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ABSTRACT
Cerebral Cavernous Malformation (CCM) is a major cerebrovascular disease of proven genetic origin
affecting 0.3–0.5% of the general population. It is characterized by abnormally enlarged and leaky
capillaries, which predispose to seizures, focal neurological deficits and intracerebral hemorrhage.
Causative loss-of-function mutations have been identified in 3 genes, KRIT1 (CCM1), CCM2 and
PDCD10 (CCM3). While providing new options for the development of pharmacological therapies,
recent advances in knowledge of the functions of these genes have clearly indicated that they exert
pleiotropic effects on several biological pathways.

Recently, we found that defective autophagy is a common feature of loss-of-function mutations
of the 3 known CCM genes, and underlies major phenotypic signatures of CCM disease, including
endothelial-to-mesenchymal transition and enhanced ROS production, suggesting a unifying
pathogenetic mechanism and reconciling the distinct therapeutic approaches proposed so far.

In this invited review, we discuss autophagy as a possible unifying mechanism in CCM disease
pathogenesis, and new perspectives and avenues of research for disease prevention and treatment,
including novel potential drug repurposing and combination strategies, and identification of
genetic risk factors as basis for development of personalized medicine approaches.
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Introduction

Cerebral cavernous malformation (CCM), also known
as cavernous angioma or cavernoma, is a major vascu-
lar dysplasia, occurring mainly within the central ner-
vous system and affecting 0.3–0.5% of the human
population.1-3 CCM lesions consist of closely clus-
tered, abnormally dilated and leaky capillaries, which
can be single or multiple (up to hundreds) and may
remain clinically silent or result in clinical symptoms
of various type and severity at any age, including
recurrent headaches, focal neurological deficits, seiz-
ures, stroke and intracerebral hemorrhage (ICH).
Generally, only approximately 30% of people with
CCM lesions eventually will develop clinical symp-
toms.1-3

This cerebrovascular disease is of proven genetic ori-
gin (OMIM 116860), arising sporadically or being
inherited as autosomal dominant condition with
incomplete penetrance and highly variable expressivity
even among members of the same family, including
wide differences in lesion number, size and susceptibil-
ity to ICH, suggesting that multiple factors can contrib-
ute to CCM disease pathogenesis.4 Genetic studies have
so far identified causative mutations in 3 disease genes,
KRIT1 (Krev interaction trapped 1, also known as
CCM1), CCM2 and PDCD10 (programmed cell death
10, also known as CCM3), which account for about
50%, 20% and 10% of the CCM cases, respectively. The
remaining 20% of cases have been attributed to muta-
tions of a fourth as yet unidentified CCM gene.5 Nota-
bly, the hereditary form of the illness is often associated
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with multiple cavernous angiomas, whereas the spo-
radic form typically presents as a solitary lesion.

Despite significant progress and breakthroughs in
the understanding of CCM disease pathogenesis over
the last decade, with the potential for greatly advanc-
ing the development of therapeutic strategies for pre-
vention and treatment, no direct therapeutic
approaches for CCM disease exist so far, besides surgi-
cal removal of accessible lesions in patients with recur-
rent hemorrhage or intractable seizures. In particular,
novel pharmacological strategies are required for pre-
venting the most severe disease phenotype in suscepti-
ble individuals, including the development of
numerous and large symptomatic lesions and ICH.

Comprehensive analysis of the 3 known CCM
genes in mutation carriers has suggested that their
functions need to be severely impaired for pathogene-
sis,5 whereas several studies in cellular and animal
models have revealed a major role for these genes in
the maintenance of endothelial cell-cell junction sta-
bility and blood-brain barrier (BBB) integrity.6-11 Nev-
ertheless, endothelium-specific conditional knockout
of CCM genes in mice resulted in a spatially and tem-
porally restricted development of CCM lesions, indi-
cating that loss of CCM genes is not sufficient to cause
the disease, and suggesting that additional triggers
occurring locally at the blood-brain interface, includ-
ing microenvironmental stress factors, crucially con-
tribute to CCM disease pathogenesis.4

