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Abstract

A longstanding puzzle in human genetics is what limits the clinical manifestation of hundreds

of hereditary diseases to certain tissues, while their causal genes are expressed throughout

the human body. A general conception is that tissue-selective disease phenotypes emerge

when masking factors operate in unaffected tissues, but are specifically absent or insuffi-

cient in disease-manifesting tissues. Although this conception has critical impact on the

understanding of disease manifestation, it was never challenged in a systematic manner

across a variety of hereditary diseases and affected tissues. Here, we address this gap in

our understanding via rigorous analysis of the susceptibility of over 30 tissues to 112 tissue-

selective hereditary diseases. We focused on the roles of paralogs of causal genes, which

are presumably capable of compensating for their aberration. We show for the first time at

large-scale via quantitative analysis of omics datasets that, preferentially in the disease-

manifesting tissues, paralogs are under-expressed relative to causal genes in more than

half of the diseases. This was observed for several susceptible tissues and for causal genes

with varying number of paralogs, suggesting that imbalanced expression of paralogs

increases tissue susceptibility. While for many diseases this imbalance stemmed from up-

regulation of the causal gene in the disease-manifesting tissue relative to other tissues, it

was often combined with down-regulation of its paralog. Notably in roughly 20% of the

cases, this imbalance stemmed only from significant down-regulation of the paralog. Thus,

dosage relationships between paralogs appear as important, yet currently under-appreci-

ated, modifiers of disease manifestation.

Author summary

A longstanding enigma in human genetics is what limits the clinical manifestation of hun-

dreds of hereditary diseases to certain tissues or cell types, while their causal genes are

present and expressed throughout the human body. A general conception was that the
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tissue-wide robustness to the causal aberration is achieved owing to the presence of a com-

pensatory factor, and that disease phenotypes emerge wherever this factor is limited.

Here, we tested this general conception at large-scale for the first time. We focused on

paralogs of disease-causing genes, which share their functionality and may compensate

for their aberration. Based on quantitative analyses of several types of omics data, we show

that paralogs of causal genes are down-regulated relative to the disease-causing gene pref-

erentially in the respective disease-manifesting tissue. This tendency is common across

various subsets of causal genes, diseases, and tissues. Thus, paralogs of causal genes appear

to contribute to the tissue-wide robustness against causal aberrations, and serve as impor-

tant, yet currently under-appreciated, modifiers of disease manifestation.

Introduction

Hereditary diseases are caused by germline aberrations that are common to cells throughout

the human body. For hundreds of these diseases, these germline aberrations have been identi-

fied and mapped to causal genes [1], and many more causal genes are likely to be identified in

coming years owing to the extensive usage of sequencing techniques in medical settings [2].

However, the identification of a causal gene is often just the starting point for understanding

the molecular basis of each disease. The genotype-to-phenotype relationship between a causal

gene and the respective disease phenotype is typically complex [3,4], and, for numerous hered-

itary diseases remains to be elucidated. By shedding light on these relationships, we hope to

obtain better understanding of disease mechanisms and advance the search for cures.

Tissue-selectivity is a hallmark of many hereditary diseases [5]. For example, familial muta-

tions in BRCA1 gene increase the risk for breast and ovarian cancers, and familial mutations

in RB1 gene lead primarily to retinoblastoma. From an evolutionary point of view, tissue-selec-

tivity is not surprising given that limited manifestation is probably less detrimental than whole

body diseases, and thus more likely heritable. Yet, tissue-selectivity is intriguing due to the pat-

tern of expression of causal genes. For example, both BRCA1 and RB1 are expressed ubiqui-

tously across most human tissues without eliciting disease phenotypes in those tissues. In fact,

most causal genes exhibit tissue-specific disease manifestation along with tissue-wide expres-

sion [5,6]. Several molecular mechanisms may lead to this phenomenon. In some cases, the

disease-manifesting tissue (denoted disease tissue henceforth) has unique features [7,8], such

as long-lived neurons and age-related protein misfolding diseases [9]. In other cases, the tis-

sue-selective effect may depend on the specific isoform expressed in that tissue [10]. Meta-

analysis studies showed that causal genes tend to have elevated expression preferentially in

their disease tissues [5,6], hinting to a quantitative basis for tissue selectivity. Previously, we

showed that causal genes tend to form tissue-specific interactions preferentially in their respec-

tive disease tissues, suggesting that these interactions contribute to tissue selectivity [5]. Yet for

many hereditary diseases, the molecular mechanisms that underlie them remain hidden.

