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Abstract Glycoprotein (GP: HIS1-PRO265) Ibɑ is a receptor protein expressed on the surface of the
platelet. Its N-terminus domain binds with the A1 domain (ASP1269-PRO1472) of its
ligand protein von Willebrand factor (VWF) and plays a unique role in platelet adhesion
under blood flow conditions. Single amino acid substitutions at residue 233 from
glycine (G) to alanine (A), aspartic acid (D), or valine (V) are known to cause
biochemically distinct functional alterations known as equal, loss, and gain of function,
respectively. However, the underlying physical characteristics of VWF binding with
GPIbɑ in wild-type and the three mutants exerting different biological functions are
unclear. Here, we aimed to test the hypothesis: biological characteristics of macro-
molecules are influenced by small changes in physical parameters. The position
coordinates and velocity vectors of all atoms and water molecules constructing the
wild-type and the three mutants of GPIbɑ (G233A, G233D, and G233V) bound with
VWF were calculated every 2� 10�15 seconds using the CHARMM (Chemistry at
Harvard Macromolecular Mechanics) force field for 9�10�10 seconds. Six salt bridges
were detected for longer than 50% of the calculation period for the wild-type model
generating noncovalent binding energy of �1096� 137.6 kcal/mol. In contrast, only
four pairs of salt bridges were observed in G233D mutant with noncovalent binding
energy of �865�139 kcal/mol. For G233A and G233V, there were six and five pairs of
salt bridges generating �929.8�88.5 and �989.9�94.0 kcal/mol of noncovalent
binding energy, respectively. Our molecular dynamic simulation showing a lower
probability of salt bridge formation with less noncovalent binding energy in VWF
binding with the biologically loss of function G233Dmutant of GPIbɑ as compared with
wild-type, equal function, and gain of function mutant suggests that biological
functions of macromolecules such as GPIbɑ are influenced by their small changes in
physical characteristics.
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Introduction

Platelet adhesion and cohesion under blood flow conditions
aremediated exclusively by the A1 domain of vonWillebrand
factor (VWF) located between the D3 and the A2 domain
(residues ASP1269- PRO1472,1,2 23.87 kDa)3 binding with gly-
coprotein (GP) Ibɑ, a receptor protein expressed on the
surface of platelet, regardless of the activation status of the
platelets.4–7 Specific binding characteristics of GPIbɑ binding
with VWF include transient binding without stabilization in
the absence of specificmodulators such as ristocetin thatwas
originally developed as antibiotics8 but demonstrated to
induce VWF-mediated platelet aggregation9 or botrocetin
which was purified from snake venom to induce VWF-
mediated platelet aggregations.10–13 Transient platelet ad-
hesion mediated by VWF binding with platelet GPIbɑ could
be detected under blood flow conditions,4 but the binding is
not stable without the contribution of another
VWF/fibrinogen receptor of GPIIb/IIIa alternatively named
as integrin ɑIIbβ3, the function of which is activation depen-
dent14 on the absence of ristocetin or botrocetin.15 Transient
adhesion and cohesion of platelet under high shear flow
condition plays crucial roles in both thrombus formation and
haemostasis.5,16 Accordingly, the bleeding risk increases in
conditions where either the quantity or quality of platelet
GPIbɑ and VWF are reduced.

The von Willebrand diseases (VWDs) were primarily
characterized as bleeding disorders induced by quantitative
or qualitative abnormality of VWF.17 Since the major func-
tions of A1 domain of VWF in hemostasis and thrombus
formation are mediated by its binding with platelet
GPIbɑ,4,5,18,19 the functional abnormality in GPIbɑ also
causes similar conditions: namely platelet type VWD.20,21

