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Abstract

Cellular senescence, a state of irreversible cell cycle arrest, is thought to help protect an organism from cancer, yet also
contributes to ageing. The changes which occur in senescence are controlled by networks of multiple signalling and
feedback pathways at the cellular level, and the interplay between these is difficult to predict and understand. To unravel
the intrinsic challenges of understanding such a highly networked system, we have taken a systems biology approach to
cellular senescence. We report a detailed analysis of senescence signalling via DNA damage, insulin-TOR, FoxO3a
transcription factors, oxidative stress response, mitochondrial regulation and mitophagy. We show in silico and in vitro that
inhibition of reactive oxygen species can prevent loss of mitochondrial membrane potential, whilst inhibition of mTOR
shows a partial rescue of mitochondrial mass changes during establishment of senescence. Dual inhibition of ROS and
mTOR in vitro confirmed computational model predictions that it was possible to further reduce senescence-induced
mitochondrial dysfunction and DNA double-strand breaks. However, these interventions were unable to abrogate the
senescence-induced mitochondrial dysfunction completely, and we identified decreased mitochondrial fission as the
potential driving force for increased mitochondrial mass via prevention of mitophagy. Dynamic sensitivity analysis of the
model showed the network stabilised at a new late state of cellular senescence. This was characterised by poor network
sensitivity, high signalling noise, low cellular energy, high inflammation and permanent cell cycle arrest suggesting an
unsatisfactory outcome for treatments aiming to delay or reverse cellular senescence at late time points. Combinatorial
targeted interventions are therefore possible for intervening in the cellular pathway to senescence, but in the cases
identified here, are only capable of delaying senescence onset.
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Introduction

Cellular senescence, characterised by permanent cell cycle

arrest, plays an important but complex role both in ageing and

cancer. Like apoptosis, cell senescence is a cell-autonomous

tumour protection mechanism [1,2]. Senescent cells can persist

in tissues for long periods of time and at relatively high frequencies

[3–5]. They secrete bioactive peptides [6,7], generate and release

reactive oxygen species (ROS) [8,9], which can promote

tumourigenicity and metastasis in adjacent cells with disabled cell

cycle checkpoints [10,11]. The same mechanisms generate DNA

damage, enhanced ROS production and senescence in somatic

bystander cells [12,13]. Thus, senescent cells may contribute to

loss of tissue homeostasis with ageing. It has been shown that

targeted ablation of senescent cells significantly delayed age-

associated loss of function in multiple tissues in a progeria mouse

model [14]. Furthermore, suppression of pro-inflammatory and

pro-oxidant signals emanating from senescent cells while

maintaining cell cycle arrest (i.e. the cell-autonomous tumour

suppressor function of senescence) shows promise as a future anti-

ageing intervention in humans [15]. To deliver on this promise, an

improved understanding of the complex interactions between the

multiple dysfunctional cellular processes that govern senescence is

needed.

The most central of these processes involves accumulation of

DNA damage and increased levels of ROS [8]. ROS arise mainly

from mitochondrial activity, being generated as a by-product of

energy production [16], and ROS-induced damage affects

multiple cellular constituents and functions. Importantly, ROS

damage mitochondrial DNA (mtDNA) and so impair mitochon-

drial function [17,18]. In response to damage, numerous signalling

pathways are activated and these are often reinforced through

feedback loops [6,9,19]. Oxidative stress activates c-Jun N-

terminal kinase (JNK) [20], which is responsible for FoxO3a

translocation to the nucleus via phosphorylation [21,22]. This then

promotes transcription of the genes CDKN1A and CDKN1B,
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which control cell cycle arrest [21,23]. Nuclear FoxO3a also

expresses the genes LC3, Gabarapl1 and Atg12 [24,25] inducing

autophagy, a cellular recycling process which is negatively

controlled by the insulin/TOR signalling pathway [26]. Inhibition

of insulin signalling, particularly Akt activity, promotes transcrip-

tion of FoxO3a genes (Daf-16 in C. elegans) and extends lifespan

in worms [27,28]. Inhibition of TOR (by caloric restriction or

pharmacological intervention) and activation of AMPK (by

resveratrol or metformin treatment) increase autophagy by

regulating ULK1 [29–31]. AMPK, in cooperation with SIRT1,

increases transcription and modulation of FoxO3a and PGC-1a
[32–34], while PGC-1a was also found, in addition to the effects of

AMPK activation [35], to be controlled via mTORC1 [36,37].

Once activated, PGC-1a promotes mitochondrial biogenesis,

increasing total mitochondrial mass and mitochondrial membrane

potential (ym) [38]. This leads to an increase in cellular energy

production (as ATP), and possibly also to increased ROS

generation.

As may be seen from this brief summary of the interconnected

pathways associated with cellular senescence, there is a need not

only to draw together the various elements into an integrated

framework, but also to do so in a way that allows the quantitative

dynamics to be examined and eventually understood. This is a

challenge that necessitates a systems-biology approach. Although

individual actions and reactions within the network have been

established by targeted experiments, the dynamic properties of the

system as a whole are more complicated than can properly be

understood without the aid of mathematical modelling. In

particular, modelling is likely to prove essential for identifying

the consequences of more complex interventions than alterations

to single elements, and thus for exposing possible paths for novel

therapies against the many age-related conditions to which cellular

senescence contributes.

We describe here the development of a comprehensive

dynamical model of irradiation-induced cellular senescence. Using

this model, we studied ROS-mTOR-dependent mechanisms of

restoring mitochondrial phenotype and function. We first predict-

ed in silico and then verified in vitro that it is possible to improve

the functional health of mitochondria either by scavenging ROS

or inhibiting mTOR, as single interventions. The model next

enabled investigation in silico of multiple, simultaneous parameter

perturbations, making it possible to probe in detail the ‘state space’

of the senescent phenotype. From this we identified two possible

interventions which should improve the cellular state. The first was

the use of combined inhibition of ROS and mTOR. We tested this

in vitro and confirmed that the dual inhibition resulted in

improved mitochondrial status and reduced DNA damage. The

second was the use of combined activation of AMPK and

mitophagy. Again, this improved cellular function and identified

the cellular control of energy status and turnover as being integral

to controlling the induction (or avoidance) of senescence. Whilst

combined interventions improved mitochondrial function, none

were able to restore it to a pre-senescent state. Using sensitivity

analysis, we identified that mitochondrial autophagy (mitophagy)

affected new mitochondria but not old mitochondria, suggesting a

decrease in mitochondrial fission over time. The impairment in

mitochondrial turnover in combination with increased mTORC1-

dependent mitochondrial biogenesis provides a theoretical expla-

nation for the global mitochondrial mass increase in senescence.

Measures of mitochondrial fusion and fission validated this finding

in senescent cells. Interestingly, in all interventions, we also

detected a gradual loss in treatment effectiveness at late time

points: after 18 days post-senescence induction, all interventions

became largely ineffective. We explored this finding using dynamic

sensitivity analysis, and obtained novel evidence for the existence

of a stable late-senescence state, characterised by poor sensitivity

and high variability across the network. This points to cellular

senescence being a locked, dysfunctional state which presumably

exists to protect the organism against the risk that might otherwise

be posed by continued proliferation of a badly damaged cell.

Results

Development of a dynamic model for cellular senescence
The model presented in Figure 1A integrated five key regulators

of cellular ageing: insulin-TOR, FoxO3a, DNA damage response

(DDR), ROS, and mitochondrial function. The insulin and

insulin-like growth factor 1 (IIS)-TOR network was abstracted

[from 39,40] in order to represent as simply as possible (consistent

with capturing the functional essence) the dynamics of Akt,

mammalian TOR Complex I (mTORC1) and the mTORC1-

p70-S6K-induced negative feedback loop. The mammalian TOR

Complex II (mTORC2) was not included explicitly but is

represented in its contribution to Akt-pS473, which is a readout

for both the mTORC1-p70-S6K-negative feedback and insulin-

mTORC2 activity, independent of the negative feedback loop

[39]. For FoxO3a, we modelled the main processes of synthesis

governed by an activated DNA damage response (via ATM

interactions), translocation from the nucleus to the cytoplasm,

subsequent ubiquitination as regulated by Akt, and an opposing

translocation regulated by JNK activity [21,22]. The dynamics of

Akt-pT308 and Akt-pS473 overlap, and by selecting Akt-pS473

we could model both the Akt-pS473-dependent regulation of

FoxO3a and the Akt-pT308-dependent activation of mTORC1 in

one step. Cell cycle arrest was followed in the model via the cell

division kinase inhibitors 1A (CDKN1A, also known as p21) and

1B (CDKN1B, also known as p27), whose levels were regulated

negatively via Akt [41] and positively via the transcriptional

activity of FoxO3A and DNA damage/p53. The nutrient (amino

acid)–dependent regulation of mTORC1 was also included along

Author Summary

Ageing is characterised by a gradual loss of homeostasis
within organs, which is known to be driven by the
accumulation of senescent cells. Cellular senescence helps
prevent cells from becoming cancerous, but their detri-
mental effect on organ function becomes debilitating
once they accumulate. These cells are particularly difficult
for the body to remove, and therefore understanding what
controls their survival and interactions within the organ is
important to combat age-related disease. We present a
mathematical model for cellular senescence. This model is
used for predicting drug interventions for restoring
function in cellular senescence. Whilst these interventions
were predicted and tested in vitro, showing improved
function and phenotype, none was able to restore cells to
a pre-senescent state. Our model includes mitochondria,
the power-plants of the cell, and we identify impairment of
their turnover coupled with increased mitochondrial
biogenesis as a mechanism which explained the long-
term failure in drug intervention. Finally, we predict that
the system dynamics stabilise in a new late-senescence
state, characterised by limited network response to
treatment and increased system vulnerability. This study
shows formally for the first time the dynamics of cellular
senescence as a system network and proves the require-
ment of early intervention in order to delay cellular
senescence.
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with the energy-dependent regulation of AMPK via mitochondrial

function. mTORC1 was inhibited by AMPK indirectly via TSC2

phosphorylation [42] and directly via Raptor phosphorylation

[43]. mTORC1 and AMPK independently triggered mitochon-

drial biogenesis via PGC-1a [35,36]. In conjunction with FoxO3a

activation, AMPK was implemented to induce mitophagy [25].

Mitochondrial mass and function play important roles in cell

senescence: driven by signalling downstream of CDKN1A [9,17]

and mTOR [44], mitochondrial mass per cell increases in

senescence. This is associated with decreased mitochondrial

membrane potential, ym, and increased production of ROS,

together indicating mitochondrial dysfunction in senescence [17].