Here, we consider the role that paralogs of causal genes may play in determining the tissue-

selectivity of hereditary diseases. Paralogs, namely homologous genes within the same species

resulting from gene duplication events, have been repeatedly shown to have redundant func-

tions and to compensate for the loss of each other (reviewed in [11]). At a systems level, para-

logs were shown to be less essential than genes lacking paralogs (singletons) in yeast [12],

worms [13], mice [14] and plant [15]. A recent measurement of the essentiality of over 17,000

human genes showed that the same tendency holds for human paralogs [16]. The impact of

paralogs was also demonstrated in the context of disease. For example, a mouse model of
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retinoblastoma that carries a homozygous deletion in the Rb gene, the homolog of human RB1

gene, does not develop retinoblastoma [17], unless one of the paralogs of Rb, p107 [18] or

p130 [19], is removed.

Interestingly, in several cases the compensatory impact of paralogs was found to be dosage-

dependent. For example, mouse embryos that are homozygous for Mek1 gene deletion and

which typically die due to placental defects, survive if two copies of Mek2 gene are inserted,

while one copy of Mek2 is not sufficient [20]. Similarly, the Eif2s3y gene on the mouse Y chro-

mosome was shown to be replaceable by its X-linked homolog Eif2s3x gene for spermatogene-

sis initiation, but more copies of Eif2s3x were required for progression through meiosis [21].

In human, the essentiality of each of the two paralogous helicases, the genes DDX3Y and

DDX3X, was inversely correlated with the expression level of the other paralog, stressing that

their functional redundancy is dosage-dependent [16].

We hypothesized that tissue-selectivity of some hereditary diseases may be related to quan-

titative relationships between causal genes and their paralogs. Accordingly, owing to the func-

tional redundancy between paralogs, a paralog of an aberrant causal gene can generally

compensate for its malfunction (Fig 1A). However, when the quantitative relationships

between them change, compensation may become insufficient and disease phenotypes will

emerge. This might occur when the causal gene is up-regulated in the disease tissue without a

similar change in the level of the paralog (Fig 1B). Alternatively, the causal gene may be

expressed at an intermediate level in the disease tissue, but the paralog is down-regulated at

the disease tissue (Fig 1C). While dosage-dependent compensation relationships between

paralogs were demonstrated previously (e.g., [16,20,21]), this phenomenon was never analyzed

systematically at large-scale in the context of tissue-selective diseases.

In this study, we analyze quantitatively the relationships between 80 causal genes and their

paralogs across 112 hereditary diseases. We focused on hereditary diseases that manifest selec-

tively in distinct tissues, including the brain, skeletal muscle, heart, skin, liver, thyroid or testis.

We took advantage of various omics data including 420 RNA-sequencing profiles of 45 human

tissues made available by the Genotype-Tissue Expression (GTEx) consortium [22], to assess

quantitatively the relationships between causal genes and their paralogs across tissues. The

majority of the causal genes were functionally-overlapping with their paralogs, and causal

genes were less essential than singleton genes. Next, we computed the expression ratios

between causal genes and their paralogs in different tissues. The ratios were typically similar

across tissues, except for the disease tissues where the ratios were significantly high. These high

ratios were observed for causal genes with different numbers of paralogs and in various disease

tissues. To distinguish between the possible scenarios leading to imbalanced expression (Fig

1B and 1C), we carried differential expression analysis across the different tissues. In 26% of

the cases, the causal gene was significantly up-regulated in the disease tissue. In 19% of the

cases a paralog was significantly down-regulated in the disease tissue, and in additional 24% of

the cases both occurred. These results suggest that paralogous compensation can shed light on

the tissue-selective manifestations of hereditary diseases.

Results

Functional relationships between causal genes and paralogs

We started by creating a high-confidence dataset of tissue-selective hereditary diseases. For

this, we manually curated hereditary diseases that manifested clinically in one of the following

tissues: brain, skeletal muscle, heart, skin, liver, thyroid or testis. We included diseases with

various modes of inheritance, since in both dominant and recessive disorders paralogous com-

pensation may contribute to the robustness of unaffected tissues. For each disease, we
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extracted its known causal genes from the OMIM database [1], and identified paralogs of the

causal gene based on phylogeny and sequence identity (see Methods). The causal genes con-

tained various types of aberrations, several of which can lead to partial or complete loss of the

gene product and its function, due to, e.g., protein truncation or in-frame missense mutations

[23,24]. Other aberrations could lead to gain-of-function for which paralogous compensation

may not be relevant, but these were shown in a systematic screen to occur at low frequency

[23]. Next, we examined the pattern of expression of causal genes across tissues, to avoid causal

genes that are tissue-specific and thus inevitably elicit tissue-specific phenotypes. For this, we