Mutations in platelet GPIbɑ cause VWD either by reducing
(loss of function) or enhancing (gain of function) its abilities
to bind with VWF.20,22,23 While the loss of function mutant
(s) of GPIbɑ causes VWD because the GPIbɑ could not bind
with VWF, the gain of function mutant(s) of GPIbɑ causes
VWD due to enhanced consumption of larger multimers of
VWF by stabilizing GPIbɑ binding with VWF even in the
absence of ristocetin.24 Previous biological and crystallo-
graphic analysis revealed the importance of C-terminal di-
sulfide loop region (Cys209-Cys248) in GPIbɑ for its binding
with VWF.25–27 Indeed, both loss of and gain of function of
GPIbɑ could be achieved by a single amino acid substitution
at G233 in GPIbɑ.23,28,29 The biological functions of macro-
molecules such as VWF binding with GPIbɑ may be influ-
enced by a small change in their physical characteristics.30

Previous biological experiments have shown that GPIbɑwith
mutation at residue 233 have a distinct biological phenotype,
although the theoretical mechanism is unknown.23 This
makes the G233 mutants as a suitable target for analysis.

The molecular dynamic (MD) simulation is a relatively
novel technic for biology. The strength of MD simulation is
the ability to clarify the quantitative physical and dynamic
characteristics of protein–protein interactions including the
binding of GPIbɑ to VWF. Indeed, the binding energy equiva-
lent potential of mean forces (PMFs) and binding force in

GPIbɑ binding with VWF were calculated by MD simula-
tion.31 Interlandi et al revealed the importance of salt bridge
formation between amino acids located at N-terminal linker
in VWF and corresponding N-terminus region in GPIbɑ by
MD simulation.32 Previous publications revealed that single
amino-acid mutation at residue 233 located in the β-switch
in GPIbɑ causes biological loss and gain of function for
binding with VWF at various binding energies.23,31However,
the salt bridge formation and noncovalent binding energy
between VWF and GPIbɑ mutants with various biological
functions are still to be elucidated. A previous report de-
scribed that the dissociation energy of GPIbɑ with loss-of-
function mutant from VWF is only slightly lower compared
with wild-type. Thus, we hypothesized that the biological
functions of macromolecules of VWF and GPIbɑwith various
G233 mutants are driven by small changes in their physical
characteristics including salt-bridge formation and
attempted to test this hypothesis.

Methods

Molecular Dynamic Simulation

Initial Structure of Glycoprotein Ibɑ Binding with von
Willebrand factor
The position coordinates and velocity vectors of all the atoms
constructing the A1 domain of VWF (VWF: residues ASP
(D):1269-PRO(P):1466) binding with the N-terminal domain
of platelet GPIbɑ (GPIbɑ: residues HIS(H):1-PRO(P):265)
were solved by MD simulation calculation as previously
published.2,31 The energetically most stable structure with
amass center distance between GPIbɑ and VWF of 27.3 Åwas
selected as the initial structure of wild-type GPIbɑ bound
with VWF. The amino acid G233 at GPIbɑ in this structure
was substituted by A, D, and V to provide initial binding
structures with VWF.

Molecular Dynamic Simulation Calculation
Water molecules modeled as Chemistry at Harvard Macro-
molecular Mechanics (CHARMM) transferable intermolecu-
lar potential with three interaction sites were placed around
the molecules constructing VWF bound with wild-type and
G233A, G233D, and G233V mutant GPIbɑ.33 Then,
Newton’s second law known as F (force)¼M (mass)�A
(acceleration) was solved for all atoms constructing GPIbɑ,
VWF, and water molecules around them with multidimen-
sional calculations using Nanoscale Molecular Dynamics
(NAMD) software as previously published.2,31 The effects
of any modulators such as ristocetin were not considered.
The calculation was conducted on the computers equipped
with four sets of NVIDIA Tesla V100 GPU (HPC5000-
XSLGPU4TS, HPC systems Inc., Tokyo, Japan). The
CHARMM-36 was used as a governing force field.34,35 The
position coordinates and velocity vectors of each atom and
water molecule were calculated in each 2.0 femtosecond
(10�15 s). The cut-off length of 12Åwas set as the maximum
distance allowing direct interactions of atoms as previously
published.2 Visual Molecular Dynamics (VMD) version 1.9.3
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was used for visualization of the results such as the snap-shot
of the three-dimensional structure of VWF binding with
GPIbɑ from the position coordinates of atoms constructing
VWF and GPIbɑ.2,31

Root Mean Square Deviations
In each calculated structure, the average distances between
various atoms excluding water molecules were calculated as
the root mean square deviations (RMSDs). The RMSDs were
calculated every 10 ns from the beginning to the end of the
calculation.