Increased ROS generate more DNA damage, driving a positive

feedback loop by maintaining activation of CDKN1A [9]. To

quantitatively model this, we added a mitochondrial module which

describes the mitochondrial population in a cell as two subpop-

ulations, ‘new’ and ‘old’. Biogenesis only generates ‘new’

mitochondria, which then develop (or degenerate) to ‘old’

mitochondria with the rate of conversion dependent on

CDKN1A. ‘New’ mitochondria are different from ‘old’ in terms

of amounts in the cell, membrane potential (and thus propensity

for ATP generation), ROS production and probability for

mitophagy. Under basal conditions, there are essentially only

new mitochondria in a cell. Total mitomass and membrane

potential are the sum of both subpopulations.

Finally, ROS were represented as inducing DNA damage and

activating JNK and mTORC1 (via ATM to TSC2 and/or IKK-b
to TSC1). In conjunction with mitophagy, ROS drove accumu-

lation of lipofuscin [45] and therefore an increase in senescence-

associated b-galactosidase (SA-b-gal).

Time-course analysis upon irradiation-induced
senescence

In vitro data collection. To calibrate the model, MRC5

fibroblasts were treated with X-ray irradiation (20 Gy), which

results in an irreversible cell cycle arrest and eventual acquisition

of a senescence phenotype [46]. In vitro experimental time course

data were collected up to 21 days after X-ray irradiation and

analysed by western blot for protein levels and phosphorylation

(Figure 1B). Immunofluorescence co-localisation of LC3 and

CoxIV were used to determine a time course for mitochondrial

degradation via mitophagy (representative images in Figure 1C).

Pink1 western blotting (Figure 1D), plus controls treated with

Bafilomycin A followed by live cell microscopy measuring

colocalization of mitochondrially targeted RFP with lysosomal

GFP (Figure S1) were used to further validate quantified data on

LC3-CoxIV co-localisation (Figure 1E). We also detected PGC-1a
(Figure 1D), which reported a consistent correlation with mTOR-

pS2448, in agreement with previously published data showing

mTORC1-dependent PGC-1a activation [36,37]. Therefore, we

condensed PGC-1a-dependent mitochondrial biogenesis regula-

tion into mTOR-pS2448-dependent signalling to reduce the

model complexity. DNA damage levels were determined by

cH2A.X immunofluorescence (Figure 1E). Live cell microscopy

was used for detecting mitochondrial mass and ym, and flow

cytometry for ROS levels. As an additional control, mitochondrial

mass was also detected and confirmed using flow cytometry

(Figure S2). Data for SA-b-gal were taken from previously

published data [9]. Finally, since our cell viability data were

constant along the time course (Figure S3), we decided to omit an

apoptosis module in the model. A table containing the complete

quantitative data set used to estimate the model parameters is

provided in Table S1.

In vitro and in silico time-course analysis. These 14

readouts were used to estimate and identify the parameters of the

model introduced in Figure 1A (see Materials and Methods,

Tables S2, S3, S4 and Figures S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14, S15, S16, S17, S18). The model simulation versus

in vitro quantification data upon X-ray irradiation is shown in

Figure 1E. Following irradiation, in vitro and in silico data showed

a dramatic increase in DNA damage foci followed by persistent

oxidative stress and inflammatory responses (ROS, JNK-pT183

and SA-b-gal) and consolidated cell cycle arrest as shown by

increased CDKN1A and CDKN1B levels as well as reduced Akt-

pS473 phosphorylation. Interestingly, mTOR-pS2448 levels

increased upon irradiation until days 7–10 and decreased

thereafter. Consistent with mTOR-pS2448 activation, new

mitochondria were created by mitochondrial biogenesis (mito-

chondrial mass). The mitochondrial ym showed a gradual

decrease from day 5, indicating that the mitochondrial mass from

day 7 until 21 represented mitochondrial networks of low ym.

This decrease in mitochondrial ym was responsible for the

decrease in energy levels (increase in AMP/ATP ratio level) as

shown by AMPK-pT172 activation. Mitophagy levels also

remained low in the first 10 days and then increased, consistent

with AMPK-pT172 levels and inversely with mTOR-pS2448

activity. FoxO3a-pS253 and total FoxO3a levels remained

generally stable along the time course, highlighting that

CDKN1A/B and mitophagy responses were governed more by

DNA damage and AMPK, respectively, than by FoxO3a.

Model prediction. The distinction of the internal mitochon-

drial states, new and old, allowed us to predict three essential

features for the two sub-populations of mitochondria: mass, ym

and turnover (Figure 1F). The population of new functional

mitochondria was characterised by a reduced mass and a high

ym. In contrast, the population of old dysfunctional mitochondria

showed an elevated mass and a low ym. The total mitochondrial

mass, associated to the in vitro observed mitochondrial

mass (Figure 1E), was determined predominantly by the old

Figure 1. A dynamic model for cellular senescence. (A) Graphical model integrating the insulin-TOR (IIS-TOR) signalling pathway (left), the DDR-
oxidative stress responses (top-right) and mitochondria (centre). The insulin-TOR signalling pathway regulated the anabolic process of mitochondrial
biogenesis, FoxO3a translocation to the cytoplasm followed by ubiquitination, and inhibition of cell cycle arrest (black reactions). AMPK signalling
promoted the catabolic pathway of mitophagy, but was also modelled to promote mitochondrial biogenesis (magenta reactions). Mitochondrial
membrane potential (ym) increased cellular energy levels (red reactions) deregulating AMPK, and enhanced intracellular ROS (blue reactions). DNA
damage and ROS triggered a stress response and consolidated cell cycle arrest. (B) Representative western blot data used for calibrating the model.
(C) Representative imaging data used for measuring co-localisation between mitochondria (COXIV) and lysosomes (LC3) at day 0 and 12. These data
were used for creating a time course for mitophagy activation as indicated in panel E.(D) Additional controls for mitophagy data using Pink 1 and
mitochondrial biogenesis using PGC-1a indicating correlation between mTOR-pS2448 and PGC-1a. (E) In silico versus in vitro time courses. The model
(red lines) was calibrated over experimental time course data (blue points) collected for 14 readouts in the network up to 21 days. The inputs are
amino acids/insulin (constant inputs) and irradiation (pulse input of 5 min which simulates 20 Gy X ray irradiation over 5 min). Experimental time
points (blue points) are mean +/21 standard deviation collected from 5 independent repetitions. N = number of data points used for fitting each
readout time course. The goodness-of-fit statistical measures x2 [61] and AIC [68] for this model are 70.4278 and 381.838, respectively. (F) Simulated
time-courses of the internal states for mitochondrial mass, ym and turnover.
doi:10.1371/journal.pcbi.1003728.g001
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sub-population (Figure 1F), whereas the total mitochondrial ym

(Figure 1E), was largely due to the new sub-population (Fig-

ure 1F). Throughout the time course, the model predicted a

gradual decrease in mitochondrial turnover, indicating an inability

to correctly eliminate old dysfunctional mitochondria over time.

The next step was to use our dynamic mTOR-mitochondria-ROS

model to predict in silico, and then test in vitro, modalities for

restoring mitochondrial function in cellular senescence.

ROS inhibition enhanced mitochondrial membrane
potential

Background. As ROS is a central driver for mitochondria

dysfunction we gradually inhibited the variable ROS in the model

and analysed the effects on mitochondrial ym along the time

course. As the model species associated to ROS is produced and

destroyed dynamically, we inhibited the ROS species continuous-

ly. To achieve this, we created a simulated ROS inhibitor able to

reduce ROS levels by up to 90% of the control level along the time

course (Figure S19A). Gradual levels of inhibition from 0%

(control) to 90% were also simulated.

Model prediction. Upon ROS inhibition the model predict-

ed an increase in the total mitochondrial ym after three days post-

irradiation. Interestingly, this increase was explained by the model

as being dependent on the new mitochondria population

(Figure 2A). Despite the ym increase, the model also predicted

that only high levels of ROS inhibition (.70%) were able to

maintain high levels of mitochondrial ym at later time points (.9

days). In contrast, milder levels of inhibition gradually lost their

effectiveness over time. This suggested that ROS inhibition (Figure

S19) could increase the mitochondrial ym but was not sufficient to

restore mitochondrial function, which was gradually overwhelmed

with time.

In vitro testing. These predictions were experimentally

tested in vitro by treating cells with exogenous ROS-scavenging

enzymes superoxide dismutase and catalase (SOD and CAT)

throughout the time course. This treatment had the effect of

decreasing cellular superoxide production throughout the time-

course (Figure S20A). By measuring ym (via TMRM/MTG ratio)

at days 15, 18 and 21 post-irradiation we observed a significant

increase in treated cells (Figure 2B and 2C). By matching in silico
to in vitro data, an increase in the TMRM/MTG ratio of 25–40%

was found to correspond to ROS-inhibition of 15–30% in the

model, confirming the model prediction that ROS levels impinge

upon mitochondrial membrane potential. Furthermore, as pre-

dicted by the model, differences in ym between SOD/CAT-

treated and control cells became smaller with time (Figure 2B)

despite non-diminishing efficiency of the treatment (Figure S20).

mTOR inhibition reduced mitochondrial mass
Background. TOR plays a crucial role in the regulation of

autophagy [30,31], mitochondrial biogenesis [36] and Akt

feedback [47,48]. Hence, we studied the consequences of TOR

inhibition on mitochondrial mass over the time course. Perturba-

tion of mTORC1 alone produces undesired effects in the insulin/

TOR signalling pathway: it reduces mTORC1-p70-S6K-depen-

dent negative feedback to the insulin receptor substrate (IRS) and

therefore hyperactivates Akt [49,50]. A cleaner approach was to

perturb both mTOR complexes simultaneously by intervening

with TOR kinase directly. Although mTORC2 was not included

in the model, we could still approximate inhibition of TOR kinase

by reducing the protein levels for both mTORC1 and Akt at the

same time. Since no turnover was included for the species

mTORC1 and Akt, it was sufficient to decrease their initial

protein levels to model their inhibition. Using this approach, we

simulated a TOR-specific inhibition, similar to Torin1 treatment

[51].

Model prediction. Upon mTOR inhibition the model

predicted a decrease in total mitochondrial mass to be already

detectable after three days post-irradiation, due primarily to a

decrease in mass not only of the old mitochondrial population, but

also of the new population (Figure 3A). The model also predicted

that an inhibition of mTOR by more than 20% would be sufficient

to maintain low mitochondrial mass levels along the time course.

