 1.75; 95% Confidence Interval (CI) 1.31–2.36; p = 0.0002) [2] to 2.52 (OR = 2.52;
95% CI = 1.93–3.30, p ≤ 0.00001) [3] times higher risk of death for diabetic patients versus
the general population. COVID-19 disease severity is also significantly increased in patients
with diabetes by almost the double (OR = 2.20; 95% CI = 1.69-2.86, p < 0.00001) [3].

Several pre-existing renal diseases are known risk factors for severe COVID-19 out-
comes. For instance, in a very recent study, it was shown that severe Acute Kidney Injury
(AKI) was present in 54% of COVID-19 deceased patients, and biopsy findings included
Diabetic Nephropathy (DN) in 27% of the cases (DN referring to the deterioration of kidney
function associated to diabetes, which can lead to chronic kidney disease and to mortality in
diabetic patients) [4]. Moreover, end stage renal disease (ESRD) was found to be associated
with a high mortality rate among hospitalized patients with COVID-19 [5].

Finally, patients with DN were shown to have nearly two-times higher rates of COVID-
19 pneumonia and of intubation with higher probabilities of admission and death once
admitted compared to patients with chronic kidney disease alone (with both diseases
associated with higher rates of COVID-19 pneumonia, intubation and case-fatality versus
the overall population) [6].
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While there is supporting evidence of the association between DN and COVID-19
disease severity, there remains a scarcity of data on the underlying mechanisms behind this
association. Indeed, we conducted a literature review to search for articles with “Diabetic
Nephropathy” and “COVID19” (search term encompassing “Coronavirus disease 2019”
and “SARS-CoV-2”) as keywords. A search of four relevant databases (PubMed, Scopus,
Goggle Scholar and ClinicalTrials.gov) up to 24 May 2021 was then conducted for all
relevant publications following the below search strategy:

• Search Terms: Diabetes Nephropathy AND COVID19 (1);
• Search Engines: Pubmed OR Scopus OR Google Scholar OR ClinicalTrials.gov (2);
• Search Combination: (1) AND (2);

This search yielded several results, and we will discuss in this narrative review the
most interesting and relevant findings.

2. Discussion
2.1. The Well-Known ACE Role and Its Controversial Involvement

Early evidence has indicated that the primary host receptor of Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2, the etiologic agent of the COVID-19 pandemic)
is the angiotensin-converting enzyme 2 (ACE2). This entry process is mediated by binding
SARS-CoV-2 spike receptor-binding domain (RBD) domain to ACE2 [7].

Indeed, protruding from the viral surface is a densely glycosylated spike (S) protein,
which mediates host cell entry by engaging ACE2 [8].

As already shown, a high number of hospitalized COVID-19 patients are diabetic and
angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers
(ARBs) are used, mainly for their nephroprotective effects, as first-line agents in diabetic
patients. Nonetheless, their administration leads to up-regulation of ACE2, with a potential
for increasing the viral entry of SARS-CoV-2 [9]. Furthermore, a reduction and/or inac-
tivation of ACE2 caused by SARS-CoV-2 binding can increase the ACE/Angiotensin II
signaling pathway and related pathologies [10]. Thus, the COVID-19 disease was shown
to be characterized by ACE2 depletion, probably playing a key role in the devastating
cytokine storm embodying this disorder [11].

Conversely, it was suggested that ACE2 has the potential of slowing the progression
of experimental diabetic chronic kidney disease [11], and it was found to be highly and
significantly expressed in the kidney among individuals with chronic kidney diseases or
DN [12].

Indeed, diabetic patients with kidney disease revealed ACE2 expression in proximal
tubular epithelial cells primarily [13], and ACE2 messenger RNA (mRNA) expression
levels were significantly upregulated versus healthy living donors’ kidneys [14].

The increased ACE2 mRNA expression in the kidneys of diabetic patients may increase
the severity and/or risk of kidney infection with SARS-CoV-2 in the setting of COVID-19
disease [15].

Several studies attempted to gain new insights into the pathogenic mechanisms of
SARS-CoV-2 underlying this clinical manifestation in the kidney. Notably, receptors for
proinflammatory cytokines, especially IL6ST, were found to be concentrated in renal
endothelial cells, which suggests the occurrence of alternative damaging autoimmune
mechanisms [12].