Noncovalent Binding Energy
The noncovalent binding energies between amino acids
constructing GPIbɑ and VWF were calculated with VMD
and NAMD energy plugin (version 1.4) as described previ-
ously.30,36–38 The noncovalent binding energywas expressed
as kilocalorie per mole.

Salt Bridge Formation
Anionic carboxylate of either aspartic acid (N) or glutamic
acid (E) is known to form salt bridges with cationic ammo-
nium (RNH3þ) of lysine (K) or the guanidinium (RNHC
(NH2)2þ) of arginine (R).39 Since the salt bridgeswere formed
between positively charged portions and negatively charged
ones,40 they formed bridges when the distance between
these amino acids became less than 4Å or closer.41 Within
all calculated structures, the presence of salt bridges was
calculated by the VMD plug-in software Salt Bridges Plugin
(Version 1.1) as previously published.42,43 The percentage of
the time when the pairs of amino acids form salt bridges
within the calculation period was measured.

Statistical Analysis

The calculated results of RMSDs and noncovalent binding
energy in each condition are shown as mean� standard
deviation unless otherwise described. The values in wild-
type and each of G233A, G233D, and G233V mutant were
compared by using two-tailed Student’s t-tests. p-Values less
than 0.05 were considered to denote statistical significance.

Results

Initial Structure and Root Mean Square Deviations
Panel A in ►Fig. 1 shows the position of G233 in the
energetically stable structure of wild-type GPIbɑ bound to
VWF. Each picture in panel B shows the initial positions of
amino acid at 233 in GPIbɑ in wild-type and the three
mutants. The initial binding structure of GPIbɑ and VWF
were similar across wild-type and all the mutants.

►Fig. 2 shows the time-dependent changes in RMSDs of
atoms constructing GPIbɑ and VWF excluding water mole-
cules in wild-type and the three mutants. RMSDs stabilized
with a fluctuation of less than 3Å in all conditions within
600 ns of calculation.

Noncovalent Binding Energy between Glycoprotein
Ibɑ and von Willebrand factor
Noncovalent binging energy generated between wild-type
GPIbɑ and VWF was �1096.7�137.6 kcal/mol
(►Fig. 3,►Table 1). Thenoncovalentbindingenergygenerated
between G233A and G233V mutant GPIbɑ with VWF were
�929.8�88.5 kcal/mol and �989.9�94.0 kcal/mol, respec-
tively. Both were 15.3 and 9.7% lower than that generated in

Fig. 1 Initial structure of VWF and GPIbɑ in wild-type and the three mutants at G233. Panel A shows the position of G233 in N-terminus domain
of GPIbɑ (blue) binding with A1 domain of VWF (red). The initial positions of amino acid at 233 in wild-type (G) and the three mutants of G233A,
G233V, and G233D are shown in panel B. The negatively charged carboxylate are shown in red, while the positively charged ammonium and
guanidinium are shown in blue.
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wild-type GPIbɑ binding with VWF, respectively (p<0.001 for
both). For G233D mutant, the noncovalent binding energy
generated between GPIbɑ and VWF was �865.0�139.1

kcal/mol which is 21.1% lower than the value in wild-type
GPIbɑbindingwithVWF (p<0.001). Time-dependent changes
in noncovalent binding energy in all conditions did not differ
substantially (►Supplemental Fig. S1).