Since mitochondrial biogenesis affects the population of new

mitochondria, inhibition of mTOR by more than 40% was

predicted to be detrimental for this group, compromising healthy

cellular function. A safe margin of intervention was predicted to be

between 10–20% inhibition, which maintained a moderate and

stable population of new mitochondria, and limited the old

dysfunctional population.

In vitro testing. These predictions were tested experimen-

tally and confirmed in vitro by treating cells with Torin1 (Figure

S20B) and measuring mitochondrial mass (using mitotracker

green) at 15, 18 and 21 days post-irradiation (Figure 3B and 3C).

Although the reduction in total mitochondrial mass matched the

prediction until day 18, the later time point showed high variation

and no decrease of mitochondrial mass within the Torin1 treated

cells. Similar to the ROS scavenging intervention, the earliest time

points were most effective, displaying a gradual loss of treatment

efficacy. These data suggest that until days 15–18 the cellular state

change from normal to senescence remained partially transient

and additional cellular dysfunction was occurring at late time

points.

Combined ROS-mTOR inhibition synergistically increased
mitochondrial membrane potential

Background. In the previous sections, the effects of ROS or

mTOR inhibition were predicted and tested, showing that the

former increased mitochondrial ym whereas the latter decreased

mitochondrial mass. At this stage, we wished to investigate the

outcome of a combined ROS-mTOR treatment. The aim was to

detect possible non-linear synergistic effects which could further

increase mitochondrial ym and maintain a reduced population of

mitochondria at later time points.

Model prediction. In exploring the perturbation space, the

model confirmed ROS inhibition as an effective treatment for

increasing mitochondrial ym, but also showed that mTOR

inhibition could play a role, particularly when combined with

ROS inhibition (Figure 4A, mitochondrial membrane potential).

The model indicated that this change in ym was largely due to the

population of new mitochondria, suggesting that these treatments

were ineffective in restoring functionality in the old population

(Figure S21). Interestingly, the synergy of a ROS-mTOR

combined treatment further increased mitochondrial ym as

compared to single interventions (Figure 4A). Despite this, the

model also predicted a shift of treatment effectiveness over time for

low levels of inhibition, which suggested that the treatment doses

should be increased in order to maintain a constant level of

mitochondrial ym.

The next step was the analysis of mitochondrial mass. The

model predicted a reduction in mitochondrial mass due predom-

inantly to mTOR inhibition, whereas ROS was not predicted to

be a major contributor (Figure 4A, mitochondrial mass). A weak

synergistic effect of ROS-mTOR combined intervention was

detected at day 21 although this did not show a significant

improvement when compared to a single mTOR inhibition.

Interestingly, at this time point the model predicted a clear

increase in mitochondrial mass upon ROS inhibition. In contrast

Cellular Signalling in Stress-Induced Senescence
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to the mitochondrial ym, the model predicted that these

treatments affected the mitochondrial mass for the populations

of both new and old mitochondria (Figure S21).

Mitochondrial dysfunction and ROS production are intercon-

nected with nuclear DNA damage in a positive feedback loop [9].

Therefore, we also predicted and tested the effect of a combined

treatment on the DNA damage response. The model showed a

decrease in DNA damage foci upon ROS, mTOR or combined

ROS-mTOR inhibition as compared to the control along the time

course (Figure 4A, DNA damage). Despite this, a combined ROS-

mTOR inhibition was not predicted to further reduce the number

of DNA damage foci as compared to the other treatments unless

higher doses were applied. Finally, it indicated that any treatment

gradually lost effectiveness over time, as shown by a gradual shift

towards the top-right corner of the plots.

In vitro testing. We experimentally tested these predictions

and detected a significant increase in ym following a combined

ROS-mTOR treatment as compared to the other treatments or

control at day 12 post-irradiation. Although a synergistic effect was

found at 12 days, synergism was lost at later time points and none

of the treatments rescued the decrease of ym with time completely

(Figure 4B), in agreement with the shift in treatment effectiveness

predicted by the model. The in vitro tests also confirmed a gradual

decrease in ym for all applied treatments. In particular, the

equivalence of all treatments at day 21 suggested a gradual loss in

treatment sensitivity, in agreement with the above hypothesis that

cellular pathways were still developing progressive dysfunction.

See upper panel in Figure 4C for representative images of ym for

control and dual perturbation of cells at day 21. We experimen-

tally tested the model predictions for the mitochondrial mass using

a combined SOD+Cat+Torin1 treatment (Figure 4B). In agree-

ment with the model, the in vitro data indicated mTOR as a main

contributor for mitochondrial mass. In contrast to the model

prediction, in vitro tests also showed a reduction in mitochondrial

mass upon ROS inhibition at 12, 15 and 18 days post-irradiation,

but, in agreement with the model, an increase in mitochondrial

mass at day 21. This partial discrepancy between in silico and in
vitro data, or within the in vitro time-course data, highlights the

Figure 2. ROS inhibition increased mitochondrial membrane potential. (A) Simulated time-courses for mitochondrial membrane potential
(ym). Gradual ROS inhibition from 0% (black, control) to 90% predicted an increase in mitochondrial ym due to perturbation of the new
mitochondrial population. (B) The model prediction was confirmed by measuring mitochondrial membrane potential by live cell imaging and
quantifying the fluorescence intensities (n = 3). Exogenous addition of SOD and catalase significantly increased the average ym (Mann-Whitney test, *
P,0.05) in vitro. In silico inhibition of ROS levels also partially reactivated mitochondrial ym in a dose dependent manner, with between 15 and 30%
levels giving equivalent restoration of ym to the in vitro data. In vitro mitochondrial ym was determined in MRC5 cells 15, 18 and 21 days post IR
using live cell imaging of cells loaded with the mitochondrial ym dependent dye TMRM and non-potential dependent mitotracker green. (C) Example
images of data used in (B) for control cells (upper panel) and cells treated with SOD and catalase (100 U each) in the medium (lower panel) for 15 days
post IR, stained with the mitochondrial ym dependent dye TMRM, the non-potential dependent dye mitotracker green, and the nuclear counterstain
Hoechst 33342. Scale bar is 10 mm.
doi:10.1371/journal.pcbi.1003728.g002
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complexity of ROS signalling. We also tested the model

predictions for the DNA damage by counting cH2A.X DNA

damage foci for each treatment combination at day 0 (control),

and at 18 and 21 days post-irradiation (Figure 4B). In vitro tests

showed a reduction in number of damage foci for each treatment

up until day 18. However, no clear improvement was detected by

a combined mTOR-ROS inhibition. At day 21 none of the

treatments reduced DNA damage foci frequencies, in agreement

with the previously advanced hypothesis of sensitivity loss at late

time points (see lower panel in Figure 4C for representative images

of DNA damage foci for control and dual perturbation at day 18).

Finally, we determined the downstream effect of inhibition on the

appearance of the senescence marker, SA-b-gal. We found that

there was a slight decrease in positive cells at early time points with

all interventions, and a significant decrease for combined ROS-

mTOR intervention at days 3 and 6, also with a notable decrease

in intensity of staining. However, by day 11 there was no

difference in positive cells between any of the treatments (Figure

S22).

Modelling predicts increased mitochondrial membrane
potential following AMPK, FoxO3a or mitophagy-
activating treatments

Background. Since the previous inhibitions negatively affect

anabolic processes, we decided to test the effects on the network of

single and double over-activation for protein species regulating

catabolic signalling pathways. AMPK, FoxO3a and mitophagy are

of particular interest in cellular senescence. Since no turnover was

included for the species AMPK, it was sufficient to increase its

initial protein level to achieve its over-activation. The species

FoxO3a and mitophagy were dynamically produced and de-

stroyed, so their over-activation was achieved by perturbation

throughout the time course. We created two simulated activators,

one for FoxO3a and one for mitophagy, aimed at increasing

FoxO3a or mitophagy levels by up to 150% of the control levels

along the time course (Figure S19B). Gradual levels of inhibition

from 0% (control) to 150% over-activation were also simulated.

Model prediction. The model predicted that AMPK over-

activation would reduce mitochondrial biogenesis, ym and induce

Figure 3. mTOR inhibition decreased mitochondrial mass. (A) Simulated time-courses for mitochondrial mass. Gradual mTOR specific
inhibition from 0% (black, control) to 90% predicted a decrease in mitochondrial mass due to the perturbation of the population of old mitochondria.
(B) The model prediction was confirmed by measuring mitochondrial mass using mitotracker green and quantifying the fluorescence intensities
(n = 3). Exogenous addition of 10 nM Torin1 significantly decreased the average mass (Mann-Whitney test, * P,0.05) in vitro. In silico inhibition of
mTOR levels also partially decreased mitochondrial mass in a dose dependent manner, with between 15 and 30% levels giving equivalent restoration
of ym to the in vitro data. (C) Example images of data used in (B) for control cells (upper panel) and cells treated with Torin in the medium (lower
panel) for 15 days post IR, stained with the mitochondrial ym dependent dye TMRM, the non-potential dependent dye mitotracker green, and the
nuclear counterstain Hoechst 33342. Scale bar is 10 mm.
doi:10.1371/journal.pcbi.1003728.g003
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mitophagy (Figure 5A, AMPK Activation). Interestingly, the

model also showed that all of the model components involved in

the DDR-oxidative stress response were gradually inhibited

(Figure 5 and Figure S23). Similar predictions were also found

by over-activating either FoxO3a or mitophagy in the network.

After analysing the effects of single perturbations, we simulated

mitochondrial mass or ym following a double over-activation of

FoxO3a-AMPK, or mitophagy-AMPK at day 15 after-irradiation

(Figure 5B). Interestingly, we found a synergistic protective effect

of dual intervention (as shown in dark red), with lower

mitochondrial mass (due to a decrease of old mitochondria) and

maintained ym. This was not obvious from the outcomes of the

single perturbations. This area was mostly dependent on AMPK

and, importantly, there was a rescue of ym in association with a

low mitochondrial mass. In conclusion, these results were

consistent with the single and double inhibitions of ROS and

mTOR, and therefore suggested that alternative therapeutic

interventions were also possible and potentially effective.