Fig 1. The functional redundancy between causal genes and their paralogs is dosage-sensitive. (A). A network model representing the functional redundancy

between a causal gene and its paralog. In the healthy state (left), the causal gene (marked C) and its paralog (marked P) have redundant functions, represented as

common interactors. In the aberrant state, the casual gene has limited functionality (dashed edges). In unaffected tissues (middle), the limited functionality is masked

by the presence of its paralog. In the disease tissue (right), masking is reduced (thin edges) due to relatively low expression of the paralog, and the limited

functionality is exposed. (B.) Limited masking in the disease tissue caused by over-expression of the causal gene. Germline mutations in CAV3 lead to muscular

dystrophy. In muscle (red arrow) CAV3 is expressed at its highest level whereas its paralog, CAV1, is relatively lowly expressed. (C.) Limited masking in a disease

tissue may arise from under-expression of the paralog. Germline mutations in VRK1 cause pontocerebellar hypoplasia. In the disease tissue (cerebellum, red arrow),

VRK1 is expressed at an intermediate level, whereas its paralog, VRK2, is significantly under-expressed. Expression data were downloaded from GTEx portal [44] (see

Methods). Gene expression levels were normalized to their maximum levels across tissues (26 tissues shown). Expression in disease tissues appears as bold color bars.

https://doi.org/10.1371/journal.pgen.1007327.g001
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used RNA-sequencing profiles of human tissues made public by the GTEx consortium [22]

(see Methods). We computed the number of tissues expressing each causal gene above a cer-

tain threshold (see Methods), and limited our analysis to causal gene and their paralogs that

were co-expressed in at least five tissues.

Henceforth, we analyzed 112 hereditary diseases caused by germline mutations in 80 causal

genes (Fig 2A and S1 Table). Some of the genes were causal for distinct diseases (due to distinct

mutations) that manifested in different tissues, resulting in 93 pairs of causal genes and disease

tissues (S2 Table). The majority of the causal genes were expressed ubiquitously across tissues

(83%, Fig 2B and S1 Fig). Thus, in agreement with previous studies [5,6], tissue-selectivity of

their respective diseases could not stem simply from tissue-selective expression of the casual

genes. Most causal genes were associated with one or two paralogs (76%, Fig 2C), and many

paralogs were also globally expressed (66%, Fig 2B).

Fig 2. Evidence for functional overlap between causal genes and their paralogs. (A.) An overview of the manually-curated dataset of 112 tissue-selective hereditary

diseases (gray bars) and their causal genes (red bars) by their disease tissues. (B.) The distributions of causal genes (red bars) and paralogs (blue bars) by number of

expressing tissues, showing that most genes were expressed in all tissues (to avoid over-representation of the brain only 36 tissues were considered). (C.) The distribution

of causal genes according to the number of their paralogs. Most causal genes have up to two paralogs. (D.) The fraction of functionally-overlapping pairs among causal-

gene and paralog (CGP) pairs with similar sequence identity levels. Evidence for functional overlap included significant co-expression across tissues (Pearson correlation

p<0.01, gray bars), significant overlap in physical interaction partners (Fisher exact test p<0.01, black bars), or both (striped bars). The fraction of functionally

redundant pairs increased with their sequence identity. (E.) The cumulative distributions of essential genes among causal genes (red) and protein-coding singleton genes

(black) show that the causal genes in our dataset are significantly less essential than singleton genes (Kolmogorov-Smirnov test, p = 0.02). The X axis shows cellular

growth in the presence of inactivating mutations, denoted CRISPR score, where negative values mark essential genes [16].

https://doi.org/10.1371/journal.pgen.1007327.g002
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Monogenic disease genes and their paralogs were shown previously to be frequently func-

tionally overlapping, based on their co-expression relationships [25] and overlap in interaction

partners [26]. We used similar measures to test for functional overlap between causal genes

and their paralogs in our dataset. For each causal gene and its paralog, denoted causal gene–

paralog (CGP) pair, we computed the expression correlation between them across all tissues,

and the overlap in their protein interaction partners (see Methods). The majority of the CGP

pairs were significantly functionally overlapping by at least one measure, and, as expected,

functional overlap was more frequent among pairs with higher sequence identity (Fig 2D).

The functional overlap between causal genes and their paralogs suggests that causal genes

in our dataset would have a lower tendency to be essential, relative to singleton genes. This was

recently shown for human genes with paralogs in general [16]. We repeated the same test for

the causal genes in our dataset (Fig 2E). Indeed, causal genes were significantly less essential

than singleton genes (Kolmogorov-Smirnov test, p = 0.02), in agreement with the presence of

a functionally redundant paralog.

