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ABSTRACT

MicroRNAs (miRNAs) comprise a gene-regulatory
network through sequence complementarity with
target mRNAs. Previous studies have shown that
mammalian miRNAs decrease many target mRNA
levels and reduce protein production predominantly
by target mRNA destabilization. However, it has not
yet been fully assessed whether this scheme is
widely applicable to more realistic conditions with
multiple miRNA fluctuations. By combining two ana-
lytical frameworks for detecting the enrichment of
gene sets, Gene Set Enrichment Analysis (GSEA)
and Functional Assignment of miRNAs via
Enrichment (FAME), we developed GSEA–FAME
analysis (GFA), which enables the prediction of
miRNA activities from mRNA expression data
using rank-based enrichment analysis and
weighted evaluation of miRNA–mRNA interactions.
This cooperative approach delineated a better wide-
spread correlation between miRNA expression
levels and predicted miRNA activities in cancer tran-
scriptomes, thereby providing proof-of-concept of
the mRNA-destabilization scenario. In an integrative
analysis of The Cancer Genome Atlas (TCGA) multi-
dimensional data including profiles of both mRNA
and miRNA, we also showed that GFA-based infer-
ence of miRNA activity could be used for the selec-
tion of prognostic miRNAs in the development of
cancer survival prediction models. This approach
proposes a next-generation strategy for the

interpretation of miRNA function and identification
of target miRNAs as biomarkers and therapeutic
targets.

INTRODUCTION

MicroRNAs (miRNAs) are endogenous small non-coding
RNAs that play important roles in various cellular func-
tions and biological phenomena. In general, the regulatory
mode of miRNA-mediated gene regulation is post-
transcriptional gene silencing by miRNA–mRNA inter-
actions on the basis of sequence complementarity
between miRNAs and the 30-untranslated region
(30UTR) of their target mRNAs (1). In animals, the
pairing to target mRNAs required for gene silencing is
less extensive than in plants, and the seed region (nucleo-
tides 2–7) is important for target recognition (2). Details
of this seed-mediated gene repression without Argonaute-
catalysed RNA cleavage are less clear. Although a possi-
bility was previously raised that this type of repression was
not strictly associated with a reduction in mRNA levels,
several microarray-based evaluations showed that mam-
malian miRNAs decrease many target mRNA levels (3,4).
A recent study further revealed that mammalian miRNAs
reduce protein production predominantly by destabiliza-
tion of target mRNA, indicating the ‘mRNA-
destabilization (suppression)’ scenario (5). In accordance
with these findings, the accumulation of a few tissue-
specific miRNAs has been associated with the suppression
of a large number of their target mRNAs during differen-
tiation, suggesting that several tissue-specific miRNAs
contribute to the organization of tissue-specific transcript
profiles through the suppression of target mRNAs (6).
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It has also been reported that genes preferentially ex-
pressed in the same tissue and at the same time as such
tissue-specific miRNAs have evolutionarily avoided po-
tential target sites matching these miRNAs to preserve
their expression (6).
These findings propose attractive possibilities where

changes in transcriptomes measured by mRNA arrays or
mRNA-seq may reflect the summation of miRNA-
mediated gene repression, which may correspond to
changes in miRNome. It may be also envisaged that this
scheme could be used for the interpretation of miRNA
function by analysing transcriptome data. Based on this
assumption, some procedures have been developed to
infer miRNA activities by assessing microarray expression
data. In conjunction with the sequence-based prediction of
miRNA targets, the log-likelihood test and hypergeo-
metric test were often used for the inference of changes
in miRNA activity in transcriptome data and assessment
of the relationship between miRNA target genes and bio-
logical function (7–9). Rank-based approaches such as
Gene Set Enrichment Analysis (GSEA) and related
analysis were also applied to evaluate the enrichment of
miRNA target genes (10,11). In addition, Ulitsky et al.
(12) recently introduced a new permutation-based statis-
tical method, FAME (functional assignment of miRNAs
via enrichment), for these purposes.
However, this ‘mRNA-destabilization (suppression)’