Other authors studying the molecular network modules induced in ACE2-expressing
proximal tubular epithelial cells in DN found that they were associated with viral entry,
immune activation, endomembrane reorganization, and RNA processing [13]. This cell
module overlapped with expression patterns typically seen in SARS-CoV-2-infected cells,
which suggests a possible interaction between the ACE2-coregulated proximal tubular ep-
ithelial cell expression program and SARS-CoV-2 infection processes [13]. Hence, studying
the SARS-CoV-2 receptor networks can support risk stratification and therapeutic strategies
for kidney damage related to COVID-19 [13].
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Many outcomes indicate that triggering the ACE2/Angiotensin (1–7)/MasR axis may
be nephroprotective in the context of AKI [11]. However, there are still conflicting outcomes
that indicate it may accelerate renal damage in CKD and AKI under certain conditions [11].

It is noteworthy to mention that expression levels of ACE2 were found to be unaltered
by exposures to renin-angiotensin-aldosterone system inhibitors (RAASi) in diabetic kidney
disease [13].

Nonetheless, potential harm by RAASi may be caused by other mechanisms, such as
the increase in the ACE2 receptor activity, the inefficiency of the counter regulatory axis in
the lungs and the proinflammatory properties of ACE2-positive cells infected with SARS-
CoV-2 [16]. Moreover, a recent study showed that captopril (an ACEI) had a significantly
higher incidence of pulmonary adverse events compared with other ACEI as well as
ARBs [9].

The use of RAASi should be done judiciously with careful consideration, until more
definitive evidence becomes available. Additionally, specific medication’s adverse event
profile, particularly captopril, should be taken into account [16].

2.2. The Less Well-Known NRP-1 Role and Its Remarkable Potential

As already discussed, the COVID-19 entry process is mediated by binding SARS-
CoV-2 spike receptor-binding domain (RBD) domain to ACE2 [7] However, some studies
have reported susceptibility to the virus in intra- and extra-pulmonary immune and non-
immune cells lacking ACE2 [8]. This suggests that the S protein may exploit additional
receptors for infection, such as the innate immune system, including C-lectin type receptors
(CLR), toll-like receptors (TLR) and neuropilin-1 (NRP1), and the non-immune receptor
glucose regulated protein 78 (GRP78) [8].

Recently, an increasing amount of research is directed to the newly identified receptor
responsible for the SARS-CoV-2 entry: NRP1, with the interaction between the former’s
spike RBD domain and the latter’s b1 domain [7].

NRP1 is a single-pass transmembrane receptor protein lacking enzymatic activity, with
a large extracellular tail structured in several domains. This allows NRP1 to interact with
multiple ligands with different signaling pathways through its co-receptors [17]. Indeed,
it is a multifunctional transmembrane receptor for ligands that affects developmental
axonal growth and angiogenesis, with implications in the nervous system’s development,
immunity, cancer and several viral infections [18]. It has been suggested to be an immune
checkpoint of T cell memory, and its immune function involvement is compelling, given
the role of an exaggerated immune response in COVID-19 related disease severity and
death [19].

As the Spike protein of SARS-CoV-2 is cleaved into the S1 and the S2 domain by furin
protease, NRP1 binds, mainly through its b1 domain, to the newly created C-terminal
amino acid sequence of the S1 domain [20]. The furin cleavage product of SARS-CoV-2
Spike protein takes advantage of the NRP1 vascular endothelial growth factor A (VEGF-A)
binding site [18] (Figure 1).

Indeed, through its exposed C-end rule (CendR) motif following the furin processing,
the SARS-CoV-2 spike protein binds to the NRP1 CendR pocket, which allows it to achieve
endocytosis and cell entry. This binding interferes with that of NRP1’s endogenous ligand
VEGF-A, a signaling that would otherwise promote nociception [21]. The ensuing silencing
of pain through the VEGF-A pathway may underlie increased disease transmission in
asymptomatic individuals [22].