Imbalanced expression of causal genes and paralogs occurs preferentially in

the disease tissue

According to the imbalance hypothesis, the relative levels of a causal gene and its paralog are

comparable across tissues, except for the disease tissue, where we expect to find a shift in bal-

ance (Fig 1). To test this hypothesis, we computed the ratio between the expression levels of

causal genes and their paralogs across the different tissues (see Methods). We then compared

the ratios obtained in disease tissues to the ratios obtained in other tissues (Fig 3A, left). The

ratios in the disease tissue were significantly higher than the median ratios in unaffected tis-

sues, in accordance with the imbalance hypothesis (Mann-Whitney, p<10−15). A similar shift

in balance was evident upon considering only causal genes with a single paralog (Fig 3A, mid-

dle, p = 0.0058). In case a causal gene has multiple paralogs, paralogs might have distinct com-

pensatory behaviors or a cumulative effect. Thus, for causal genes with multiple paralogs, we

additionally tested whether imbalance was still observable upon combining all the paralogs of

each causal gene (see Methods). Indeed, these ratios too were significantly higher in the disease

tissue relative to unaffected tissues (Fig 3A, right, p = 0.0012).

We further tested the generality of the imbalance by dividing causal genes according to

their disease tissues and repeating this test. Notably, the ratios obtained for pairs in their

respective disease tissue were higher than the ratios obtained for the same pairs in the six unaf-

fected tissues, for all disease tissues except testis and thyroid, which included a single causal

gene (Fig 3B–3E and S2 Fig). We extended this test to include all tissues. Upon comparing the

ratios for CGP pairs in their disease tissue to their ratios in all other tissues, we find that with

the exception of testis and thyroid, the highest ratios were obtained consistently in the disease

tissue and its closely related tissues, such as different regions of the heart, skin that is sun-

exposed and unexposed, and closely related brain regions (Fig 3F and S3 Fig). Thus, imbal-

anced expression of causal genes and their paralogs is prevailing among hereditary diseases.

Down-regulation of paralogs can contribute to expression imbalance

Our next goal was to analyze quantitatively the causes for the shift in balance observed for

causal genes and their paralogs in their respective disease tissues. In general, their balance

could be shifted due to up-regulation of the causal gene or down-regulation of its paralog in

the disease tissue relative to other tissues, or both, as shown schematically in Fig 4A. The CGP

pair CAV1, CAV3 presented in Fig 1B demonstrates the first scenario, while the CGP pair

VRK1, VRK2 presented in Fig 1C demonstrates the second scenario. To distinguish between
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these scenarios and to quantify their frequency in our dataset, we used differential expression

analysis. We focused on the 36 tissues for which five or more samples were available. For each

disease tissue, we calculated the differential expression of genes in this tissue relative to all

other tissues. This allowed us to identify rigorously genes that were up-regulated or down-reg-

ulated significantly in the respective disease tissue (2-fold change and p<0.01, see Methods).

We then analyzed the frequency of the different scenarios among our CGP pairs (Fig 4B).

The most common scenario was the up-regulation of the causal gene, which we observed in

52% of the CGP pairs. In additional 15% of the pairs, this was combined with down-regulation

of the paralog. Notably, in another 9% of the pairs the paralog alone was significantly down-reg-

ulated. To test the generality of these trends, we repeated this analysis for several partitions of

the causal genes. We observed the same trends upon analyzing separately genes that share the

same disease tissue (e.g., Fig 4C and S4 Fig). The different scenarios were evident also when ana-

lyzing causal genes with a single paralog (Fig 4D, left). Specifically, 36% of the causal genes were

up-regulated, including 7% where the paralog was down-regulated. In additional 20% of the

genes, only the paralog was down-regulated (Fig 4E). We further tested whether these scenarios

occurred preferentially in the disease tissue by carrying randomization tests (see Methods). We

found that each scenario was significantly more frequent in the disease tissue than in unaffected

tissues. This included up-regulation of the casual gene (p<10−3), down-regulation of the paralog

(p<10−3), or both (p<0.05). We repeated this analysis for genes with multiple paralogs by com-

bining CGP pairs of the same causal gene (see Methods, Fig 4D, right). The frequency of each

scenario in the combined dataset including all genes was significantly larger than expected by

chance (Fig 4F). This suggests that imbalance in general, and specifically imbalance due to para-

log down-regulation, occurs preferentially in the disease tissue.

An example for down-regulation of a paralog is presented by the charged multivesicular

body protein 1a (CHMP1A) gene. CHMP1A is causal for pontocerebellar hypoplasia type 8,

an autosomal recessive neurodevelopmental disorder [27]. Two germline mutations in

CHMP1A were identified independently in patients, both leading to lack of CHMP1A expres-

sion in patient-derived cells [28]. Our data shows ubiquitous expression of CHMP1A across

tissues, with intermediary expression in the cerebellum (Fig 5A, left). CHMP1A has a paralog,

CHMP1B, with considerable sequence identity (55.6%) and significantly overlapping protein

interaction partners. CHMP1B was significantly under-expressed in the cerebellum (Fig 5A

middle), leading to imbalance and potentially insufficient compensation specifically in the dis-

ease tissue (Fig 5A, right). Additional examples appear in Fig 5B–5E.