scenario has been mainly based on results with strong
experimental perturbation of target miRNA levels, such
as ectopic overexpression and depletion by knockdown or
gene targeting, and analyses focused on a few miRNAs
with tissue-specific expression patterns (4–6). Therefore,
it is unclear whether the strength of the ‘mRNA-
suppression’ scenario is sufficient for an RNA
expression-based interpretation of miRNA function. In
addition, it has not yet been fully assessed whether this
concept is widely applicable to more practical conditions
with multiple miRNA fluctuations, such as disease patho-
genesis conditions that deviate from evolutionarily
conserved processes, besides tissue-specific transcriptome
formation. In fact, altered miRNA activities have been
shown to have a substantial impact on the modification
of gene regulatory networks in cancer, but the extent and
consequences of their contribution to cancer transcrip-
tomes have not been investigated in detail (13–15).
Here we devised GSEA–FAME analysis (GFA), which

enables the prediction of miRNA activity from mRNA
expression data, using rank-based enrichment analysis
and weighted prediction of miRNA–mRNA interactions,
to address these issues. For this purpose, we combined two
analytical pipelines, GSEA and FAME, to detect weaker
expression changes caused by miRNAs and evaluate vari-
ations in the degree of miRNA–mRNA connections. We
observed that this cooperative approach delineated a
better widespread correlation between miRNA expression
levels and predicted miRNA activities in cancer transcrip-
tome analysis, providing proof-of-concept of the
‘mRNA-destabilization’ scenario. We also discuss the
use of this second-generation miRNA activity inference
procedure for the identification of target miRNAs as bio-
markers and therapeutic targets.

MATERIALS AND METHODS

Outline of GFA

GFA is composed of three steps: (i) division of miRNA
target gene sets into two classes by GSEA, (ii) collection of
miRNA target genes contributing to the division of
miRNA target gene sets into two classes in step 1 and
(iii) FAME for the collection of miRNA target genes in
step 2.

Gene sets
The Molecular Signature Database (MSigDB, http://
www.broadinstitute.org/gsea/) was used with GSEA
software as a collection of annotated gene sets. It
consists of five types of gene sets: genomic positional
gene sets (C1), biologically curated gene sets (C2), motif
gene sets (C3), cancer-related computational gene sets
(C4) and Gene Ontology (GO) gene sets (C5). C3 motif
gene sets include two collections of potential miRNA
targets (C3MIR) and transcription factor targets
(C3TFT). C3MIR miRNA target gene sets contain poten-
tial target genes sharing a 30UTR miRNA-binding motif,
and C3TFT transcription factor target gene sets contain
genes sharing a transcription factor-binding site around
the transcription start site. C4 computational gene sets
contain C4 cancer module (C4-CM) gene sets, which
representatively change in a variety of cancer conditions
(16). We performed GSEA using these collections of gene
sets.

Gene Set Enrichment Analysis (GSEA)
In step 1, GSEA was performed using C3MIR gene sets or
other gene sets to evaluate the enrichment of each gene set
in group A or group B. GSEA was performed with GSEA
software available from the Broad Institute (http://www.
broadinstitute.org/gsea/) using default parameters (17). In
step 2, leading-edge subsets were collected for each gene
set and assembled for groups A and B, respectively. To
reduce the influence of changes in transcriptional factor
activity, similar procedures as steps 1 and 2 were per-
formed using C3TFT gene sets that contain genes
sharing a transcription factor-binding site, and this
C3TFT target gene collection was subtracted from the
C3MIR target gene collection in step 2 (option: step 2’).

Functional Assignment of miRNAs via
Enrichment (FAME)
In step 3, the collection of leading-edge subsets in C3MIR
target gene sets in step 2 was analysed by FAME accord-
ing to a previous report (12). FAME was performed in the
Expander 6.0 microarray data analysis suite (http://acgt.
cs.tau.ac.il/expander/) (18). FAME executes a
permutation-based statistical test to evaluate significant
over- or under-representation of miRNA targets in a
target gene set, using TargetScan miRNA target predic-
tions (12). We ran FAME for the collection of
leading-edge subsets assembled for groups A and B in
both directions of enrichment, i.e. over-representation
(enrichment) and under-representation (depletion). For
P-value calculations, 10 000 random iterations were per-
formed throughout this study.
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Data sets

Microarray data for miR-1 and miR-124 transfection ex-
periments (GSE2075) and miRNA and mRNA expression
profiling of DLBCL patient samples (GSE21849) were
obtained from NCBI’s Gene Expression Omnibus (3,19).
miRNA expression, mRNA expression and clinical data
for glioblastoma patient samples were downloaded from
The Cancer Genome Atlas (TCGA) Data Portal (https://
tcga-data.nci.nih.gov/tcga/) (20). For analysis of miRNA
profiling, we used level 3 pre-interpreted data provided by
TCGA.