Moreover, in the presence of NRP1 binding S1 more strongly to the host membrane,
there is a high probability of S2 being pulled out. Hence, this NRP1 binding could stimulate
the separation of S1 and S2 domains, which will probably increase the infectivity of SARS-
CoV-2 as the liberated S2 mediates the fusion of the virus and other host membranes [23].
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Figure 1. Mechanism of Cellular Entry of SARS-CoV-2 through NRP1. After binding of the spike
protein to ACE-2 receptor, Furin-mediated cleavage of S protein at S1/S2 site leads to the exposure of
the CendR motif of S1 which easily binds to the b1 subdomain of NRP1 receptor. This allows it to
undergo membrane fusion and endocytosis. Abbreviations: ACE2, angiotensin-converting enzyme 2;
CendR, C-end rule; NRP1, neuropilin 1.

As such, NRP1 may increase viral infection by SARS-CoV-2 in the presence of other
host factors like ACE2 [21], and it may also initiate receptor-dependent viral internalization,
potentiate severe immune-pathological inflammation, and lead to a systemic spread of the
infection [8], independently of ACE2. Nonetheless, recent in-vitro studies are showing that
NRP1 alone did not increase cell susceptibility to viral infectivity [24], suggesting that it
may enhance viral infectivity via other host factors, rather than mediate it itself. Further
studies are required to clarify this mechanism.

Although originally found in neuronal cells, NRP1 is also expressed by other cells,
namely in the kidney. It was indeed found that NRP1 is highly expressed in differentiated
podocytes [25]. Some of NRP1’s ligands have been implicated in diabetes and in DN, but
scarce data are available to date [17].

Prolonged and uncontrolled hyperglycemia leads to the accumulation of AGEs or Ad-
vanced Glycation End-products. These products play an important role in the pathogenesis
of DN. Indeed, research showed that the addition of glycated Bovine Serum Albumin (AGE-
BSA) to differentiated murine podocytes affected the migration ability of the podocytes
by significantly reducing their adhesion to collagen IV, laminin, and fibronectin compared
with non-glycated BSA-incubated cells [26]. The decreased migration ability may be linked
to an increased adherence of some uncovered areas of the glomerular basement membrane
to Bowman’s capsule which could lead to focal glomerulosclerosis [25].

It was suggested that the pathophysiology of AGE-challenged podocytes (hypertro-
phy, apoptosis, and reduced cell migration) is closely related to the inhibition of NRP1 [27].
Indeed, the addition of AGE-BSA to differentiated murine podocytes was shown to in-
hibit NRP1 expression by inhibiting NRP1 promoter transcriptional activity in podocytes
via the reduction of the Sp1 transcription factor’s binding ability to attach to the NRP1
promoter [28].

In fact, it seems that, since the reduced podocyte migration related to the addition of
AGE-BSA could be duplicated in the absence of AGE-BSA when NRP1 expression is down-
regulated by short interference (si) RNA, AGE-BSA addition inhibits podocyte migration
by down-regulating NRP1 [25]. Furthermore, podocyte migration could be stimulated
by overexpressing NRP1, even in the presence of AGE-BSA, which re-emphasizes the
hypothesis [25].
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In a more recent study from the same authors, it was demonstrated that the NRP1
depletion reduced the phosphorylation of focal adhesion kinase (FAK) and of Erk1/2 in
differentiated podocytes. It could also inhibit the activation of the Rac-1 and Cdc42 GTPase
activity [26]. A role for NRP1 in the regulation of podocytes’ adhesion to extracellular
matrix proteins, actin cytoskeleton reorganization, and apoptosis was also shown (17).
These NRP1-induced effects may be responsible for the podocytes damage and loss in
DN [26].

In this sense, several studies have proven a reduced expression of NRP1 in glycated-
BSA cultured differentiated podocytes as well as in glomeruli from db/db mice (a model
of T2DM) and in diabetic patients diagnosed with DN [17].

It is important to mention that in a recent analysis of an RNA sequencing dataset of
cryopreserved human diabetic kidney, of the numerous proposed factors implicated in the
cell entry of SARS-CoV-2, including ACE2, only NRP1 was significantly up-regulated [29].
Up-regulation of NRP1 in the diabetic kidney cells suggests its importance in a population
at high risk of severe COVID-19 disease. It is also unknown whether the NRP1 up-
regulation and involvement in COVID-19 may have direct implications for the disease’s
outcomes and long-term consequences, including possible immune dysfunction [19].