Fig 3. The expression of causal genes and their paralogs is highly imbalanced in their disease tissues compared to unaffected tissues. (A)

The ratio between the expression levels of causal genes and their paralogs across tissues. Each point represents a single pair; the ratio in the

disease tissue appears in red, the median ratio in unaffected tissues appears in gray. Ratios in the disease tissue (DT) were significantly higher

than in unaffected tissues (UAT) when all pairs were considered (’All pairs’, Mann-Whitney test, p<10−15); when only causal genes with

single paralogs were considered (’Single CGP’, Mann-Whitney test, p = 5.8�10−3); and when causal genes with multiple paralogs were

considered and ratio was computed against their combined expression (’Multiple CGP’, Mann-Whitney test, p = 1.2�10−3). �� refers to

p<10−3 and ��� to p<10−5. (B)—(E) The ratios between the expression levels of causal genes and their paralogs shown separately for causal

genes sharing the same disease tissue. Each point represents the ratio observed in the disease tissue (red) and in an unaffected tissue (gray).

The panels show genes causal for diseases manifesting in the brain (B), heart (C), muscle (D), and skin (E). In all panels, the median ratio is

highest for pairs in their respective disease tissues. Moreover, except for brain, the difference in the distribution of ratios between disease

tissue and unaffected tissues was statistically significant (brain p = 0.29, heart p = 3�10−4, muscle p = 2.45�10−5, and skin p = 7.6�10−6,

Kolmogorov-Smirnov test). Additional disease tissues appear in S2 Fig. In contrast to causal genes and their paralogs, the general difference

in expression patterns between paralogs is very small (S5 Fig). (F) The median expression ratio of causal genes and their paralogs for different

subsets of diseases. Each row in the balloon plot corresponds to the subset of diseases that manifest in the tissue designated on the left, and

entries per row show the median expression ratio of the respective causal genes and their paralogs across the different tissues. The median

expression ratios were normalized to the highest median expression ratio observed in that row (reflected by circle size and color, with

maximum value of 1). For most disease subsets, the highest median expression ratios were obtained in the respective disease-manifesting

tissue. For brevity, 26 tissues were shown; a view of all tissues appears in S3 Fig.

https://doi.org/10.1371/journal.pgen.1007327.g003
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Discussion

Paralogous compensation is a key mechanism for maintaining genetic robustness [12–15,25].

Paralogs result from gene duplication events, and may be retained in the genome following

sub- or neo-functionalization [29] or the sharing of gene dosage [30]. Their ability to compen-

sate for each other relies on their functional similarity, and in some cases involves changes

in the abundance of the functional paralog, its cellular localization or protein interactions

(reviewed in [11]). Paralogous compensation is more frequent among young paralogs that

Fig 4. Differential expression analysis reveals causes for imbalanced expression of causal genes and their paralogs in the disease tissue. (A) Scenarios leading to

imbalanced expression of causal genes and paralogs in the disease tissue. From left to right: a reference state; significant up-regulation of the causal gene in the disease

tissue relative to its average expression in other tissues; significant down-regulation of the paralog in the disease tissue relative to its average expression in other tissues;

significant up- and down- regulation of the causal gene and its paralog, respectively. (B) The ratio between the expression levels of causal genes and their paralogs

visualized according to the differential expression of the causal gene and its paralog. Each point represents the ratio of a specific pair in their disease tissue (DT) and

unaffected tissues (UAT). Colors indicate whether, relative to its average expression in other tissues, in the disease tissue the causal gene was significantly over-

expressed (red), the paralog was significantly under-expressed (blue), both co-occurred (purple), or none occurred (gray). In most pairs at least one pair mate was

differentially expressed in the disease tissue. (C) The ratios between causal genes and their paralogs for genes causal for heart diseases. Data for other disease tissues

appear in S4 Fig. (D) A visualization of the ratios between causal genes and their paralogs for causal genes with a single paralog (single CGP) or multiple paralogs