Rank–rank hypergeometric overlap

Rank–rank hypergeometric overlap (RRHO) analysis was
performed according to a previous report (21).

Survival prediction model

Level 3-processed data of paired miRNA and mRNA ex-
pression profiling for 478 glioblastoma patients were
downloaded together with clinical data from TCGA
Data Portal in March 2012 (20). After removal of viral
miRNAs, profiling data for the remaining 470 miRNAs
were mean centred, and the standard deviation was
normalized to one per array. The 478 samples were
randomly assigned to a training set (n=239) or a
testing set (n=239). For all miRNAs, regression coeffi-
cients and P-values were estimated using a univariate Cox
regression model in a training set. We also performed
simple GFA for a training set by dividing samples into a
poor prognosis group (death< 1 year) and a good prog-
nosis group (others) using C3MIR gene sets. In this
analysis, we adopted GFA results using the larger
C3MIR target gene collection among the two C3MIR
target gene collections (‘poor< good’ and ‘good< poor’).
In the ‘expression level/GFA-based’ strategy, miRNA
showing P< 0.1 in univariate Cox regression analysis
and P< 0.12 in the same direction (poor or good prognos-
tic) in GFA were selected as prognostic miRNAs. In the
‘expression level-based’ strategy, the same number of
miRNAs as miRNAs selected in the ‘expression level/
GFA-based’ strategy was selected according to the order
of P-values in univariate Cox regression analysis. Risk
scores were evaluated by a linear combination of the ex-
pression levels of prognostic miRNAs weighted by their
respective Cox regression coefficients according to a
previous report (22) by the following formula: ‘risk
score’=� (regression coefficient)� (expression value of
each prognostic miRNA). Risk scores were calculated
for patients in both training and test sets, and patients
with a risk score greater than 0 and those with a risk
score less than 0 were assigned to ‘High risk’ and ‘Low
risk’ groups, respectively. Survival analysis and validation
of the fitness and accuracy of these survival prediction
models were performed using the survival, rms, and
survAUC packages of R. We repeated these analyses for
the pair of a training set and test set after five
randomizations.

RESULTS

GSEA–FAME analysis (GFA)

We first made two assumptions for building a procedure
to infer miRNA activities from mRNA expression data.
First, the correlation between fluctuations in multiple en-
dogenous miRNA levels and alterations in target mRNAs
may be weak, even if the ‘mRNA-destabilization’ scenario
is operational, and may be better recognized by examining
target genes as a population of target genes, not individual
genes. Second, the efficacy of individual miRNA target
sites was influenced by multiple features of site context,
including AU-rich nucleotide composition near the site,
relative distance from the stop codon and positioning
near the ends of long UTRs (4). Thus, the strength of
correlations between a miRNA and its target genes is
highly variable and should be weighted to the final assess-
ment of each miRNA activity.
We combined two analytical approaches to satisfy these

two assumptions (Figure 1). To detect a weak connection
between miRNA target genes and phenotypes in the first
assumption, we took a ‘gene set versus ranked list’
approach through the GSEA algorithm, which is able to
detect a weak one-sided inclination among two pheno-
types (groups A and B) (17). We performed this analysis
using the complete collection of miRNA target gene sets
(C3MIR) implemented in GSEA, which contains potential
target genes sharing a 30UTR miRNA-binding motif, and
roughly divided these gene sets into two groups that are
enriched in group A or in group B (step 1). Although
GSEA itself can rank these miRNA target gene sets ac-
cording to each enrichment score, we used GSEA for the
extraction of the core of miRNA target genes contributing
to differential miRNA activities between two phenotypes.
To this end, we made a collection of leading-edge gene
subsets of individual gene sets accounting for GSEA en-
richment signals to reconsider the second assumption
(step 2).
FAME, a new permutation-based statistical method,