Salt Bridge Formation between Amino Acids in
Glycoprotein Ibɑ and von Willebrand factor
Each panel of ►Fig. 4 shows the percentages of time periods
when each pair of salt bridge was formed during the calcu-
lation period. ►Fig. 5 shows the results with a heat map. Six
pairs of salt bridges (D63-R571, D83-K569, D106-K569,
K237-D570, E14-R611, and E128-K608) were formed for
more than 50% of the calculation period in wild-type
GPIbɑ binding with VWF. The distributions of time periods
where various sets of salt bridges formed between each set of
amino acids differ substantially among VWF binding with
wild-type and the three G233 mutants of GPIbɑ as shown
in ►Figs. 4 and 5. The numbers of salt bridges formed for
more than 50% of the time period in G233A-GPIbɑwith VWF,
G233V-GPIbɑwithVWF, andG233D-GPIbɑwithVWFwere 6,
5, and 4, respectively. In a sensitivity analysis, the number of
salt bridges formed was 8 in wild-type GPIbɑ binding with
VWF when the cut-off value was set as 40% as shown
in ►Fig. 5. In this condition, number of salt bridges formed
more than 40% of calculating period in VWF binding with
G233A, V, and D mutants were 6, 7, and 5, respectively.
Dynamic structural fluctuation around these salts bridge
during the calculation period in each case is shown in
Supplemental Movies S1 to S4.

Supplemental Movie S1

Results of MD calculations of VWF bound with wild-
type GPIbɑ. The snap shots of VWF (red) binding with
GPIbɑ (blue) calculated as the position coordinates in
each 10 ns were reconstructed as the 90 frames
movie. The amino acids forming salt bridges for more
than 50 were shown as the Corey–Pauling–Koltun
model (red in VWF and blue in GPIbɑ). Online content
including video sequences viewable at: https://www.
thieme-connect.com/products/ejournals/html/
10.1055/a-1937-9940.

Supplemental Movie S2

Results of MD calculations of VWF bound with G233A
GPIbɑ. The snap shots of VWF (red) binding with GPIbɑ
(blue) calculated as the position coordinates in each 10
ns were reconstructed as the 90 frames movie. The
amino acids forming salt bridges for more than 50
were shown as the Corey–Pauling–Koltun model (red
in VWF and blue in GPIba). Online content including
video sequences viewable at: https://www.thieme-
connect.com/products/ejournals/html/10.1055/a-
1937-9940.

Fig. 2 Time-dependent changes in the root mean square deviations
(RMSDs) of atoms constructing VWF and GPIbɑ. The RMSDs of atoms
constructing VWF and GPIbɑ, excluding water molecules were cal-
culated every 10 ns are shown in wild-type (left upper panel), G233A
(right upper panel), G233V (left lower panel), and G233D (right lower
panel).

Fig. 3 Noncovalent binding energy generated between VWF and wild
type, G233A, G233V, and G233D mutant of GPIbɑ. The means and
standard deviations of noncovalent binding energy generated be-
tween VWF and GPIbɑ at wild-type (dark purple), G233A (light blue),
G233V (gray), and G233D (orange) are shown in kcal/mol.

Table 1 Noncovalent binding energy generated between VWF
and GPIbɑ in wild-type and three of the mutants

Mutation Noncovalent binding energy
[kcal/mol]

p-Value

Wild-type �1096.0 � 137.6 �
G233A �929.8 � 88.5 <0.001

G233V �989.9 � 94.0 <0.001
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Supplemental Movie S3

Results of MD calculations of VWF bound with G233V
GPIbɑ. The snap shots of VWF (red) binding with GPIbɑ
(blue) calculated as the position coordinates in each 10
ns were reconstructed as the 90 frames movie. The
amino acids forming salt bridges for more than 50
were shown as the Corey–Pauling–Koltun model (red
in VWF and blue in GPIbɑ). Online content including
video sequences viewable at: https://www.thieme-
connect.com/products/ejournals/html/10.1055/a-
1937-9940.

Supplemental Movie S4

Results of MD calculations of VWF bound with G233D
GPIba. The snap shots of VWF (red) binding with GPIba
(blue) calculated as the position coordinates in each 10
ns were reconstructed as the 90 frames movie. The
amino acids forming salt bridges for more than 50
were shown as the Corey–Pauling–Koltun model (red
in VWF and blue in GPIbɑ). Online content including
video sequences viewable at: https://www.thieme-
connect.com/products/ejournals/html/10.1055/a-
1937-9940.