In recent years, it has become clear that CCM genes
play an important role in controlling signaling path-
ways involved in cell responses to oxidative stress,
pointing to a novel pathogenic mechanism whereby
the function of these genes may be relevant in prevent-
ing vascular dysfunctions triggered by oxidative stress
events.4,12-14 In particular, original findings demon-
strated that KRIT1 is involved in the maintenance of
intracellular ROS homeostasis through the modula-
tion of master regulators of cellular responses to oxi-
dative stress, including FoxO1 and SOD2, which
prevent accumulation of mitochondrial-derived
superoxide anions, whereas KRIT1 loss-of-function is
associated with ROS production and increased cell
susceptibility to oxidative stress-mediated molecular
and cellular dysfunctions.13 Moreover, subsequent
findings showed that KRIT1 may exert a protective
role against oxidative stress by limiting pro-oxidant
and pro-inflammatory pathways and mechanisms,
including JNK/c-Jun-dependent redox pathways.14

Accordingly, recent evidence in animal models has
suggested that oxidative stress may play an even more
critical role in CCM disease than previously described
due to systemic effects.12 Furthermore, there is also
evidence that CCM disease phenotypes can be
reversed by ROS scavenging with antioxidant
compounds.12,14,15

While these and other great advances in knowledge
of the biological functions of CCM proteins have led
to an explosion of disease-relevant molecular informa-
tion,4,16 they have also clearly indicated that loss-of-
function of CCM proteins has potentially pleiotropic
effects on several biological pathways, thus bringing
new research challenges.

Defective autophagy is a key feature of cerebral
cavernous malformations

Autophagy is a form of quality control inside the cell
consisting in the removal of protein aggregates and
excess or damaged organelles,17 including dysfunc-
tional ROS-generating mitochondria, through their
encapsulation by a double-membrane structure
known as the autophagosome.18-20

Recently, using integrated research approaches
involving the CCM_Italia multidisciplinary research
network, we discovered a causal relationship between
impaired autophagy and key phenotypic signatures of
CCM disease.21 Specifically, using both cellular and
animal models of CCM disease and surgical samples
of human CCM lesions, we found that defective
autophagy is a common feature of loss-of-function
mutations of the 3 known CCM genes, and underlies
major phenotypic signatures of CCM disease, includ-
ing endothelial-to-mesenchymal transition (EndMT)
and enhanced ROS production, suggesting a major
role in CCM pathogenesis. Moreover, we demon-
strated that defective autophagy caused by down-regu-
lation of CCM genes is linked to the up-regulation of
the mTOR (mammalian Target Of Rapamycin) kinase
and mTOR-ULK1 regulatory pathway, and showed
that pharmacological inhibition of mTOR and conse-
quent activation of autophagy rescued major molecu-
lar and cellular disease phenotypes, including ROS
accumulation and EndMT, suggesting novel mecha-
nistic targets for therapeutic intervention.21

Taken together, these data point to a pivotal role for
defective autophagy in CCM disease pathogenesis, and
suggest a common mechanism for the efficacy of
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various potential therapeutic compounds proposed so
far, thus providing a novel framework for the develop-
ment of new pharmacological strategies to prevent or
alleviate adverse clinical outcomes of CCM lesions.

From pleiotropic effects toward unifying
mechanisms

So far, multiple molecules and molecular mechanisms
have been involved in CCM disease pathogenesis,
which reflects the multiple functions attributed to the
3 known CCM proteins over the last decade. Indeed,
besides their role in the modulation of redox-sensitive
pathways and mechanisms described above, CCM
proteins have been demonstrated to cooperate in pro-
moting the formation and maintenance of VE-cad-
herin–based adherens junctions between endothelial
cells.16 In particular, KRIT1/CCM1 has been demon-
strated to act as a Rap1 effector that regulates VE-cad-
herin-mediated endothelial cell-cell junctions,7

b-catenin signaling,22 and endothelial polarity.23

Moreover, there is compelling evidence that CCM
proteins inhibit the RhoA GTPase pathway to main-
tain vascular integrity and BBB stability, while their
loss-of-function promotes the activation of the RhoA
GTPase and its effector ROCK, which increase cellular
contractility and destabilize endothelial cell-cell junc-
tions, thereby decreasing barrier function and increas-
ing vascular permeability.9-11 Furthermore, loss-of-
function of CCM proteins has been shown to cause
the activation of the TGF-b/BMP and b-catenin path-
ways, which underlies the induction of EndMT associ-
ated with the onset and progression of CCM
disease.8,24