was recently developed to test for over- or under-
representation of miRNA targets in a designated gene
set (12). In contrast to previous methods and conventional
statistical tests, FAME uses weighted prediction for
miRNA-target pairs according to 30UTR contexts (i.e.,
context scores), provided by TargetScan (2,4), and evalu-
ates the significance of the total weight of miRNA-target
pairs for each miRNA (12). We applied this FAME algo-
rithm to the collection of leading-edge gene subsets of
miRNA target gene sets to integrate the second assump-
tion in relative estimation of various miRNA activities
(step 3). We performed FAME in both directions of en-
richment, i.e. over-representation (enrichment) and under-
representation (depletion). In addition, we also considered
an optional procedure to reduce the potential influence of
changes in transcriptional factor activity on the deregula-
tion of genes modulated by both miRNAs and transcrip-
tional factors. For this purpose, we performed similar
procedures in steps 1 and 2 using transcription factor
target gene sets (C3TFT), subtracted this gene collection
from the C3MIR target gene collection (step 2’) and then
ran FAME analysis. We call this approach ‘GFA’.
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Detection of the ‘mRNA-destabilization’ scenario under
experimental miRNA perturbation by GFA

As the first application of our approach, miRNA trans-
fection data that provides a basis for the ‘mRNA-
suppression’ scenario was analysed by GSEA and GFA
(Figure 2). In this data, HeLa cells were transfected with
two miRNAs (miR-1 and miR-124), two mutant miRNAs
(124mut5-6 and 124mut9-10) and two chimeric miRNAs
(chimiR-124/1 and chimiR-1/124) and were subjected to
microarray analysis 12 and 24 h after transfection (3). As
shown in Figure 2A, GSEA ranked four wild-type-seed
miRNAs (miR-1, miR-124, 124mut9-10 and chimiR-1/
124) as top ones among all miRNAs and confirmed a
functional compromise by seed mutation (124mut5-6).
On the other hand, GSEA failed to detect chimiR-124/1
activity in 12-h data, although this miRNA has been
shown to function in a similar manner to miR-124 albeit
to a lesser extent (3,11). GFA demonstrated similar per-
formance with GSEA and further succeeded in the detec-
tion of chimiR-124/1 activity in 12-h data, suggesting that
FAME contributes to the better ranking of miRNA
activities (Figure 2B). In addition, we observed
that GFA showed detection ability for transfected
miRNAs in two analytical directions of enrich-
ment, over-representation (enrichment) assessment
for down-regulated genes relative to controls and

under-representation (depletion) assessment for up-
regulated genes. In Supplementary Figure S1, the proced-
ure reducing the influences of transcriptional factors
(Figure 1, step 2’) worsened GFA performance in
under-representation assessment for up-regulated genes:
it may have been because this experiment is a simple
design with miRNA transfection. These results suggest
that GFA is able to detect the ‘mRNA-destabilization’
scenario under experimental miRNA perturbation as
well as other previous procedures to infer miRNA
activities.

Widespread correlation of miRNA expression levels and
miRNA activities in cancer transcriptomes: DLBCL study

The ‘mRNA-destabilization (suppression)’ scenario has
been previously discussed in the setting of strong experi-
mental perturbation of target miRNA levels and tissue-
specific transcriptome organization. Therefore, the next
important question is whether the ‘mRNA-destabilization’
scenario is widely applicable to more realistic settings with
multiple miRNA fluctuations such as disease pathogenesis
conditions. A microarray is a powerful widely used
platform to study genome-wide gene expression and
gene regulatory networks. In the field of cancer research,
this technology has provided numerous advances in the
understanding of disease pathogenesis, disease
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Figure 1. Outline of GFA. In step 1, GSEA is performed using C3 miRNA target gene sets (C3MIR), which contain potential target genes sharing a
30UTR miRNA-binding motif for each miRNA, to assess whether each miRNA target gene set is enriched in group A or in group B. In step 2,
leading-edge subsets, part of the members of each miRNA target gene set, which accounts for the enrichment of corresponding gene sets in group A
or B in GSEA analysis, are collected for each gene set and assembled for groups A and B, respectively, to make the collection of overall miRNA
target genes enriched in group A and B. As an option, similar procedures to steps 1 and 2 are performed using C3 transcription factor target gene
sets (C3TFT) that contain genes sharing a transcription factor-binding site and the C3TFT target gene collection is subtracted from the C3MIR
target gene collection subjected to FAME (step 2’). In step 3, FAME is applied to the C3MIR target gene collection in step 2, resulting in a ranked
list of each miRNA activity and corresponding target genes accounting for this activity.
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classification and development of survival prediction
models (23). As an early example, microarray analysis
showed that diffuse large B cell lymphoma (DLBCL),
the most common form of human malignant lymphoma,
can be divided into two major molecular subtypes:
germinal centre (GC) B cell-like DLBCL (GC-DLBCL)
and activated B cell-like DLBCL (ABC-DLBCL), accord-
ing to the resemblance of the gene expression pattern to
normal GC B cells or activated B cells, respectively (24).
This study exhibited the usefulness of this method in de-
tecting the gene deregulations responsible for biological
heterogeneity (24). Using DLBCL as a disease model,
we next examined whether the impact of endogenous
miRNAs on target mRNA levels in cancer transcriptomes
can be deduced by GFA.