Therefore, a logical hypothesis would be that the up-regulation of NRP1 in the diabetic
kidney could facilitate the entry of SARS-CoV-2 in this tissue and that the engagement
of the two could lead to depletion of NRP1 with progression to podocyte damage, and
ultimately, to DN. More research is needed to refine the current understanding of the
potential role of NRP1 in DN and COVID-19.

2.3. Other Suggested Underlying Actors
2.3.1. Mitochondrial Glutathione

Mitochondria are known to be the main source of ROS or reactive oxygen species,
mainly deriving from the mitochondrial respiratory chain. Among the several mito-
chondrial enzymatic and non-enzymatic antioxidant systems, mitochondrial glutathione
(mGSH) appears as the key line of defense for preserving an appropriate mitochondrial
redox environment. mGSH can act directly or as a co-factor in numerous reactions cat-
alyzed by other mitochondrial enzymes making it vital to repair or even evade oxidative
modifications which could impact mitochondrial function and even subsequently lead to
cell death [30].

Since mitochondrial ROS can lead to deregulated inflammatory responses, including
proinflammatory cytokine production [31], in conditions with excessive inflammatory
response, as seen in severe COVID-19 symptoms, it was suggested that mitochondrial
antioxidants, such as mGSH, could play a role during the COVID-19 viral infection [30].

In fact, the morbidity and mortality of SARS-CoV-2 are mainly due to severe cytokine
storm and hypercoagulable state caused by the host’s dysregulated inflammatory immune
response, which leads eventually to multi-organ failure. Therefore, it was suggested that
people with depleted GSH levels are prone to mortality from COVID-19 [32] and that GSH
supplementation should be used as add-on to the current treatment options in COVID-19
patients [33], as the mechanisms leading to deadly inflammation could be counterbalanced
by GSH [34].

It was also shown that oxidative stress and nitrosative stress both play a major role in
the mechanism by which chronic hyperglycemia causes cellular damage to the kidneys [35],
and low levels of renal GSH have been associated with DN [36].

Maintaining optimal levels of mGSH is therefore vitally important, and in fact, it has
been demonstrated that dietary GSH supplementation could protect partially against many
of the DN-related pathological changes [37].

A possible role for mGSH involvement in both diseases could be strengthened and
requires further research.
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2.3.2. Vitamin D

Vitamin D is a crucial hormone that regulates calcium and phosphate homeostasis
affecting bone growth and turnover and has many other functions via its gene transcrip-
tion effects, acting, among others, as a regulator of the immune system [38]. Vitamin D
deficiency is a very common disorder and is linked to many diseases, including T2DM and
DN but also more recently, COVID-19 disease [39].

A role for vitamin D in the response to COVID-19 infection could be speculated, first,
via the production of antimicrobial peptides in the respiratory epithelium it supports, which
could make the viral infection and development of symptoms less likely, and second, via
the reduction of the inflammatory response and the dampening of the cytokine storm [38].

Therefore, vitamin D deficiency has been linked to a susceptibility to COVID-19 and to
worse clinical outcomes, as a majority of hospitalized COVID-19 patients were diagnosed
with vitamin D insufficiency [40].

Finally, vitamin D administration to deficient individuals was hypothesized to prevent
COVID-19 infection and/or alter the course of disease severity. Immune dysregulation
is a key feature of severe COVID-19. Indeed, vitamin D’s roles in initially controlling
viral infection and later reducing the hyper-inflammation may allow the restoration of
the immune balance to prevent the cytokine storm and to combat COVID-19 disease
severity [41].

Several lines of evidence have indicated that vitamin D deficiency is associated with
T2DM [42] but also that a tight relationship exists between vitamin D deficiency and DN,
with vitamin D-deficient diabetic patients appearing to be at a higher risk of DN [43]. Mul-
tiple roles of vitamin D in podocyte injury, tubule lesions, interstitial fibrosis, inflammation,
etc. have been demonstrated [44], and the robust anti-inflammatory properties of vitamin
D render its supplementation a promising nephroprotective therapeutic option for DN [45].

In fact, it was shown that increased serum vitamin D levels reduce blood glucose
levels and increase insulin secretion. Vitamin D may also help to prevent DN by reducing
the production of GFAT or Glutamine: Fructose-6-phosphate Aminotransferase as the main
enzyme of the hexosamine pathway in renal tissue [46].