(multiple CGP). For multiple CGPs, the ratio was computed against the combined expression of paralogs. Blue indicates that at least one paralog was significantly

under expressed in the disease tissue relative to its average expression in other tissues. (E) The frequency of imbalanced scenarios among the 45 causal genes with a

single paralog. 29% of the causal genes were up-regulated in their disease tissues relative to other tissues (red, p<10−3), 20% of the paralogs were down-regulated in the

disease tissue relative to other tissues (blue, p<10−3), and 7% of the causal genes had both (purple, p = 0.05). (F) The frequency of imbalanced scenarios among the 93

pairs of causal genes and disease tissues in our dataset. In 26% of the pairs, causal genes were up-regulated in their disease tissues relative to other tissues (red, p<10−3);

in 19% of the pairs, causal genes had a down-regulated paralog in the disease tissue relative to other tissues (blue, p = 0.024); and in 24% of the pairs, causal genes had

both (purple, p<10−3). � refers to p<0.05, �� to p<10−3 and ��� to p<10−5.

https://doi.org/10.1371/journal.pgen.1007327.g004
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Fig 5. Specific examples for imbalanced expression of causal genes and their paralogs occurring preferentially in

the disease tissues. Each panel shows the expression levels of the causal gene (left), the paralog (middle) and their ratio

(right) in every tissue. Colored points indicate the respective values in the disease tissue. In each example the paralog of

the causal gene is under-expressed in the disease tissue. (A) CHMP1A and CHMP1B are two paralogous members of

the CHMP family of proteins, with 55.6% sequence identity and significantly overlapping interactions. CHMP1A is

causal for pontocerebellar hypoplasia type 8 that manifests in the brain, where CHMP1B is down-regulated (log2FC =

-1, p = 2.47�10−4; FC denotes fold-change). (B) VRK1 and VRK2 are two paralogous members of the vaccinia-related

kinase family of serine/threonine protein kinases, with 45% sequence identity and significant co-expression. VRK1 is
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have not diverged much [15,25], but was also observed among ancient paralogs [31]. Here we

harnessed the concept of paralogous compensation to illuminate a fundamental question:

What makes certain cell types or tissues succumb to a germline aberration while others remain

robust. We hypothesized that paralogous compensation acts in various tissues throughout the

body, however is limited and thus insufficient in the disease tissue, which therefore becomes

vulnerable to germline mutations (Fig 1).

We tested our hypothesis on genes causal for 112 hereditary diseases that manifest predom-

inantly in a single tissue (Fig 2). The causal variants of the genes we analyzed contained various

types of aberrations, several of which can lead to partial or complete loss of the gene product

or its function, due to, e.g., protein truncation or in-frame missense mutations [23,24]. Other

aberrations can lead to gain-of-function for which paralogous compensation may not be rele-

vant, but these were shown in a systematic screen to occur at low frequency [23]. The causal

genes and their paralogs in our dataset appeared to be functionally related by various mea-

sures, and, in accordance, were less essential than singleton genes (Fig 2D and 2E).

Dosage sharing between paralogs was suggested to be one of the first steps following gene

duplication [30]. Previous studies in yeast, fly and Arabidopsis observed that duplicate genes

have higher expression divergence compared to singleton genes [32–34]. In human, variation

in gene expression was shown to be far greater among tissues than among individuals [35],

and was high among disease-related genes [36], as we also observed for the paralogs that we

studied. Here, we analyzed systematically for the first-time dosage relationships between genes

that are causal for tissue-selective hereditary diseases and their paralogs. For this, we exploited

transcriptional profiles of 36 human tissues sampled from deceased donors with no genetic

diseases [22]. Together, these profiles provided an atlas of gene expression in normal tissues

and a baseline indicating the relevance of a gene within a specific tissue. While expression lev-

els of wildtype alleles in patients carrying causal aberrations might differ from the levels

observed in the general population, such changes were assessed previously and shown to be

very limited [37–39]. Using these data, we found that the ratio between the expression levels of

causal genes and their paralogs tend to be significantly high particularly in their disease tissues

(Fig 3). This agrees with our hypothesis that, upon causal aberration, paralogous compensation

will be limited specifically in the disease tissue, thereby making this tissue more vulnerable

than other tissues expressing the same causal gene.

The relatively high expression ratios could stem from up-regulation of the causal gene in

the vulnerable tissue, or from down-regulation of its paralog (Fig 1). To differentiate between

these scenarios, we carried a rigorous differential expression analysis, which was enabled by

the large numbers of samples available per tissue. The largest fraction of the cases included

causal genes that were up-regulated significantly in their disease tissues, as previously observed

causal for pontocerebellar hypoplasia type 1A that manifests in the brain, where VRK1 is not up-regulated (log2FC =