Figure 4. Combined mTOR-ROS inhibition increased mitochondrial membrane potential. (A) Model predictions were obtained by
plotting the intensity for each readout (membrane potential (ym), mitochondrial mass and DNA damage, respectively) with inhibition of mTOR (x
axis) and ROS (y axis). The control (no inhibition) is represented as the point (0, 0). Prediction data are shown at days 12, 15, 18 and 21 post-irradiation.
(B) In vitro ym, mitochondrial mass and DNA damage foci number upon inhibition of ROS, TOR or combined TOR-ROS at days 12, 15, 18 and 21, or 18
and 21 (for DNA damage foci). Cells were treated with 10 nM Torin1 (TOR inhibitor), or Torin1 with SOD and catalase (100 U each) (n = 3, ANOVA with
Dunn’s post-hoc test, * P,0.05 within time points). (C) Example images of data used in (B) for control cells (left panels) and cells treated with Torin1,
SOD and catalase in the medium (right panel) stained for ym and mitochondrial mass at day 21 (above panel) or for DNA damage foci at day 18
(lower panel).
doi:10.1371/journal.pcbi.1003728.g004
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Mitochondrial dysfunction is maintained by decreased
mitochondrial dynamics

Background. All interventions that we have tried within the

context of our model have been shown to alleviate some of the

symptoms of senescence, but none have been able to restore the

mitochondria in senescent cells to a pre-senescent state. Therefore

we performed a sensitivity analysis averaged over the time course

to identify the essential reactions that, according to the model,

determine mitochondrial parameters.

Model prediction. Using sensitivity analysis averaged over

the time course, we therefore investigated the role that each

mitochondrial-related kinetic rate constant played upon the

mitochondrial species within the model (Figure 6A). The two

most important reactions determining mitochondrial mass and

membrane potential were mTORC1-dependent mitochondrial

biogenesis and mitophagy of new mitochondria. AMPK-driven

biogenesis played a very minor role (kinetic rate constant k34). To

our surprise, the model predicted that variable mitophagy of old

mitochondria (rate constant k36) would essentially have no effect

on mass and membrane potential of either young or old

mitochondria. Finally, mitochondrial dysfunction (kinetic rate

constant k37), describing the rate of conversion of young into old

mitochondria driven by CDKN1A-p38-TGF-b signalling, only

affected the new mitochondria mass species, with concomitant

effects upon mitochondrial membrane potential (species 618 and

621).

We next investigated the time courses of these species by

varying the above kinetic rate constants by factors ranging from

Figure 5. AMPK, FoxO3a, or Mitophagy simulated activations consistently improve mitochondrial function. (A) Model single
perturbation of AMPK, FoxO3a, or mitophagy from 0% (control, black) to 150% gradual over-activation. (B) Model double perturbations were
obtained by plotting the intensity for each readout (left, mitochondrial mass and on the right, membrane potential (ym)) with over-activation of
AMPK (x axis) and FoxO3a (y axis) (above), or AMPK (x axis) and mitophagy (y axis) (below). The control (no over-activation) is represented as the point
(0, 0). Prediction data are shown at 15 days post-irradiation.
doi:10.1371/journal.pcbi.1003728.g005

Cellular Signalling in Stress-Induced Senescence

PLOS Computational Biology | www.ploscompbiol.org 9 August 2014 | Volume 10 | Issue 8 | e1003728



Cellular Signalling in Stress-Induced Senescence

PLOS Computational Biology | www.ploscompbiol.org 10 August 2014 | Volume 10 | Issue 8 | e1003728



f = 0.5 to f = 1.5. These results confirmed the sensitivity of new

mitochondrial mass upon mTORC1-dependent mitochondrial

biogenesis, mitophagy and (to a lesser degree) mitochondrial

dysfunction (Figure 6B, solid lines). Additionally, this analysis

showed that changes in these kinetic rate constants affected the

new mitochondria population only at the early time points (first

row, time ,10 days), whereas changes in kinetic rate constants k33

(mTORC1 driven biogenesis) and k35 (mitophagy of new

mitochondria) affected the old mitochondrial population through-

out the time course. Interestingly, the kinetic analysis confirmed

that the increase in mass of old mitochondria was almost

exclusively driven by reactions (mTORC1 driven biogenesis and

mitophagy) acting only on the new mitochondria, but not by

mitophagy of old mitochondria themselves (Figure 6B).

We tested whether this surprising prediction could have been

precipitated by an artificial constraint in the model. In the original

model, mitophagy of old mitochondria was limited to be smaller

than that of new mitochondria to mimic the requirement for

mitochondrial fission (Table S2). However, the parameter

estimation without that constraint achieved the same result as

before (i.e. the value for mitophagy of old mitochondria remained

much smaller than that for new mitochondria). Hence, we left that

constraint in the model to minimise the computation time of the

parameter estimation.

In conclusion, sensitivity analysis predicted that the accumula-

tion of dysfunctional mitochondria in senescence would be caused

by the combination of an initial hyperactive mTORC1-dependent

mitochondrial biogenesis followed by impaired turnover of the

mitochondrial population. While more new mitochondria would

be generated, mitophagy of new mitochondria would be insuffi-

cient to degrade them before they degenerate into old mitochon-

dria, for which mitophagy would be even less efficient, resulting in

accumulation of old, dysfunctional mitochondria. Since mitophagy

was functional in our system throughout the time course

(Figures 1C, 1E, and S1), we were led to the hypothesis that the

turnover inefficiency for the old population was due to a decrease

in mitochondria fission events.

In vitro testing. Mitochondrial fission events are a pre-

requisite for mitophagy. The predicted insufficiency of mitophagy

might thus be related to low fission (and fusion) activity in

senescent cells. To test this hypothesis, we transduced young and

senescent MRC5 fibroblasts with a mitochondrially targeted

fluorescent protein and followed the mitochondrial network

movement over time. We detected a statistically significant

decrease in the number of both fusion and fission events in

senescent cells (Figure 6C and 6D) concomitant with decreased

mitochondrial movement (Movie S1). Therefore, decreased

mitochondrial dynamics may explain preferential targeting of

young mitochondria to mitophagy as well as increased mitochon-

drial mass in senescence, the latter by decreasing the available pool

of small mitochondria for mitophagy.

Complications in treating late senescence: a network-
wide perspective

Background. The previous sections indicated that therapeu-

tic treatments aiming to reduce ROS, mTOR or combined ROS-

mTOR levels could improve mitochondrial function and pheno-

type, although these treatments lost effectiveness at late time

points.

Model prediction. By splitting the total mitochondrial

population into new functional and old dysfunctional mitochon-

dria in the model, we predicted that the treatments mainly acted

on the former mitochondrial sub-population. This suggested that

the applied inhibitions could delay the senescence process but not

reverse it, as eventually the mitochondrial population became

dysfunctional. To investigate this hypothesis, we computed a

dynamical sensitivity analysis for the model, to study the dynamics

of the relationships between parameters in the whole model. To do

so, we computed the sensitivities of the model species upon

perturbing the model kinetic rate constant parameters at days 1,

10 and 20 post-irradiation (Figure 7). This aimed to identify which

of the species/modules within the network were still responsive at

later time points by investigating changes in sensitivity over time.

At day 1 post-irradiation (Figure 7, early senescence panel), the

IIS-TOR signalling pathway species, and in particular mitophagy,

showed effective sensitivity to both its internal kinetic rate

constants and mitochondrial dynamics. The DDR-ROS signalling

response was still low-moderate and the predominant signals

derived from mitochondria were still driven by the new

population. Mitochondrial species within the model were sensitive

to the IIS-TOR and mitochondrial kinetic rate constants.

Interestingly, the mitochondrial dynamics showed that mitochon-

drial biogenesis by mTORC1 (parameter k33) also promoted

mitochondrial dysfunction (species Mito-mass-old). Mitochondrial

kinetic rate constants affected ROS production and IIS-TOR-

AMPK pathways by affecting cellular energy levels (species

AMPK-pT172). Cell cycle arrest programs, shown by the species

CDKN1A and CDKN1B, were already started at day 1, being

mostly dependent on irradiation-induced DNA damage (param-

eter k19).

At day 10 post-irradiation (Figure 7, mid-senescence panel), the

DDR-ROS stress responses and mitochondrial dysfunction were

highly active. The DDR-ROS stress response species were affected

by almost all the model kinetic rate constants indicating that the

Figure 6. Mitochondrial dysfunction is driven by decreased mitochondrial dynamics. (A) Sensitivity analysis averaged along the time
course for the mitochondrial species in the model by varying the mitochondrial-related kinetic rate constant parameters. Mitochondrial biogenesis
was determined by mTORC1 signalling (k33) but not by AMPK (k34). Clearance of old mitochondria (k36) was not as effective as for new mitochondria
(k35). This reduced mitochondrial quality control for the old mitochondrial population implicated an increased and sustained global mitochondrial
dysfunction. Scale bar represents the normalised positive or negative sensitivity of each species to each rate constant. (B) In silico time courses over
21 days post-irradiation for the two states of mitochondrial mass (new and old) were computed by separately perturbing the previous kinetic rates by
different factors f (f = 1 is the control). These perturbations affected the new mitochondria only at early time points (,10 days), whereas the old
mitochondria were affected throughout the time course. Consistent with panel A, the perturbation of the parameters k34 and k36 (dotted lines) did
not alter the mitochondrial mass readouts and are therefore overlapped. (C) Representative live cell images of mitochondrial networks in young
(control) and senescent (sen) MRC5 fibroblasts. Mitochondrial networks were detected in deconvolved 3D confocal images using mitochondrially
targeted fluorescent protein. Individual parts of the cell mitochondrial population are identified using colour coding. Whole frame images are shown
in the upper panel, and the boxes highlight the areas (18.2 mm2) analysed for fusion and fission events over 30 minutes. Example images from these
areas over 140 s are shown below with the detected fusion and fission events highlighted with white and yellow arrows respectively. A timelapse
movie containing the full dataset from a control and senescent cell are available in Movie S1. (D) Quantification of observed fusion and fission events
in 18.2 mm2 areas from control and senescent cells. Events were recorded every 20 s over 30 minutes for each cell and expressed per minute and
relative to the mitochondrial mass in the area observed. Significant decreases were seen for both fusion and fission in senescent cells (Mann-Whitney,
p,0.001, n = 6 cells per sample with between 90–180 events recorded).
doi:10.1371/journal.pcbi.1003728.g006
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Figure 7. Dynamic sensitivity analysis. Sensitivity analysis at 1, 10 and 20 days post-irradiation indicated three states of cellular senescence: early,
middle and late senescence. Sensitivity analysis was computed for the model species (y axis) upon perturbation of the kinetic rate constant
parameters (x axis). The parameters k1–k11 are involved in the IIS-TOR signalling sub-network, whereas the groups of parameters k12–k32 and k33–
k41 regulate the DDR-ROS signalling response and mitochondrial dynamics, respectively. Model species sensitivities changed over time, highlighting
a dysfunction for mitophagy and mitochondria, and DDR-ROS stress-response at the later time points. These dysregulations consolidated over time
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overall network was sustaining a stress signalling response. In

particular, mitochondrial kinetics predominantly fed a stress

response by increasing ROS production and strengthening cell

cycle arrest, whose control was now driven by mitochondrial and

IIS-TOR signalling rather than by DDR-ROS rate constants. At

this stage, mitochondrial dysfunction (species Mito-mass-old) was

highly sensitive to the IIS-TOR signalling pathway dynamics,

positively by anabolic signals, such as Akt-mTORC1 (parameters

k1 and k7), and negatively by catabolic signals, such as AMPK-

FoxO3a (parameters k3 and k14) and mitophagy (parameter k9).