Hence, vitamin D appears to be a second interesting underlying actor in both COVID-
19 and DN and deserves more direct studies on both diseases.

2.3.3. Dipeptidyl Peptidase-4

Dipeptidyl peptidase-4 (DPP4), also known as the T cell activation antigen CD26,
is a serine membrane-anchored ectopeptidase expressed ubiquitously on the surface of
different cell types including those present in the kidneys, the respiratory tract and the
immune system. It has a catalytic activity as it cleaves dipeptides from the N-terminus and
acts as a binding protein as well as a ligand of extracellular factors [47].

DPP-4 cleaves incretins including GLP-1 or glucagon-like peptide-1 and GIP or
glucose-dependent insulinotropic polypeptide, which leads to reduced insulin secretion
and abnormal visceral adipose tissue metabolism, but also regulates postprandial glucose.
Its expression is higher in visceral adipose tissue and directly correlates with insulin re-
sistance and adipocyte inflammation. Hence, DPP-4 inhibitors are widely used to treat
T2DM [48].

Human DPP-4 has already been implicated in the Middle East respiratory syndrome
coronavirus as a functional receptor for the spike glycoprotein. Indeed, post-translational
N-terminal hypersialylation may play an important role in the DPP4 trafficking and virus
aggressivity and could comprise the N-glycan binding interfaces of DPP4 [47].

Its ancestor, SARS-CoV-2, may be using the DPP4 receptor as co-receptor to the
ACE2 [47] when entering the host’s cells. A large interface has been predicted in the
docking of DPP-4/SARS-CoV-2 spike protein [49], and it seems that the S1 domain of
COVID-19 spike glycoprotein may interact with the human DPP4, a key immunoregulatory
factor for hijacking and virulence [50].
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DPP-4 appears to accelerate SARS-CoV-2’s entry into the respiratory airways but also
its spread to other tissues, such as the kidneys, and can contribute in the cytokine storm and
immunopathogenesis [47]. Some authors hypothesize that DPP4 inhibitors could represent
a new strategy to support the treatment of COVID-19 in patients, with or without diabetes,
by reducing the viral entry and replication into the respiratory tract and by hampering the
inflammation and cytokine storm within the lungs [47].

DPP-4 expression was found to be upregulated in the glomeruli of patients with
diabetic kidney disease (DKD) [51]. The immune system’s involvement in its pathogenesis
and the contribution of renal inflammation in advanced DKD are now well identified [52].
DPP-4 has been shown to increase inflammation in T2DM as its enzymatic activity affects
the function of several cytokines, chemokines, and growth factors [53].

Beyond their effect on glycemic control, emerging evidence suggests that DPP-4
inhibitors may have additional effects such as nephroprotection [54].

For instance, a study examining the long-term nephroprotective effects of a DPP-4
inhibitor in db/db mice, a model of T2DM, showed it can delay the progression of DN
damage in a glucose- and blood pressure-independent manner. The observed effects were
attributed to the attenuation of podocyte injury and the inhibition of the transformation of
myofibroblasts [51].

With this available evidence, the anti-inflammatory properties of DPP-4 inhibitors
suggest their potential implication in DN and COVID-19 immunopathogenesis, and DPP-4
represents a potential target to reduce the pathological progression of both diseases [49].

3. Conclusions

Patients with diabetes are at high risk of severe COVID-19 disease progression, and
patients with Diabetic Nephropathy are at an even higher risk. While this fact is well recog-
nized today, the underlying mechanisms behind this have not yet been fully uncovered.
Several actors are hypothesized to play a role, such as the ACE receptor and the RAAS
axis, but also the immune system, mainly through NRP1. Based on the data available
so far, we suggest that the up-regulation of NRP1 in the kidney of diabetic patients fa-
cilitates the entry of SARS-CoV-2 in this tissue, followed by an engagement of the two
processes leading to a depletion of NRP1. Lower levels of NRP1 were demonstrated to
be strongly associated with the pathogenesis of DN, further corroborating the association.
Other potential actors may also contribute to the link between COVID-19 and DN, such as
mitochondrial glutathione, vitamin D, and DPP4. Further research is needed in order to
better understand the potential roles of all these suggested actors, especially NRP1 in DN
and COVID-19. This could eventually lead to new therapeutic strategies that could lessen
the burden of COVID-19 in patients with DN.
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