-0.42, p = 4�10−3), but VRK2 is strongly down-regulated (log2FC = -2.5, p = 1.3�10−18). (C.) LAMA2 and LAMA1 are

two paralogous laminin alpha subunits with 45% sequence identity. LAMA2 is causal for congenital muscular

dystrophy that manifests in skeletal muscle. LAMA2 is over-expressed in muscle (log2FC = 0.93, p = 4.4�10−10),

whereas LAMA1 is very lowly expressed (log2FC = -2.47, p = 2.86�10−9). (D) OPHN1 and ARHGAP42 are two

paralogous Rho-GTPase-activating proteins with 51% sequence identity. OPHN1 is causal for X-linked mental

retardation with cerebellar hypoplasia that manifests in the brain, where ARHGAP42 is strongly down-regulated

(log2FC = -2.9, p = 1.04�10−12). (E.) LDLR and VLDLR are two paralogs that cause distinct tissue-selective diseases and

are down-regulated at each other’s disease tissue. LDLR is causal for familial hypercholesterolemia that manifests in the

liver (left, marked by an arrow), where it is expressed at intermediate level, while its paralog, VLDLR (48% sequence

identity and significant overlap in protein-protein interactions), is down-regulated (log2FC = -2.5, p = 1.32�10−9).

VLDLR, in turn, is causal for cerebellar hypoplasia and mental retardation. VLDLR is expressed at intermediate level

in the cerebellum (right, marked by an arrow), where LDLR is significantly under expressed (log2FC = -0.86, p = 0.02).

https://doi.org/10.1371/journal.pgen.1007327.g005
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[5,6]. However, in many other cases the causal gene was not upregulated and there was no tis-

sue-specific isoform, yet a paralog was down-regulated significantly (Fig 4E and Fig 5). Nota-

bly, the frequency of each of these scenarios was higher than expected by chance (p<0.05,

randomization test). A specifically interesting example involved two paralogous causal genes

that were down-regulated at each other’s disease tissue (Fig 5E). LDLR and VLDLR belong to

the low-density lipoprotein receptor gene family and are functionally overlapping (>47%

sequence identity and significantly overlapping interactions). LDLR is causal for familial

hypercholesterolemia that manifests in the liver, and VLDLR is causal for cerebellar hypoplasia

and mental retardation. Each of them was expressed at intermediate levels at its respective dis-

ease tissue, and down-regulated at the disease tissue of its paralog, suggesting that by this they

elicit tissue-specific phenotypes.

There remains a subset of causal genes for which imbalanced expression or significant

expression changes were not observed. This includes cases where paralogous compensation

may be irrelevant, due to limited functional overlap between paralogs or their tissue-specific

isoforms, or a gain-of-function aberration. Interestingly a recent study showed that some para-

logs in yeast are dependent on each other, and thus when mutated impart fragility rather than

robustness [39]. We identified one such disease-related pair in human. BRAF and RAF1 are

two functionally-related paralogous genes of the RAF family of serine/threonine protein

kinases, known to be causal for various types of Noonan and Leopard syndromes. Interest-

ingly, they were shown to form a heterodimer, thus explaining their dependency and common

phenotypes [40]. Additional cases of paralogous compensation may remain hidden due to

under-sampling of relevant cell types, or to lack of post-transcriptional profiling [38]. These

might come to light upon analyzing data from specific cell types, or by rigorous proteomic

analyses at large scales. In the future, it will be intriguing to extend the concept of compensa-

tion to higher-order entities such as pathways (e.g., [15,41]).

Our results show that systematic analysis of large-scale datasets illuminates dosage relation-

ships and paralogous compensation events. They suggest that compensatory factors underlie

tissue-selective genotype-phenotype relationships and particularly disease susceptibility, and

point to paralogs as new and effective modifiers of tissue robustness.

Methods

Disease set and genes analyzed in this study

The disease set included hereditary diseases with known protein-coding causal genes accord-

ing to OMIM [42] that were predicted to manifest in either the brain, heart, liver, skeletal mus-

cle, skin, testis or thyroid [6]. We used literature and expert curation to validate their clinical

association and to filter out diseases with multiple affected tissues. Causal genes were down-

loaded from OMIM [42]. Paralogs were extracted from Ensembl-Biomart [6,43,44] and limited

to paralogs with reciprocal sequence identity of 40% or more.