We used matched miRNA and mRNA expression data
of human clinical DLBCL samples comprising 11 GC

subtypes and 18 ABC subtypes (19) (Figure 3A), and per-
formed GSEA and GFA between GC and ABC subtypes.
In addition, we compared the performance of the conven-
tional FAME procedure in combination with a standard
statistical test (t-test, P< 0.05) to extract differentially ex-
pressed genes between the two subtypes. As shown in
Figure 3B, GFA strikingly yielded better evidence of a
widespread correlation of miRNA expression levels and
miRNA activities for differentially expressed miRNAs,
compared with GSEA and the combination of the t-test
and FAME. Evaluation with Spearman’s rank correlation
coefficients revealed the outperformance of GFA over the
simple use of GSEA and FAME (Figure 3C).
Comparisons of the similarity between miRNA expression
ranks and miRNA activity ranks using the RRHOmethod
(21) also demonstrated the better performance of GFA
(Figure 3D). In addition, we found that the option
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Figure 2. Comparison of GSEA and GFA for miR-1 and miR-124 transfection data. GSEA (A) and GFA (B) were performed for the microarray
data of HeLa cells transfected with miR-1, miR-124, mutant miR-124 (124mut5-6 and 124mut9-10) and chimeric miRNAs (chimiR-1/124 and
chimiR-124/1) for 12 or 24 h. In GFA, we ran FAME for the two collection of leading-edge subsets, which were down-regulated (left panel) and
up-regulated (right panel) in the cells transfected with miRNA relative to controls, in an enrichment direction of over-representation (enrichment, left
panel) and under-representation (depletion, right panel), respectively. The distribution of GSEA normalized enrichment scores (NES) and GFA
ranking [�log10(P-value)] are shown. GSEA NES and GFA ranking for miR-1 and miR-124 are indicated by red diamonds and blue circles,
respectively.
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process (Figure 1, step 2’) further improved the fit of GFA
to the correlation relative to results using C3MIR gene
sets in this DLBCL study, while this process could some-
times decrease a large proportion of the collection of
leading-edge gene subsets in the current form. This
result suggests that the effort to consider the coexisting
influences of transcriptional factor changes is substantially
useful for a better assessment of miRNA activities in some

cases. In an initial analysis, we also performed GFA using
other gene sets (C1: genomic positional gene sets, C2: bio-
logically curated gene sets, C4: cancer-related computa-
tional gene sets and C5: GO gene sets) and confirmed
the general superiority of using C3MIR gene sets
(Supplementary Figure S2A–S2C). Furthermore, GFA
detected a better widespread correlation for all miRNAs
(Supplementary Figure S2D). Collectively, these results
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Figure 3. Widespread correlation of miRNA expression levels and miRNA activities assessed by GFA: DLBCL study. (A) Classification of DLBCL
cases into ABC and GC subtypes. (B) Correlation between miRNA expression ranks and miRNA activity ranks analysed by GSEA, FAME [after
the extraction of differentially expressed genes by the t-test (P< 0.05)] and GFA (using C3MIR and C3TFT gene sets) for the top 45 miRNAs with
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correlation coefficients for the correlation between miRNA expression ranks and miRNA activity ranks in (B). (D) RRHO analysis for the correl-
ation between miRNA expression ranks and miRNA activity ranks in (B). Maximums of the Benjamini–Yekutieli-corrected RRHO map (left) and
the representative RRHO heatmap (right) are shown. (E) Overlap between target genes of GFA-supported differentially expressed miRNAs and gene
subsets of C4 cancer module (C4-CM) gene sets analysed by GSEA. In addition to GFA, GSEA was performed among ABC and GC subtypes using
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suggest that the ‘mRNA-suppression’ scenario could be
taken into account for the interpretation of miRNA
function in diverse conditions with physiological fluctu-
ations in multiple miRNAs, and that GFA is a better
method for detecting this mode of gene regulation events.