Fig. 4 Probability of the presence of salt bridges formed between VWF and GPIba. The probabilities of salt bridge formation for the pairs of
amino acids in GPIbɑ-VWF shown at the bottom of each panel are shown in red bar. The upper left panel shows the results of VWF binding with
wild-type GPIbɑ. The upper right, lower left, and lower right panel show the results of VWF binding with G233A, G233V, and G233D mutants of
GPIbɑ, respectively. Thin black line in each panel shows the threshold of 50%.

Fig. 5 Probability of the presence of salt bridges formed between
VWF and GPIbɑ. The probabilities of the presence of each pair of
amino acid forming salt bridge are shown in the heat map. The pair of
salt bridge formation more than 50% of calculation periods were
shown with the color including red. The number of salt bridge formed
more than 50% is apparently higher in wild-type and G233V mutant
with VWF. The number of salt bridges is substantially lower in G233D
mutant.
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Discussion

Our MD simulation showed that the specific physical charac-
teristics of the probability of salt bridge formationwere lower
in VWF binding to G233D mutant of GPIbɑ generating less
noncovalent binding energy as compared with the binding to
GPIbɑ in wild-type, G233A, and G233V mutants. So far, the
quantitative relationships between the physical parameters of
molecules such as noncovalent binding energy between VWF
andGPIbɑ, and theirbiological functionsare still tobeclarified.
Our finding supporting lower probabilities of salt bridge
formation with less noncovalent binding energy in biological
loss of function mutation in G233D is in agreement with the
hypothesis that the biological functions of macromolecules
could be influenced by small changes in their physiological
characteristics.44 Indeed, the loss of VWF binding function in
G233D mutant in GPIbɑ was associated with only 21.1%
reductions in noncovalent binding energy with only slightly
low probabilities of salt bridge formation between them.

One important and specific characteristic of VWF binding
with GPIbɑ is that their binding could be detected only under
shear flow conditions or in the presence of specific modu-
lators of ristocetin or botrocetin unlesswith a specific gain of
function mutants.4,15,18,45,46 Our MD simulation was con-
ducted in the absence of any modulators. Thus, our results
represent the conditions of transient VWF binding with
GPIbɑ under shear flow conditions. Our results suggest
that the loss of VWF binding function in G233D GPIbɑ under
shear flow condition23 is caused by a small change in the
probabilities of salt bridge formation and slightly lower
noncovalent binding energy between GPIbɑ and VWF.

Despite numerous attempts,15,19,47–49 an assay system
accurately quantifying physical parameters of VWF binding
with GPIbɑ under shear flow conditions has not been estab-
lished. MD simulation enabled to quantify the physical
parameters of VWF binding with GPIbɑ in wild-type and
three G233 mutants. The quantitative physical parameters
obtained by our MD simulation such as noncovalent binding
energy in VWFandGPIbɑ provide a clue to understanding the
biological function of GPIbɑ and VWF in the absence of
specific modulators where the bindings are transient.

The lowest numbers of salt bridge formations and lowest
noncovalent binding energy in VWF binding with the loss of
function G233D mutant of GPIbɑ as compared with wild-
type, equal of function (G233A), and gain of function
mutant (G233V) may suggest both the salt bridges and
noncovalent binding energy did not reach the threshold
necessary to keep the bond between the two molecules
strong enough to resist against the fluid shear force. Our
results are in agreement with the idea that biological
characteristics of protein–protein interaction such as bind-
ing depend on the threshold of the probabilities in salt
bridge formation and the noncovalent binding energy in
them. Yet, the quantitative relationship between physical
characteristics of protein bonds and their biological func-
tion is still to be elucidated.