Interestingly, the overall sensitivity for the species mitophagy was

largely reduced, indicating a gradual loss in feedback response

from IIS-TOR and mitochondria. Conversely, mitophagy was

found to become increasingly regulated by DDR-ROS-dependent

kinetic rate constants. This gradual loss in sensitivity was also

found for the species representing the IIS-TOR signalling

pathway. These intermediate time-point results showed that the

network was highly dysregulated by severe mitochondrial

dysfunction, sustained DDR-ROS stress responses, and moderate

insensitivity of the IIS-TOR-mitophagy signalling pathway.

At day 20 post-irradiation (Figure 7, late senescence panel), the

network globally showed a decrease in sensitivity as compared to

the mid-senescence case. The species involved in the IIS-TOR

signalling pathway were only marginally affected by the overall

network dynamics, and in particular mitophagy was largely

insensitive. The DDR-ROS stress response and mitochondrial

dysfunction sensitivities were still sustained, although not as

markedly as before. Cell cycle arrest was preserved and

maintained by the kinetics of IIS-TOR, DDR-ROS and

mitochondria. In Figure 1E, both the in silico and in vitro time

courses suggested that the network was approaching stabilisation

after day 15. The sensitivity analysis described here validates this

observation of the stabilisation to a senescent phenotype. To

formally test the stability of this cellular senescence state, we

calculated the Lyapunov exponents of the model (which allowed us

to determine the network stability over time) and concluded that

the model was asymptotically Lyapunov stable, since the 19

computed Lyapunov exponents were all negative (Table 1). This

indicated that the variable levels eventually reach equilibrium.

Although this state of cellular senescence, that we term late

senescence, was dynamically stable, this did not mean that its

variance was low. In fact, the global decrease in sensitivity upon

kinetic rate constants indicated that the semantics of these model

parameters, e.g. promoter or inhibitor, became more uncertain.

As a consequence, this uncertainty increased system noise and

decreased network robustness, which, in the context of a cell,

translated into weak signalling regulations and therefore poor

intervention effectiveness. We tested this prediction by simulating

the model stochastically and observed an increase in variance

especially for the oxidative stress/DNA damage signalling and to a

lesser extent for the Mitophagy and mitochondrial mass species

(Figure S24). In agreement with these predictions, our experi-

mental data (Figures 1E, 2B, 3B and 4B) indicated an increase in

variance at late time points and a loss in intervention effectiveness

for ROS, mTOR or ROS-mTOR interventions at day 21. In

particular, we attributed this gradual loss in intervention

effectiveness to 1) gradual loss of mTOR-Akt sensitivity upon all

the kinetic rate constants in the network, and 2) persistent

dysfunction in mitophagy and mitochondria, ultimately largely

unaffected by ROS inhibition.

This network-wide exploration of the model dynamic sensitivity

explained why our interventions were only effective until late

senescence and then ultimately lost effectiveness. Hence, the

investigation of this cellular state of senescence showed intrinsic

difficulties in applying intervention to delay or reverse this state to

normal due to multiple severe dysfunctions within the network

concomitant with a global loss of network sensitivity.

Discussion

The medium to long term effect of stress-induced senescence

has previously been investigated with a focus on DNA damage-

activated p53 and cell cycle arrest [52], but not in any detail with

regard to other players implicated in cellular senescence. In this

work, we used a systems biology approach to build the first

detailed mathematical model to address cellular senescence. We

performed a temporal analysis of the changes that occur in stress

activated signalling, bioenergetic and cell cycle signalling, and

their effects upon one another over a three week time course of

irradiation-induced senescence. The data showed a complex

phenotype of changing behaviour over time for many parameters.

Of particular interest were the changes in mitochondrial mass,

activity and turnover, which directly affect energy production and

cause further stress and damage via ROS production. We

observed large changes in both mitochondrial mass and

membrane potential, neither of which were rescued by the modest

increase in mitophagy. Due to the complexity of these interacting

pathways, a model was designed to represent the dynamical

process of irradiation-induced cellular senescence. Although

inevitably somewhat abstracted, this model fitted our in vitro

data, suggesting that the network representation was a close

approximation to the biological system that we wanted to

investigate. Importantly, such a system enabled us to investigate

strategies of drug interventions that might reduce senescence

progression in the medium to long term. In silico predictions

indicated that mitochondrial ym and mass could be restored by

scavenging ROS or inhibiting mTOR. However, the model also

indicated loss of effectiveness of interventions at late time points. A

combination of the two treatments was shown to out-perform the

previous results, and to reduce DNA damage. In vitro tests

confirmed these predictions and also highlighted an increase in

variance at late time points. Finally, these simulated interventions

were further supported by predicting the network behaviour upon

over-activation of AMPK, FoxO3a or mitophagy, indicating the

central role of energy and turnover in inducing senescence.

Whilst the model does not specifically include fusion and fission,

the detailed modelling of the shift between freshly generated and

aged mitochondria allowed us to infer differences in fission rates in

senescence. Fusion and fission are tightly coupled, required for

mitophagy of mitochondria [53], essential for removal of damaged

mitochondria with reduced ym and may have deep evolutionary

origins connected with ageing [54]. Our measurements of fusion-

fission show a decrease in both processes in senescence, whilst

maintaining a tight coupling between them in terms of their

frequencies. Lower fission therefore explains the lack of mitophagy

increase, even though there is apparently a large increase in the

necessary proteins. A recent investigation into fusion and fission in

neurodegenerative disease models identified similar findings, with

reduced rates of fusion and fission [55]. In this study, the authors

also showed that mitochondrial motility was essential for fusion.

and ultimately attenuated the global sensitivity in the model. Scale bar represents the normalised positive or negative sensitivity of each species to
each rate constant.
doi:10.1371/journal.pcbi.1003728.g007

Cellular Signalling in Stress-Induced Senescence

PLOS Computational Biology | www.ploscompbiol.org 13 August 2014 | Volume 10 | Issue 8 | e1003728



Whilst not quantified, we observed a similar decrease in motility in

our senescence model, highlighting the overlap between neuronal

disease and cellular ageing. It is therefore possible that the

decreased fusion-fission in senescence is due to decreased

mitochondrial motility, a factor which is known to induce

mitochondrial diseases in some cases of familial Parkinson’s

disease [56]. Intracellular motility was not encapsulated in our

model, and therefore would be important to address in future

models investigating mitochondrial dysfunction.

Over the induced senescence time course, why were the

treatments effective only up until a late-senescence state? Which

were the signalling pathways involved in this dysfunction? What

was the nature of this cellular senescence late state? What was its

role? Could the dysregulation be reversed? To answer these

questions, we computed a dynamic sensitivity analysis and

detected a gradual loss in network sensitivity and, in particular,

a deficiency in the IIS-TOR signalling pathway and mitophagy

regulation at late time points. Although we proved the asymptotic

stability of this cellular senescence state, the overall poor sensitivity

in the network also predicted two negative consequences: the

detected loss in treatment efficacy and increase in network

variance. The former indicated that the further the system went

into late-senescence, the more combinatorial treatments were

required to alleviate the phenotype due to the multiple cellular

dysfunctions that were apparent at later time points. The latter

implied that the network was less capable of responding to

signalling programs due to high variance within the system. In this

prediction, a cell in the late-senescence state would not only be

intrinsically dysfunctional, but also more susceptible to external

insults, due to loss of effectiveness in the response mechanisms.

Aside from late senescence, the model also predicted the

mechanism underlying the transition from normal to early

senescence. Interestingly, it indicated that multiple factors, such

as DNA damage, increased ROS production and gradual

mitochondrial dysfunction, are all likely to be playing a role in

this transition. These players would mutually re-enforce their

activation in the signalling network. In the specific case of

irradiation-induced senescence, this synergistic transition

would start from DNA damage production and loss of

mitochondrial function. Subsequently, in early-mid senescence

the cellular decision appears to reach a crossroad, with

anabolic signalling driving further damage and catabolic

signalling tending to suppress it. All of these events lead

eventually to a persistent cell cycle arrest and an initial drive of

mTOR-dependent mitochondrial biogenesis and autophagy

[57] in order to replace damaged mitochondria and restore

cellular energy levels. This over-activation of mitochondria in

combination with increased cellular stress activation promotes

the formation of dysfunctional mitochondria, over-riding

mitochondrial turnover by mitophagy, and accumulating

cellular damage. Hence, although mTOR represents an

essential player in this reinforcement loop, our data suggest

that other drivers, such as DDR and ROS, are also required in

irradiation-induced senescence.

Despite its power, the current model misses some components

that are likely to be important. Most significant of these is the

complexity of the inflammatory system as controlled by NF-kB,

TNF-a and TGF-b signalling pathways. This inflammatory

response is heavily abstracted in this model by JNK through

ROS regulation. The full inflammatory system has important

positive-feedback loops that may develop independently and may

therefore be responsible for permanent activation of JNK, and

contribute to ROS signalling stabilisation (Jurk et al., Nature

Comm., in press). Control of pro-inflammatory cytokine produc-

tion and activation of other members of the senescence associated

secretory phenotype would obviously impinge upon the pathway

to cellular senescence [58–60]. If added to a future version of this

model, these would allow a detailed investigation of the

development of senescence within a multi-cellular environment

where paracrine signals are operative. Finally, the mitochondrial

dynamics of fusion and fission were also abstracted, due to the

difficulty of representing their regulation in the network. Their role

in mitochondrial homeostasis would warrant inclusion in future

work. Nevertheless, the abstraction applied in this study was

sufficient for the conclusions provided, and represents, we believe,

a worthwhile advance.

In conclusion, the nature of the biological pathways driving

cellular senescence presents a challenge to gaining a sufficient

understanding in order to identify novel targeted therapies against

the many age-related diseases. A considerable contribution in

representing this highly networked biological system and eliciting

its properties is offered by mathematical modelling.