From a practical standpoint, GFA produces a list of the
more likely target genes for each miRNA and thus
presents a convenient platform for further experimental
validation of miRNA–mRNA interactions. In the
DLBCL study, we performed GSEA using C4 cancer
module (C4-CM) gene sets, which representatively
change in a variety of cancer conditions (16), and
observed that the above-mentioned gene list for individual
miRNAs overlapped with part of the deregulated C4-CM
gene sets in a mutually exclusive manner (Figure 3E), sug-
gesting that these miRNAs are potentially responsible for
the deregulation of these modules. These analyses sug-
gested the presence of several potential miRNA–mRNA
interactions such as miR-144-BCL6, miR-219-TGFBR2,
miR-219-PDGFRA, miR-138-EIF4BP1 and miR-144/
223/495-PDE4D in association with DLBCL-related
genes (Supplementary Table S1). Among them, miR-
219-PDGFRA was previously validated through an
experimental evaluation (25).

Integration of GFA-based functional assessment into the
development of a cancer survival prediction model using
miRNA signature: glioblastoma study

Using matched miRNA and mRNA profiling data, one
may infer that GFA can be used for better identifying
miRNAs, mRNAs and miRNA–mRNA pathways as bio-
markers and therapeutic targets in various disease condi-
tions beyond the use of one-sided data and simple
application of statistical procedures. Although microarray
analysis has indeed enabled the development of a gene
signature-based disease classification and stratification
strategy especially in the cancer field, this type of
strategy frequently suffers from several problems, such
as multicollinearity and overfitting. In the latter case,
pursuit of better performance in the training set may
actually lead to worse performance in the test set and
future cases (23). On the basis of these considerations,
we finally investigated the usefulness of the GFA
approach as a method of feature selection in the construc-
tion of a survival prediction model for cancer patients.

In this study, we used matched miRNA and mRNA
expression data of glioblastoma patients derived from
TCGA database, a comprehensive collection of genomic
and expression profiling of various cancer patients,
together with clinical data (20) (Figure 4A). We
randomly divided 478 glioblastoma samples into a
training set and a test set. We subjected the miRNA ex-
pression data in the training set to univariate Cox propor-
tional hazard regression analysis to identify miRNAs
whose expression status was significantly correlated with
patient survival. We also performed GFA in the training
data set by dividing samples into a poor prognosis group
(death< 1 year) and a good prognosis group (others) to
identify miRNAs whose activity status was correlated with
patient prognosis. In a combinational strategy using

miRNA expression information and GFA-based assess-
ment of miRNA activity (the ‘expression level/GFA-
based’ strategy), we defined miRNAs that showed a cor-
relation with patient prognosis both in Cox regression
analysis and in GFA as prognostic miRNAs, and
calculated risk scores using a linear combination of these
miRNAs (22) (Figure 4A). On the other hand, in the ‘ex-
pression level-based’ strategy, we simply used the results
of Cox regression analysis and extracted the same number
of miRNAs as miRNAs selected in the ‘expression level/
GFA-based’ strategy.
As a result, we repeated randomization and subsequent

analyses several times and observed that the ‘expression
level-based’ strategy produces probable overfitting models
that function poorly in test sets, although these models
function well in training sets (Figure 4B). In contrast,
models developed by the ‘expression level/GFA-based’
strategy showed a tendency to work better than the
former in test sets (Figure 4B). We compared the likeli-
hood ratio of both models and noticed that models in the
‘expression level-based’ strategy showed a strong decline
in a fit to the survival status between training sets and test
sets, and that models in the ‘expression level/GFA-based’
strategy retained a fit even in test sets (Figure 4C). We also
estimated the time-dependent prediction error rate of both
models and found that the ‘expression level/GFA-based’
strategy exhibited better performance in spite of the selec-
tion of miRNAs with lower significance in Cox analysis
than that of the simple ‘expression level-based’ strategy
(Figure 4D). Taken together, these results suggest that
GFA-based assessment of miRNA function can provide
an attractive option for the more rational design of an
identification framework for biomarkers and therapeutic
targets using large expression data sets, although further
optimization should be required for practical use in com-
bination with unsupervised or supervised procedures and
various learning methods.