In addition, there is also evidence that CCM pro-
teins ensure the quiescence of endothelial cells and
inhibit angiogenic responses by either limiting accu-
mulation of intracellular ROS and altered redox sig-
naling,13,14,21 activating the Delta-Notch signaling,25-27

inhibiting the vascular endothelial growth factor
(VEGF) 28 and MAP kinase signaling,29 or regulating
the b1 integrin-Klf2-mediated mechanotransduction
pathway.30

On the other hand, CCM proteins may also regu-
late the integrin-based focal adhesions that connect
endothelial cells to the underlying extracellular matrix,
and integrin-mediated signaling.30-32 Specifically,
there is evidence that CCM proteins limit b1 integrin–
dependent endothelial cell adhesion and contractility,

and fibronectin remodeling by stabilizing ICAP-1, an
inhibitor of b1 integrin,31 and may control endothelial
b1 integrin-dependent mechanotransduction in
response to shear stress.30,32

CCM proteins therefore act as “nodes” that tune
and orchestrate the crosstalk between integrins and
cadherins, which coordinately regulates cell–extracel-
lular matrix and cell-cell interactions and actin cyto-
skeleton dynamics involved in the maintenance of
vascular integrity and barrier function, thereby pro-
moting vascular maturation/stabilization and inhibit-
ing vascular permeability. Consistently, the small
GTPase Rap1, a major KRIT1/CCM1 molecular inter-
actor,7 has been previously reported to play a pivotal
role in the signaling crosstalk between cadherins and
integrins,33,34 whereas emerging evidence indicates
that ROS and redox signaling, also linked to KRIT1/
CCM1 function,13,14 may set the talk.35 Furthermore,
it has been also suggested that the induction of
EndMT associated with CCM disease8 might be con-
nected to and downstream of deregulation of redox
signaling and c-Jun activity.4,14

Taken together, the accumulated evidence indicates
that CCM proteins exert pleiotropic effects on numer-
ous biological pathways, suggesting that a unifying
mechanism should exist that explains these pleiotropic
functions as well as the broad spectrum of phenotypic
hallmarks linked to their loss-of-function and under-
lying CCM disease, including decreased endothelial
cell-cell junction stability, altered cell-matrix adhesion
and cytoskeleton dynamics, induction of EndMT,
increased proliferative and angiogenic potential, dis-
turbed redox signaling and enhanced cell sensitivity to
oxidative stress.

Remarkably, most of the reported CCM protein
functions and effects are directly or indirectly
related to autophagy and its tight interconnection
with redox homeostasis and signaling,21,36,37 sug-
gesting that the modulation of autophagy may rep-
resent the underlying and unifying mechanism for
CCM protein physiopathological functions. Consis-
tently, autophagy is a converging point of multiple
physiological and pathological pathways, and may
exert pleiotropic effects on several molecular and
cellular processes.18 Specifically, autophagy plays a
pivotal role in various signaling pathways linked to
CCM proteins, including the Sirt1/FoxO1,13,38,39

JNK/c-Jun,14,40 b-catenin,22,41 RhoGTPase/ROCK,42

and TGF-b 8,21 pathways. Furthermore, most
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phenotypic hallmarks of CCM disease can be
linked to autophagic dysfunctions, including
enhanced ROS production21,43 and EndMT,21 as
well as altered cell adhesion and angiogenic poten-
tial,44-46 and enhanced endothelial cell sensitivity to
oxidant-induced injury,39 suggesting that the multi-
ple pathogenic mechanisms proposed so far for
CCM disease may originate from impaired autoph-
agy and its interplay with redox imbalance and oxi-
dative stress.

On this basis and with new understanding of the
interplay between autophagy and redox regulation in
cell signaling and adaptive response to oxidative
stress,36,37,43,47,48 it is therefore plausible that dysfunc-
tion of autophagy might represent a unifying mecha-
nism that explains the broad disregulation of signal
transduction induced by loss-of-function of CCM pro-
teins and the consequent multiple effects on CCM dis-
ease pathogenesis.