Using an integrative systems-biology approach, we determined

that multiple interventions for limiting the progression of

senescence, and therefore the impact on age-related diseases, are

possible: these include down-regulation of ROS and mTOR. Due

to the increase in cellular dysfunction over time, these interven-

tions should be applied at early stages and possibly integrated with

other interventions aimed at regenerating mitochondria and

mitophagy, and reducing inflammation.

Table 1. Model Lyapunov exponents.

Lyapunov Exponents

l1 20.0136218

l2 20.0052144

l3 20.0748144

l4 20.0660512

l5 20.154906

l6 20.175105

l7 20.352563

l8 20.403684

l9 20.44979

l10 20.947157

l11 21.10172

l12 21.96465

l13 23.41447

l14 25.19749

l15 234.4987

l16 257.6887

l17 21094.69

l18 22694.43

l19 25721.87

Sum 29617.50

Avg divergence 29616.65

The Lyapunov exponents computed for this model were all negative, indicating
that the model was asymptotically Lyapunov stable and therefore the
trajectories eventually converged to an equilibrium.
doi:10.1371/journal.pcbi.1003728.t001
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Materials and Methods

Mathematical model
The Ordinary Differential Equation (ODE) mathematical

model consists of 23 variables and 41 mass action reactions

covering 5 cellular modules: DNA-damage, oxidative stress, FoxO,

IIS-mTOR and mitochondria. There are 3 inputs: insulin, amino

acids and irradiation. The first two inputs were set as constants,

whereas the irradiation input was an impulse at time 0 for 5 min,

consistent with the in vitro cell treatment. The cells were not

starved by insulin or amino acids pre-irradiation to avoid cell

death upon irradiation, and this was modelled by assuming an

equal protein amount fixed at the basal level for both the

phosphorylated and dephosphorylated states across the IIS-TOR

signalling pathway. In pre-irradiated cells, the stress response

induced by DNA-damage and ROS was low but still present and

all the variables directly involved in these signalling pathways

(DNA-damage, ROS, JNK, SA-b-gal, IKK-b) were set to reflect

this initial basal level. In the model, the mitochondrial population

was split into discrete groups: new and old. For the initial state,

amounts for the new group (Mitochondrial-Mass-new, Mitochon-

drial-Membrane-Potential-new) were set to basal levels, whereas

amounts for the old group (Mitochondrial-Mass-old, Mitochon-

drial-Membrane-Potential-old) were assumed negligible as in

healthy cells, dysfunctional mitochondria are usually removed by

mitophagy. The model was linked to the in vitro data by 14

observables covering the entire network. Where the observable

provided a composite measure of states, such as nuclear/

cytoplasmic FoxO3a or the sub-populations of mitochondria, the

respective observable was linked to the sum of these states. Hence,

the observable FoxO3a-total was associated to the sum of nuclear

and cytoplasmic FoxO3a species, the observable Mitochondrial-

Mass was associated to the sum of Mitochondrial-Mass-new and –

old and the observable Mitochondrial-Membrane-Potential was

linked to the sum of Mitochondrial-Membrane-Potential-new and

–old. A legend of all the names (e.g. species, parameters,

observables, etc.) used in the model is provided in Table S2 and

a complete list of model ODEs is provided in Table S3.

Parameter estimation and identifiability
The Matlab Toolbox PottersWheel 3.0.12 [61] and the

PottersWheel identifiability toolbox MOTA [62] were used for

estimating the kinetic rate constants in 7 rounds of parameter

estimation and identifiability (Table S4). All parameters were fitted

within the interval [1e206, 1e+04]. The kinetic rate constants

determining the activation/inactivation for IKK-b were assumed

a priori due to lack of clear experimental data. IKK-b is not an

essential component of this model as it only represents an

intermediate step between ROS and mTORC1, but we opted to

include it as we wanted to make an explicit connection between

oxidative stress-inflammation [59] and inflammatory-dependent

mTORC1 activation [63]. The remaining 39 parameters were

calibrated using the optimisation algorithm TrustRegion (MaxIter:

150; TolFun: 1e206; TolX: 1e206) and Matlab integration

algorithm ode15s (AbsTol: 1e206; RelTol: 1e204; MaxNum-

Steps: 1500). For each round, 40 independent sequences of 500 fits

each were performed and combined to generate a total of 20,000

fits, which were used for analysis. All the sequences were always

computed using the best current fit as the initial assignment and

randomising it with disturbance strength of 0.4. This strategy

allowed us to explore the parameter space extensively and

additionally, to limit the number of non-convergent solutions.

To calculate the sequences, a cluster of 6 GNU/Linux computers

with a total of 60 cores was employed using the open source job

scheduler Openlava (http://www.openlava.org/). As the standard

deviation of the experimental time points was often large, a 10%

error model of observation was adopted for the task of parameter

estimation. This improved the approximation of the model to the

data. For each round, nonlinear MOTA identifiability analysis was

used for identifying tuples of related parameters by selecting the

best 30% fits from the total 20,000 fits. A parameter was

considered non-identifiable when the correlation coefficient (CC)

and the coefficient of variance (CV) for the tuple of its related

parameters were higher than 25% and 0.9, respectively. The

MOTA identifiability matrices and the respective correlation plots,

as calculated for each round, are reported in Figure S4, S5, S6, S7,

S8, S9, S10, S11, S12, S13, S14, S15, S16, S17. To assess the

contribution to parameter estimation variability a principal

component analysis was performed at each round. Interestingly,

this analysis highlighted that at least half of the parameters

estimated at each round did not affect the model variance (Figure

S18).

Modelling tasks
Copasi 4.8.35 [64] was used for simulations with perturbation of

model species. Simulations were run for protein inhibition at 10

levels from 0% (control) to 90% for mTORC1 (simulating

Rapamycin treatment), Akt-mTORC1 (simulating Torin treat-

ment) and ROS. Simulations were run for protein over-activation

at 10 levels from 0% (control) to 150% for AMPK, FoxO3a and

Mitophagy. For the species in which the sum of the two internal

activation/inactivation states was constant (e.g. mTORC1, Akt-

mTORC1 and AMPK), the protein amount was simply perturbed

at the beginning of the simulation. For species whose level varies

over the time-course (e.g. ROS, FoxO3a and Mitophagy), their

protein amount was constantly modified using a dummy species

introduced for each of the above species. Hence, these dummy

species simulated either an activator or an inhibitor. The kinetic

rate for this external perturbation was fixed, but, the amount for

these dummy species was determined such that the average

activation level for the perturbed protein species over the time

course was 10% (if inhibited) or 250% (over-activation) with

respect to the average activation level for the corresponding

unperturbed protein species (Figure S19). Deterministic simula-

tions were performed in Copasi using the deterministic algorithm

LSODA, configured with the following parameters: duration, 21;

interval size, 0.02; intervals, 1050; integrate reduced model, 0;

relative tolerance, 161026; absolute tolerance, 1610212; maxi-

mum internal steps, 10,000. Stochastic simulations were per-

formed in Copasi using the Direct Method (Gillespie), configured

with the following parameters: duration, 21; interval size, 0.01;

intervals, 2100; maximum internal steps, 100,000; use random

seed, 0; random seed, 1. Model 2D sensitivity analysis for model

species was computed at days 1, 10 and 20 by perturbing the

kinetic rate constant values. Double perturbation data were

computed using Copasi and Matlab by inhibiting or over-

activating the two parameters from 0% to 90% (inhibition) or

0% to 150% (over-activation) by steps of 0.15% and 0.25%

respectively. Lyapunov exponents for the reduced system were

computed in Copasi using the Wolf Method, configured with the

following parameters: number of exponents, 19; start averaging

after t, 21; orthonormalisation interval, 0.0001; overall time, 50;

relative tolerance, 161026; absolute tolerance, 1610210; maxi-

mum internal steps, 10,000. The divergence was calculated as the

average over the trace of the Jacobian as implemented in Copasi.

Model structure was graphically represented using CellDesigner

[65,66] and exported to SBML [67] Level 2 Version 4 using

Potterswheel (Model S1).
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Statistics
The programming language R (http://cran.r-project.org/) was

used for computing time course mean and standard deviation of 5

independent in vitro time-course measurements. Mean and

standard deviation values were then used for calibrating the

model observables. The goodness-of-fit statistical measures x2 [61]

and AIC [68] were used to assess the quality of fit of the model at

each calibration round. All these measures were directly computed

using the PottersWheel toolbox. R was selected for the graphic

representation of the identifiability matrix computed with MOTA

and single perturbation plots. For establishing the model

parameterisation, in vitro experiments were performed with

between 3 and 5 independent replicates. Intervention experiments

were performed in triplicate, except for SA-b-gal staining, which

was performed in duplicate. For data that were not normally

distributed, group means were compared using a Mann–Whitney

rank sum test. Multiple comparisons were performed by ANOVA

followed by Dunn’s test for comparison of individual subgroups.

All analyses were performed in Sigmaplot or R unless stated

otherwise. Data were tested for normality using Shapiro-Wilk

normality test. Significance is denoted on all graphs with * p,

0.05.

Antibodies
The full list of antibodies with their respective catalogue

numbers and the dilutions used for the respective staining (western

or immunofluorescence) is provided in Table S5.

Cell culture
MRC-5 human embryonic lung fibroblasts (obtained from

ECACC) were grown in Dulbecco’s Modified Eagle’s Medium

plus 10% fetal calf serum (BioSera, Ringmer, UK), 2 mM L-

glutamine, 16 penicillin/streptomycin at ambient oxygen partial

pressure, 5% CO2, 37uC in a humidified incubator (Binder

Instruments). All experiments utilised cells which were growing in

the logarithmic part of their growth curves. For irradiation, cells

were plated to give approximately 80% confluency just prior to

irradiation. 20 Gy X-irradiation was given to the cells using an X-

rad225 irradiator (Precision x-ray Inc., N.Branford, CT USA) to

induce senescence. Post irradiation, cells were immediately

supplied with fresh medium, and then fed three times a week

over the timecourse (with or without drugs/DMSO each time). 0

day timepoints were unirradiated and harvested 2 hours after

treating with their respective drugs if necessary. Antioxidant

treatment was performed with the addition of 100 IU SOD and

100 IU catalase to the medium as described previously [12].

mTOR inhibition was performed using Torin 1 (Tocris Biosci-

ence, Bristol) at 10 nM. Bafilomycin A treatment was performed

for 1 hour at 400 nM.