DISCUSSION

In the present study, we devised a novel procedure GFA
to infer miRNA activities from mRNA expression data,
taking advantage of two analytical pipelines, GSEA and
FAME. Despite advances in sequence-based approaches
for miRNA target predictions, it is still a major challenge
to deduce miRNA function from the list of hundreds of
putative target genes. So far, certain in silico methods
including FAME and the recent CoMeTa method,
which uses coexpression patterns of target genes for each
miRNA, have been developed as the next approach for
this problem (11,12,26). These methods are based on the
concept that miRNAs must stamp their footprints on
overall mRNA expression in accordance with the
‘mRNA-suppression’ scenario. However, it has not been
fully assessed whether the scenario is widely applicable to
diverse conditions with multiple miRNA fluctuations and
whether endogenous miRNA-mediated mRNA repression
has enough strength to predict miRNA function and
activity from mRNA expression data. By examining this
issue, we showed here that the ‘mRNA-suppression’
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scenario is certainly realized as a widespread correlation
between miRNA expression levels and miRNA activities
predicted by mRNA expression in cancer transcriptome
analysis. Therefore, these results provided proof-of-
concept of the ‘mRNA-destabilization’ scenario. In
addition, our findings may encourage an RNA
expression-based approach to infer miRNA function for
comprehensive understanding of the miRNA–mRNA
network in diverse fields.
FAME can be used in combination with several cluster-

ing methods and standard statistical tests including the
t-test to extract differentially expressed genes (12).
Although it was previously shown that this type of
usage of FAME gives a better correlation between
miRNA expression and miRNA activity than the
hypergeometric test in the analysis of cell type-specific for-
mation of transcriptome profiles (12), we have developed a

GFA with a better and steadfast performance than that of
the combination with the t-test and FAME in the DLBCL
study (Figure 3). We postulate that the better performance
of GFA is attained by the merits of GSEA and FAME:
the ability of GSEA to detect weaker expression changes
and the characteristics of FAME using a weighting scheme
for miRNA–mRNA pairs. In addition, the use of GSEA
confers a threshold-free approach, thereby providing prac-
tical convenience. This may also reduce the chance of
missing weak, but biologically relevant, expression
changes due to choosing a threshold that is either too
stringent or too lenient. Furthermore, we observed that
GFA was informative in the detection of activities of
transfected miRNAs not only in over-representation (en-
richment) assessment for down-regulated genes relative to
controls, but also in under-representation (depletion) as-
sessment for up-regulated genes (Figure 2). This suggests

TCGA
glioblastoma data
(mRNA & miRNA)

training set test set

1) Expression level-based selection of 
    prognostic miRNAs
2) Expression level/GFA-based selection of 
    prognostic miRNAs

a) Analysis of the association between
   miRNA expression levels and prognosis
b) GFA between the poor prognosis group (death 
< 1 year) and the good prognosis group (others)

risk score calculation

0

0.1

0.2

0.3

0.4

0 2 4 6 8 

 1) Expression level-based strategy

 2) Expression level/GFA-based strategy

Year

P
re

di
ct

io
n 

E
rr

or

0

10

20

30

0

10

20

lik
el

ih
oo

d 
ra

tio

lik
el

ih
oo

d 
ra

tio

 1) Expression level-based strategy

 2) Expression level/GFA-based strategy

1               2 1               2

training set test set

test accuracy

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

training set test set

training set test set

S
ur

vi
va

l

S
ur

vi
va

l

S
ur

vi
va

l

S
ur

vi
va

l

 1) Expression level-based strategy

 2) Expression level/GFA-based strategy

day

day day

day

 Low risk

 High risk

p < 0.001 p = 0.0824

p < 0.001 p = 0.0063

A B

C D

Figure 4. Availability of GFA for the selection of prognostic miRNAs in the development of cancer survival prediction models: TCGA glioblastoma
study. (A) Analytical outline of survival prediction using TCGA glioblastoma data sets. (B) Examples of Kaplan–Meier plots representing survival
probabilities according to low or high levels of risk scores developed by (i) the ‘expression level-based’ strategy and (ii) the ‘expression level/
GFA-based’ strategy in a training set and a test set. (C) Likelihood ratio of survival prediction models developed by (i) the ‘expression level-based’
strategy and (ii) the ‘expression level/GFA-based’ strategy in training sets and test sets. Positive numbers indicate that themodel fits the data better. Results
with five randomizations are shown. (D) Time-dependent prediction errors of survival prediction models developed by (i) the ‘expression level-based’
strategy and (ii) the ‘expression level/GFA-based’ strategy in training sets and test sets. Average results with five randomizations are shown.