Reconciling therapeutic approaches for CCM disease

To date there are not direct pharmacological therapies
for CCM disease. However, the great progress in
understanding CCM protein functions and disease
mechanisms has opened promising therapeutic oppor-
tunities. Indeed, multiple therapeutic approaches have
been proposed so far for CCM disease prevention and
treatment, with the potentiality to be effective at least
in limiting the disease severity, including the
following:

� Statins (e.g. Simvastatin) and Fasudil, which have
been suggested to act by inhibiting Rho GTPase
signaling10,49 and Rho kinase (ROCK) activ-
ity,9,50 respectively;

� Sulindac sulfide and its analogs, which have been
shown to inhibit the b-catenin and TGF-b
pathways8,24;

� Cholechalciferol (vitamin D3), known to exert an
antioxidant activity among others,12,51 and dis-
tinct compounds with well-established antioxi-
dant properties, such as N-acetylcysteine (NAC),
a potent glutathione precursor,13,14 Tempol, a
scavenger of superoxide anions,12 and Avenan-
thramide, a polyphenol from oats,15 which have
been demonstrated to counteract disease pheno-
types linked to oxidative stress, including actin
stress fiber formation, adherens junction weak-
ening, and endothelial barrier dysfunction;

� mTOR inhibitors, such as Rapamycin (also
known as Sirolimus) and Torin1, which act as
inducers of autophagy.21

Intriguingly, all of the different compounds pro-
posed as non-invasive drug treatment approaches for
CCM disease may exert potential pleiotropic effects,
acting as either antioxidants or autophagy inducers
or both. Indeed, whereas there is evidence that the
Rho GTPase pathway can be directly activated by
ROS,52 both statins and fasudil are known to exert
powerful antioxidant activities in endothelial cells,
including the inhibition of superoxide production
and the improvement of both ROS scavenging and
NO bioavailability.53-55 Moreover, it has been demon-
strated that both sulindac sulfone and sulindac sul-
fide display a powerful ROS scavenging activity,
whose potency resulted even higher than that of
endogenous antioxidants such as reduced glutathione
(GSH).56 Furthermore, it is well established that
autophagy inducers limit ROS accumulation and oxi-
dative stress by stimulating the autophagic degrada-
tion of ROS-generating mitochondria.57

On the other hand, there is compelling evidence
that most, if not all, of the potential therapeutic com-
pounds listed above have been also shown to trigger
autophagy by inhibiting the mTOR pathway, includ-
ing statins,58,59 fasudil,60 sulindac derivatives,61,62 vita-
min D3,63-65 and established antioxidant compounds,
such as resveratrol.66

Taken together with these observations, our recent
finding that defective autophagy plays a pivotal role in
CCM disease pathogenesis 21 points to autophagy as a
major unifying mechanism that accommodates the
different molecular pathways and potential therapeu-
tic compounds described so far, thus providing a novel
framework for the development of new pharmacologi-
cal strategies based on repurposed drugs and com-
bined therapies for more effective prevention and
treatment of the most severe forms of CCM disease.

Conclusions and future perspectives

Intense investigation over the past two decades has
led to the identification and characterization of 3
genes associated with CCM disease, showing that
their loss-of-function mutations affect multiple
important molecular mechanisms and signaling path-
ways, leading to a variety of disease phenotypes, sug-
gesting potentially pleiotropic effects. It was then
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legitimate to ask the question as to whether, despite
the many kinds of molecules and signaling pathways
involved, there may be at least some unifying mecha-
nisms underlying CCM disease pathogenesis. Taken
together, our previous and recent findings confirmed
that indeed a unifying mechanism might exist, con-
sisting in the interplay between defective autophagy
and redox imbalance, which might be integral to the
development and progression of CCM lesions by sen-
sitizing endothelial cells to local oxidative stress
events (Fig. 1). Indeed, whereas our previously accu-
mulated data pointed to a major role for altered
redox signaling and enhanced cell sensitivity to oxi-
dative stress in CCM disease pathogenesis,4,12,13,35

our recent findings demonstrated that defective
autophagy is also involved and plays a pivotal role,21

suggesting that a combined therapy approach based
on both antioxidants and autophagy inducers might
represent a novel option for the pharmacological
treatment of CCM disease.

Further studies aimed at better characterizing the
fine-tuned interplay between autophagy and oxidative
stress in CCM disease pathogenesis might provide
additional therapeutic options for preventing and
reversing adverse clinical outcomes of CCM lesions.

In addition, the identification of putative genetic
susceptibility factors that might influence the clinical
severity of CCM disease, including single nucleotide
polymorphisms (SNPs) in genes linked to autophagy
modulation and interindividual variability in suscepti-
bility to oxidative stress,4,67 should provide useful
insights into the development of novel targeted strate-
gies for personalized medicine approaches tailored to
high-risk individuals.
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