Western analysis
26105 cells were plated in 60 mm petri dishes (Corning) 1 day

prior to irradiation. Medium was removed and cells were washed

once with PBS before harvesting by scraping directly in SDS

loading buffer, transferred to screw cap microcentrifuge tubes,

boiled for 5 minutes, then stored at 220uC until required.

Samples were run on 10% SDS-PAGE gels (Biorad) before

transferring to PVDF (Biorad). Membrane washes and antibody

dilutions were performed using Tris-buffered saline with 0.1% (v/

v) Tween20 (TBST). All primary antibody incubations were

performed in TBST with 5% BSA, overnight at 4uC before

washing, applying HRP-conjugated secondary antibody (NEB) for

1 h at room temperature and subsequently detecting HRP activity

using Supersignal West Pico substrate (ThermoScientific, Cram-

lington, UK) with a LAS4000 imager (Fujifilm, Japan).

Immunofluorescence
2.56104 cells were plated on 16 mm Ø glass coverslips (#1.5) in

12 well plates (Corning) 1 day prior to irradiation. Medium was

removed and wells were washed once with PBS before adding

250 ml of pre-warmed 4% paraformaldehyde (PFA) and incubat-

ing at 37uC for 2 minutes. PFA was removed and wells were

washed 3 times with PBS. Cells were stored in 2 ml of PBS at 4uC
until required. For immunostaining, TBS was used for all washes,

and antibody incubations were performed using TBS plus 0.3%

(v/v) Triton X-100. All primary antibody incubations were

performed overnight at 4uC, with secondary detection using

AlexaFluor conjugated antibodies (Life technologies, Paisley, UK)

for 1 h at room temperature. Coverslips were mounted using

Prolong Gold with DAPI (Life technologies). Imaging was

performed using a spinning disk confocal head (CSU-X1,

Yokogawa, Japan) mounted on an Axiovert 200M equipped with

a 636 NA1.4 objective driven by Axiovision software (v4.8.1,

Zeiss, Cambridge, UK). Each position was captured as a z stack

and deconvolved using Huygens (v4.2, SVI, Netherlands).

Fluorescent intensities and cH2A.X foci counts were calculated

using ImageJ (v1.45j, http://rsb.info.nih.gov/ij/). Number of

colocalised objects in LC3- COXIV stained cells were determined

using Huygens Colocalisation analyser.

Live cell microscopy
Mitochondrial mass and ym were determined by fluorescence

microscopy using TMRM and Mitotracker Green as described

previously (Passos et al., 2010), analysing at least 100 cells per

treatment and time point. For following mitochondrial dynamics,

cells were transduced with baculovirus encoding mitochondrially

targeted red fluorescent protein following the manufacturer’s

protocol (Invitrogen). Single cell images were captured using a

Zeiss CellObsever spinning disk confocal equipped with a heated,

humidified stage (95% air, 5% CO2) using a 1006 1.4NA

objective (Zeiss) as a z stack encompassing the entire cell every 20 s

for 30 minutes. Images were then deconvolved with Huygens and

objects identified using the same parameters between cells with

Huygens Object Analyzer. For each cell, an 18.2 mm2 area was

then cropped out and the total mitochondrial volume of the object

identified time series were manually analysed over time for

numbers of fusion and fission events per time point (every 20 s).

Huygens was used to determine the total mass at each time point

in the cropped regions. Total fusion and total fission events per

minute were then summed every minute over the time course. To

measure mitophagy, cells were transduced with baculovirus

encoding mitochondrially targeted red fluorescent protein and

lysosomally targeted green fluorescent protein following the

manufacturer’s protocol (Invitrogen). Images were acquired and

processed as described for LC3-COXIV stained cells.

Flow cytometry
Flow cytometric measurements of mitochondrial mass and

superoxide measurements (using mitotracker green and DHE

respectively) were performed as described previously (Passos et al.,

2007), analysing 30,000 cells per treatment and time point.

Supporting Information

Figure S1 Measures of mitophagy during stress induced
senescence. (A) Cells were fixed at the indicated timepoint with

or without 1 hour pre treatment with 400 nM Bafilomycin A, and

Cellular Signalling in Stress-Induced Senescence

PLOS Computational Biology | www.ploscompbiol.org 16 August 2014 | Volume 10 | Issue 8 | e1003728

http://cran.r-project.org/
http://rsb.info.nih.gov/ij/


then stained for LC3 and COX-IV. Number of co-localised

objects were determined as described in the Methods. Replica-

tively senescent MRC5 cells were included as a positive control. (B)

Live cell microscopy was performed using co-transduction of GFP

and RFP targeted lysosome and mitochdondrial baculovirus

constructs respectively at the timepoints shown. Bafilomycin A

treatment and analysis were performed as described for LC3-

COX-IV stained cells.

(TIF)

Figure S2 Mitochondrial mass data as determined by
flow cytometry. Cells loaded with Mitotracker Green were

analysed by flow cytometry at the time points indicated post 20 Gy

irradiation. Data represent the median fluorescence intensity from

30,000 cells per time point relative to the 0 day control.

(TIF)

Figure S3 Cell viability. Cell viability was determined from

trypsinised cells (plus spent medium) at the indicated time points

post 20 Gy irradiation by counting live/dead cells using trypan

blue and a haemocytometer. A minimum of 120 cells were

recorded per dish per time point, 3 dishes per time point. Data are

mean +/2 SD. No significant changes in viability were seen over

time.

(TIF)

Figure S4 MOTA identifiability matrix for round 1 of
parameter estimation. In this round the kinetic rate constants

k3, k4, k17, k18, k19, k20, and k37 were fixed since they were

identifiable using MOTA identifiability analysis. *: Correlation

Coefficient (CC).0.9 and Coefficient of Variation (CV).0.25; **:

Correlation Coefficient (CC).0.9, Coefficient of Variation (CV).

0.25 and number of tuples showing this correlation (#).1.

Format: ParameterCode ,CC CV # (‘‘Tuple of related

parameters’’)..

(TIF)

Figure S5 Correlation plots for round 1 of parameter
estimation, as detected by MOTA identifiability analy-
sis. Plots for the tuples of related parameters reported in the

MOTA identifiability matrix in Figure S4.

(TIF)

Figure S6 MOTA identifiability matrix for round 2 of
parameter estimation. In this round the kinetic rate constants

k1, k2, k15, k16, k21, k30, k35, and k36 were fixed since they were

identifiable using MOTA identifiability analysis.

(TIF)

Figure S7 Correlation plots for round 2 of parameter
estimation, as detected by MOTA identifiability analy-
sis. Plots for the tuples of related parameters reported in the

MOTA identifiability matrix in Figure S6.

(TIF)

Figure S8 MOTA identifiability matrix for round 3 of
parameter estimation. In this round the kinetic rate constants

k25, k26, and k32 were fixed since they were identifiable using

MOTA identifiability analysis. The parameters k8, k9, and k12

were locked as reported in Table S4. The parameters k8 and k9

were part of two couples of related parameters. The former k8

with k7, the latter k9 with k10. All these two couples only related

internally with themselves and therefore formed two locally

defined correlations. The parameter k12 only related with k11,

although k11 was not dependent on k12. Hence, this also formed a

locally defined correlation.

(TIF)

Figure S9 Correlation plots for round 3 of parameter
estimation, as detected by MOTA identifiability analy-
sis. Plots for the tuples of related parameters reported in the

MOTA identifiability matrix in Figure S8.

(TIF)

Figure S10 MOTA identifiability matrix for round 4 of
parameter estimation. In this round the kinetic rate constants

k7, k10, k11, k13, k14, and k33 were fixed since they were

identifiable using MOTA identifiability analysis.

(TIF)

Figure S11 Correlation plots for round 4 of parameter
estimation, as detected by MOTA identifiability analy-
sis. Plots for the tuples of related parameters reported in the

MOTA identifiability matrix in Figure S10.

(TIF)

Figure S12 MOTA identifiability matrix for round 5 of
parameter estimation. In this round the kinetic rate constants

k34, k38, k40, and k41 were fixed since they were identifiable

using MOTA identifiability analysis.

(TIF)

Figure S13 Correlation plots for round 5 of parameter
estimation, as detected by MOTA identifiability analy-
sis. Plots for the tuples of related parameters reported in the

MOTA identifiability matrix in Figure S12.

(TIF)

Figure S14 MOTA identifiability matrix for round 6 of
parameter estimation. In this round the kinetic rate constants

k22, k23, k24, and k39 were fixed since they were identifiable

using MOTA identifiability analysis.

(TIF)

Figure S15 Correlation plots for round 6 of parameter
estimation, as detected by MOTA identifiability analy-
sis. Plots for the tuples of related parameters reported in the

MOTA identifiability matrix in Figure S14.

(TIF)

Figure S16 MOTA identifiability matrix for round 7 of
parameter estimation. In this round the kinetic rate constants

k5, k6, k29, and k31 were fixed since they were identifiable using

MOTA identifiability analysis.

(TIF)

Figure S17 Correlation plots for round 7 of parameter
estimation, as detected by MOTA identifiability analy-
sis. Plots for the tuples of related parameters reported in the

MOTA identifiability matrix in Figure S16.

(TIF)

Figure S18 Principal component analysis for model at
each round of parameter estimation. To further investi-

gate the source of variability, principal component analysis

(PCA) of the model was computed at each round of parameter

estimation. Interestingly, this analysis indicated that only about

half of the estimated parameters did not significantly contribute

to the overall variance for each round. This suggested that a

group of parameters could have been potentially identified at

each round.

(TIF)

Figure S19 Simulated tools for model inhibition or over-
activation over time. (A) To inhibit ROS over time, a

simulated ROS inhibitor species was added to the model. This

new species reduced ROS levels and acted as an in vitro ROS

scavenger. The abundance for this species was estimated in order
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to achieve ROS inhibition to 10% (blue) as compared to the

control (white) throughout the time course. (B) In analogy, two

new species were created for over-activating mitophagy and

FoxO3a, respectively. The abundance for these two species were

estimated to achieve a mitophagy or FoxO3a over-activation of

150% (magenta) as compared to the corresponding control

(white) throughout the time course. Each boxplot represents the

median and two quartiles, whereas the bars indicate the

minimum and the maximum values, as estimated from day 1 to

day 21.

(TIF)

Figure S20 Inhibition of ROS and mTOR in vitro. Torin

and ROS inhibition efficacy. (A) Cells were irradiated with

20 Gy X irradiation and then treated with Torin1 or DMSO as

described in Methods. Lysates were probed with total mTORC1

and mTORC1-S2448 antibodies. Band intensities were quan-

tified relative to Tubulin loading control and plotted as mean

+/2 SD ratios of mTORC1-S2448 to total mTORC1 (3

repeats). (B) Cells were irradiated with 20 Gy X irradiation and

then treated with SOD and catalase as described in Methods.