e62 Nucleic Acids Research, 2013, Vol. 41, No. 5 PAGE 8 OF 10



that GFA can aid the detection of relative low activities of
miRNAs in addition to the detection of active miRNAs.
Regarding that FAME is informative in both analytical
directions, over-representation (enrichment) assessment
and under-representation (depletion) assessment (12,18),
FAME may contribute to the detection of relative low
activities of transfected miRNAs in control samples in
this case. Under-representation evaluations may be also
more informative than over-representation evaluations in
certain conditions where a group of genes have evolved to
avoid miRNA targeting during development (6,18).

On the other hand, we observed that some differentially
expressed miRNAs did not appear to mark their effects on
mRNA expression data. It may be interpreted by several
modification mechanisms such as a mask of miRNA
function by other RNA binding protein(s), non-canonical
seed-independent gene regulation and targeting of
non-30UTR regions by miRNAs (27,28). Therefore,
further mechanistic understanding of miRNA-mediated
gene regulation may improve the ability of first-generation
miRNA target prediction procedures (i.e. TargetScan and
so on) and second-generation miRNA activity inference
procedures (i.e. GFA and so on).

Transcription factors are key regulators of gene expres-
sion as well as miRNAs. Recent progress in the ENCODE
project demonstrated that most transcription factors
involved in miRNA regulation tend to be enriched at
the top of the network hierarchy of transcription factors
and to either largely regulate miRNAs or be regulated by
miRNAs (29). A similar pattern can also be seen for
miRNAs, suggesting the presence of a few high-degree
connections between transcription factors and miRNAs,
either transcription factor-to-miRNA regulatory inter-
actions or miRNA-to-transcription factor regulatory
interactions, with balanced regulation at the top of the
gene regulation network (29). On the other hand,
various modes of relationships between transcription
factors and miRNAs converging on the same target
genes have been considered (30,31). In the differentiation
of embryonic stem cells, it has been shown that let-7
miRNAs modulate the transcriptional network through
dual effects on transcription factors: direct inhibition of
Myc activity and collateral suppression of miRNA target
genes regulated overlappingly by the pluripotency tran-
scription factors Oct4, Sox2, Nanog and Tcf3 (32). To
consider the potential confounding mechanisms seen in
the latter case, we prepared an optional procedure to
reduce the potential influence of changes in transcriptional
factor activity (Figure 1, step 2’) and observed that this
procedure may gain in the detection of the
‘mRNA-suppression’ scenario in the DLBCL study
(Figure 3). Further improvements in processing relation-
ships between miRNAs and transcription factors may
provide more valuable insights into understanding the
impact of miRNAs on gene regulation.

In addition, our study presents some implications of
GFA for the field of conventional microarray-based
approaches in biomarker and therapeutic target identifi-
cation. We showed that inference of miRNA activity by
GFA could be used for the selection of prognostic
miRNAs in the development of cancer survival prediction

models (Figure 4). Considering the presence of an exten-
sive interplay between miRNA layers and transcriptome
layers, the paired profiling of miRNA expression and
mRNA expression can provide a robust platform to
select biologically relevant features, together with an ana-
lytical framework for understanding RNA regulatory
networks, such as GFA. This approach may allow us to
avoid problems associated with the use of one-sided data
and the simple application of statistical procedures,
including overfitting (23). This beneficial effect may also
be obtained in the mRNA signature-based strategy, in
which mRNA expression data could be affected more by
a ‘large P small N’ problem. Furthermore,
GFA-supported miRNAs may be good candidates for
therapeutic targeting to correct the pathological deregula-
tion of gene expression and modify disease processes. In
conclusion, this analytical approach may offer a basis for
a next-generation strategy to interpret miRNA function
and identify target miRNAs as biomarkers and thera-
peutic targets.
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