Phenotype of the “loss of function” mutants results in a
higher risk of bleeding. It is interesting that thebleeding risks

were also increased in the “gain of function”mutants. Higher
bleeding risk in “gain of function”mutants was explained by
the consumption of larger multimers of VWF by their
binding with platelets.22,50 Our MD calculation did not
provide a direct clue to explain the behavior of the “gain of
function mutant” of G233V by the number of salt bridges or
noncovalent binding energy. It is of note that our MD
calculation was started from the structure of VWF bound
with GPIbɑ in an energetically stable manner. The structural
characteristic of VWF bound with GPIbɑ may differ substan-
tially under the conditionwhere external forces generated by
blood flow to the platelet are applied to these molecules.51

Moreover, the focus of our simulation calculations is to
quantify the physical parameters of molecules at nanometer
scale (10�9 meter) from the physical behaviors of atomic at Å
scale (10�10 meter). The clinical events of bleeding occur in
organ at a millimeter scale (10�3 meter). Our MD simulation
results are helpful to understand the binding functions of
VWF and GPIbɑ at the molecule level but hard to apply
directly to dissect the mechanism of the increased risk of
bleeding in G233 mutants.

MD calculations provide precise dynamic structures
and their physical parameters of target protein even in
the presence of interaction with other proteins by calcu-
lation with the fundamental law of simple Newton’s
equation. There is a potential methodological limitation
to obtain physical parameters of target molecules from the
sum of Newton’s equation because the physical move-
ments of atoms sharing electrical cloud should follow
the probability-dependent quantum mechanics. In our
calculations, quantum mechanics were coarse grained
into molecular mechanics by using the CHARMM force
field.52,53 Despite the fact that the validity of CHARMM
force field has been confirmed in various macromole-
cules,52,54 coarse graining quantum mechanics into mo-
lecular mechanics may induce errors. So far, the
biochemical characteristics of VWF binding with GPIbɑ
predicted by MD with CHARMM force field2 were in
agreements with the results from other biochemical
experiments in a qualitative manner.55,56 The lower num-
bers of salt bridges and noncovalent binding energy in
VWF binding with G233D mutant of GPIbɑ are in agree-
ments with qualitative biological function of G233D mu-
tant. Our findings agree with the hypothesis that the
biological functions of macromolecules could be influ-
enced by small changes in their physiological parameters.
The quantitative relationships between the calculated
physical parameters of target protein interactions and
their biological function are still to be elucidated.

In conclusion, our results showing lower probability of
salt bridge formation with less noncovalent binding energy
in loss of function mutant of G233D GPIbɑ as compared with
wild-type, G233A, and G233V in regard to the binding with
VWF support the notion that the biological functions of
macromolecules could be influenced by only small changes
in their physiological parameters. Further investigations are
necessary to dissect the mechanism of the gain of function
achieve by G233V mutation.
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What is Known About This Topic?

• Platelet glycoprotein (GP) Ibɑ binding with the A1
domain of von Willebrand factor (VWF) plays a crucial
role in platelet adhesion under the high wall shear
stress condition.

• A single amino acid mutation at residue 233 of platelet
glycoprotein (GP) Ibɑ from glycine (G) to alanine (A),
aspartic acid (D), and valine (V) results in equal, loss,
and gain of function, respectively, for the binding with
VWF.

• The analysis of potential of mean force (PMF)
revealed that the dissociation energy for VWF bind-
ing with GPIbɑ was 4.32 kcal/mol (19.5%) lower in
VWF binding with G233D mutant than that with the
wild-type.

What does This Paper Add?

• There were six salt bridges detected for more than 50%
of the calculation period in wild-type GPIbɑ binding
with A1 domain of VWF generating a noncovalent
binding energy of �1096�137.6 kcal/mol.

• Only four pairs of salt bridges with noncovalent bind-
ing energy of �865�139 were present for over 50% of
the calculation period in G233D GPIbɑ binding with
VWF.

• There were six and five pairs of salt bridges generating
�929.8�88.5 and �989.9�94.0 kcal/mol of noncova-
lent binding energy in G233A and G233V mutant-
GPIbɑ binding with VWF.

• The biological loss of function of G233Dmutant-GPIba
binding with VWF was associated with the physical
characteristics of slightly less probability of salt bridge
formation with slightly lower noncovalent binding
energy in their binding.
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