Cells were stained with DHE to measure intracellular superox-

ide levels by flow cytometry. Time course data over 21 days are

plotted (n = 3).

(TIF)

Figure S21 Analysis of the two mitochondrial sub-
populations upon ROS-mTOR combined intervention.
The internal states for the new and old mitochondrial sub-

populations were also investigated upon combined ROS-

mTOR simulated intervention. Regarding the mitochondrial

membrane potential, the global effect of these interventions

mainly resulted from changes in the sub-population of new

mitochondria, which showed a strong synergistic response at

particular levels of mTOR- ROS inhibition. The effect upon

old mitochondrial øm was almost entirely dependent upon

mTOR inhibition, but still changed their potential by an

insignificant amount compared to the new mitochondrial

population. Concerning the mitochondrial mass, the perturba-

tion of combined ROS-mTOR acted predominantly on the

young population, although these changes were largely hidden

in the overall population (Figure 4A) due to the larger

proportion being comprised of the old population. The point

(0, 0) indicates the control (no inhibition).

(TIF)

Figure S22 Analysis of senescence-associated b-galacto-
sidase staining upon upon ROS-mTOR combined inter-
vention. (A) Cells were fixed at the indicated timepoints and

assayed for senescence–associated b-galactosidase followed by

counterstaining with nuclear fast red prior to imaging. An

average of ,300 cells were counted per coverslip, with any blue

cytoplasmic staining being considered positive. Data are n = 2 6

SD. Combined intervention produced significantly lower

positive cells at 3 and 6 days post irradiation relative to DMSO

control (P,0.05). (B) Example images of stained coverslips

showing the decreased intensity of staining observed in treated

cells.

(TIF)

Figure S23 Additional readouts upon AMPK, FoxO3a or
mitophagy simulated over-activation. The model predicted

a decrease in the DNA damage/oxidative stress response pathways

upon over-activation of AMPK, FoxO3a or mitophagy. AMPK

was predicted to achieve the strongest inhibition throughout the

time course as compared to FoxO3a or mitophagy. Interestingly,

an over-activation of FoxO3a was predicted to initially increase

and then reduce CDKN1A levels as compared to the control

(black line), suggesting differential regulation of cell cycle arrest

over time.

(TIF)

Figure S24 Model stochastic simulation showed in-
crease stochasticity over time. Model stochastic simula-

tions up to 20 days graphically showed increased stochasticity

for the oxidative stress/DNA damage signalling species.

Moderate increased variance was also detected for the species

Mitophagy and the species representing mitochondrial mass

and membrane potential. Number of stochastic runs: 500;

black line indicates the means, dark grey area indicates 95%

confidence interval of the mean and grey area indicates a

standard deviation. (A) Species associated to in vitro data

(observable variables). (B) Mitochondrial internal states (de-

rived variables).

(TIF)

File S1 File collecting all the supporting tables and
figures. All the supporting tables and figures with their

corresponding legends are combined into one document in this

file.

(PDF)

Model S1 SBML code for the model.

(XML)

Movie S1 Mitochondrial fusion and fission in young and
senescent fibroblasts over 30 minutes time courses.

(MP4)

Table S1 In vitro data set used for estimating the model
parameters. For each model observable, the mean and standard

deviation (reported as StdCol) of the quantified in vitro intensities

are reported. The table is formatted for Potterswheel v. 3.0.12.

(XLS)

Table S2 Legend of the model variables. This table defines

the unique codes for the model kinetic rate constants (Ki), species

(Xi), scaling factors (Si), observables (Yi) and constraints (CSi). The

values for the non-estimated parameters are also provided. The

lambda term in the block ‘Constraints’ defines the constraint

strength (higher values means harder constraints) as implemented

in PottersWheel.

(TIF)

Table S3 ODEs table of the model. The Ordinary

Differential Equations (ODEs) for the 23 species defining the

model.

(TIF)

Table S4 Table of the estimated parameters in the
model. Up to 7 rounds of alternated parameter estimation and

MOTA identifiability analysis were computed in order to

progressively determine all the kinetic rate constant parameters.

The internal round columns include the following labels: Assumed,

Fixed and Locked. A parameter was termed assumed when it was

assumed a priori, and therefore was not estimated. The only

assumed parameters were related to the IKK-b dynamics. A

parameter was termed fixed when it could be estimated and

identified based on MOTA analysis within a confidence of

variance lower than 25% or a correlation coefficient lower than

0.9. A parameter p was termed locked when it was fixed without

being completely identifiable according to MOTA analysis. This

was done only when 1) p belonged to a tuple of related parameters

and each parameter in this tuple only related to the same
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parameter tuple (e.g. case for k8, k9), or 2) the other parameters in

this tuple were not found to significantly relate with p, creating a

one-way correlation (e.g. case for k12, see Figure S8). Since these

correlations were local and completely confined to the tuple

parameters, they did not affect the other unrelated parameters.

The parameters in the tuple were only linearly affected. MOTA

correlation matrices and plots are provided in Figures S4, S5, S6,

S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, and computed

from the best 30% of 20,000 fits (see Materials and Methods for

more details). For each parameter, the final value, mean, standard

deviation and coefficient of variance are reported. Interestingly,

parameter estimation reported an extremely low value for the

parameter k5, suggesting a poor ATP production by dysfunctional

mitochondria. Among the three modalities of mTORC1 activa-

tion (amino acids only, amino acids + insulin, amino acids +
IKK-b; parameters k6, k7 and k29, respectively), it was detected

that mTORC1 activation was significantly stronger in the

presence of insulin. Finally, parameter estimation also suggested

that the increase in SA-b-gal (see k30, k31) was largely dependent

on ROS rather than mitophagy.

(TIF)

Table S5 List of antibodies. The antibodies used in this study

are shown, with their respective catalogue numbers and the

dilutions used for the respective staining (western or immunoflu-

orescence).

(TIF)

Author Contributions

Conceived and designed the experiments: PDP GN. Performed the

experiments: PDP GN EGO. Analyzed the data: PDP GN. Contributed

reagents/materials/analysis tools: PDP GN. Wrote the paper: PDP GN.

Contributed to writing the manuscript: VIK TBLK TvZ DPS. Interpre-

tation of the results: PDP GN TvZ DPS. Critical review of the manuscript:

PDP GN VIK TBLK TvZ DPS. Supervised the project: VIK TBLK TvZ

DPS.

References

1. Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends
Cell Biol 11: S27–31.

2. Collado M, Serrano M (2010) SENESCENCE Senescence in tumours: evidence
from mice and humans. Nature Reviews Cancer 10: 51–57.

3. Wang CF, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, et al. (2009) DNA damage
response and cellular senescence in tissues of aging mice. Aging Cell 8: 311–323.

4. Wang CF, Maddick M, Miwa S, Jurk D, Czapiewski R, et al. (2010) Adult-onset,
short-term dietary restriction reduces cell senescence in mice. Aging-Us 2: 555–

566.

5. Rodier F, Munoz DP, Teachenor R, Chu V, Le O, et al. (2011) DNA-SCARS:

distinct nuclear structures that sustain damage-induced senescence growth arrest

and inflammatory cytokine secretion. J Cell Sci 124: 68–81.

6. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, et al. (2008) Senescence-

associated secretory phenotypes reveal cell-nonautonomous functions of
oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853–2868.

7. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing
cellular stress. Nature Reviews Cancer 9: 81–94.

8. Finkel T, Holbrook N (2000) Oxidants, oxidative stress and the biology of
ageing. Nature 408: 239–247.

9. Passos JF, Nelson G, Wang C, Richter T, Simillion C, et al. (2010) Feedback
between p21 and reactive oxygen production is necessary for cell senescence.

Mol Syst Biol 6: 347.

10. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent

fibroblasts promote epithelial cell growth and tumorigenesis: a link between
cancer and aging. Proc Natl Acad Sci U S A 98: 12072–12077.

11. Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth
of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67:

3117–3126.

12. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, et al. (2012) A senescent
cell bystander effect: senescence-induced senescence. Aging Cell 11: 345–349.

13. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, et al. (2013) A
complex secretory program orchestrated by the inflammasome controls

paracrine senescence. Nat Cell Biol.

14. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, et al. (2011)

Clearance of p16Ink4a-positive senescent cells delays ageing-associated disor-
ders. Nature 479: 232–236.

15. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular
senescence and the senescent secretory phenotype: therapeutic opportunities.

Journal of Clinical Investigation 123: 966–972.

16. Turrens J (2003) Mitochondrial formation of reactive oxygen species. The

Journal of Physiology 552: 335–344.

17. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, et al. (2007)

Mitochondrial dysfunction accounts for the stochastic heterogeneity in

telomere-dependent senescence. PLoS Biol 5: e110.

18. Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009)

Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids
Research 37: 2539–2548.

19. Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage
response-independent regulator of the senescence-associated secretory pheno-

type. EMBO J 30: 1536–1548.

20. Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase:

physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochimica
Et Biophysica Acta-General Subjects 1780: 1325–1336.

21. Greer EL, Brunet A (2005) FOXO transcription factors at the interface between
longevity and tumor suppression. Oncogene 24: 7410–7425.

22. Greer EL, Brunet A (2008) FOXO transcription factors in ageing and cancer.
Acta Physiologica 192: 19–28.

23. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al. (2004) Stress-

dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.
Science 303: 2011–2015.

24. Sengupta A, Molkentin J, Yutzey K (2009) FoxO transcription factors promote
autophagy in cardiomyocytes. The Journal of Biological Chemistry 284: 28319–

28331.

25. van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R, et
al. (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO

network regulates autophagy. Nature Cell Biology 14: 829–837.

26. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration
to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology 12: 21–35.

27. Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that

control C. elegans life-span and metabolism. Science 300: 644–647.

28. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, et al. (2003)

Genes that act downstream of DAF-16 to influence the lifespan of
Caenorhabditis elegans. Nature 424: 277–283.

29. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, et al. (2012) A lysosome-

to-nucleus signalling mechanism senses and regulates the lysosome via mTOR
and TFEB. EMBO Journal 31: 1095–1108.

30. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate

autophagy through direct phosphorylation of Ulk1. Nature Cell Biology 13:
132–141.

31. Lee JW, Park S, Takahashi Y, Wang H-G (2010) The Association of AMPK

with ULK1 Regulates Autophagy. PLOS ONE 5: e15394.
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