Gene expression analyses

RNA sequencing profiles were obtained from the GTEx portal on 2/22/17 (version 6p) [44]. In

the expression quantification of genes by GTEx, only uniquely mapped reads were considered

[45]. Only samples from individuals with traumatic injury as cause of death were included as

proxy for healthy tissues (S3 Table). We verified the absence of possible confounders, includ-

ing gender and age group, by applying mixed linear models to each tissue separately. To evalu-

ate the expression distribution of a gene across tissues, we considered a gene as expressed in a

certain tissue if its level exceeded 0.3 RPKM in at least half of the samples of that tissue. For

each gene, the number of tissues expressing that gene was recoded. We included in the
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analyses only CGP pairs that were co-expressed in at least 5 tissues. Ratios between RPKM

gene expression levels were calculated per sample. A distinct ratio was computed for a causal

gene and each of its paralogs. In the combined analysis, a ratio was computed between the

expression level of a causal gene and the sum of the expression levels of its paralogs. The ratio

in a specific tissue was set to the median ratio across all samples of that tissue. To assess the

general difference in expression patterns between paralogs that were not filtered for causal

genes, we analyzed paralogs with at least 40% identity that were expressed in at least 5 common

tissues (similarly to causal genes and their paralogs). For each pair, we calculated the expres-

sion ratio in each sample, across all samples of the same tissue.

Functional overlap analysis

We correlated between the expression levels of a causal gene and each of its paralogs across tis-

sues by using Pearson correlation. For each gene, its expression level per tissue was set to the

median RPKM level over samples of that tissue. We downloaded data of experimentally-

detected protein-protein interactions from BioGRID [46], DIP [47] and IntAct [48] by using

myProteinNet [49] and computed the number of proteins that interact with a causal gene,

with its paralog, and with both. The CRISPR scores of genes, which represent their essentiality,

were extracted from [16].

Differential expression analysis

Differential expression analysis was applied to 36 GTEx tissues with at least five samples. Raw

counts were extracted from GTEx portal and normalized using the TMM method by the

edgeR package (27), to obtain the same library size for every sample. Genes with less than 10

counts in all samples were removed before normalization. In each sample, we transformed

RNA-sequencing normalized counts using VOOM [50], and calculated differential expression

using a linear model in the R-package Limma [51]. Specifically, all samples of the same tissue

were compared to a background set containing all other samples (not limited to tissues with 5

samples or more). Only genes with an absolute 2-fold change or more and FDR adjusted P-val-

ues<0.01 were considered differentially expressed.

Statistical analysis

We used mixed linear models to predict the expression of a causal gene in each tissue by the

expression levels of its paralogs, by the number of its paralogs, by whether its expression was

measured in the disease tissue and by the amount of tissues which manifest a disease associated

with this gene. We accounted for the clustered structure of the donors by including a random

intercept in all of the models. Mixed linear models were computed by using IBM SPSS Statis-

tics, Version 23.0. We compared between the expression distributions of causal genes and

their paralogs across tissues by using the Kolmogorov-Smirnov test. The significance of pro-

tein interactions overlap between a causal gene and its paralog was computed by using Fisher

exact test. We compared between essentiality scores of causal genes and protein-coding genes

without paralogs by using the Kolmogorov-Smirnov test. This test was also used to compare

between the distribution of ratios obtained in disease tissues versus unaffected tissues. We

used a randomization test to assess whether causal genes (and their paralogs) are over-

expressed (or under-expressed) preferentially in the disease tissue relative to other tissues. Spe-

cifically, in each randomized run each causal gene was assigned a randomly selected disease

tissue out of the set of GTEx tissues expressing the causal gene and its paralog. For causal

genes with multiple paralogs, the disease tissue was selected randomly from the set of GTEx

tissues expressing the causal gene and at least one of its paralogs. We then counted the number
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of causal genes that were significantly over-expressed, had an under-expressed paralog, or

both, in the randomly selected disease tissues. We repeated this analysis 1,000 times. Statistical

significance was set to the fraction of randomized runs in which the number of causal genes in

a given subset was at least as high as the fraction observed for these pairs in the original

dataset.

Supporting information

S1 Table. Tissue-selective hereditary diseases and their disease-manifesting tissues.

(DOCX)

S2 Table. The causal genes, paralogs and respective disease-manifesting tissues.

(DOCX)

S3 Table. The read counts and samples used in this study.

(XLSX)

S1 Fig. The distributions of causal genes (red bars) and paralogs (blue bars) by number of

expressing tissues.

(TIF)

S2 Fig. The ratios between the expression levels of causal genes and their paralogs shown

separately for causal genes sharing the same disease tissue. Each point represents the ratio

observed in the disease tissue (red) and in an unaffected tissue (gray). The panels show genes

causal for diseases manifesting in the liver (A), testis (B), thyroid (C).

(TIF)

S3 Fig. The median ratios between the expression levels of causal genes and their paralogs

across tissues. Each row corresponds to genes causal for diseases that manifest in the tissue

designated on the left, and represents the median ratios per tissue normalized to the maximum

in that row. In each row, the median ratios in the disease tissue are highest. All 36 tissues with

5 samples or more are shown. The imbalanced expression of genes causal for brain diseases

and their paralogs is at comparatively high levels in multiple tissues mainly due to two causal

genes, CST3 and CTSD, that were associated with 3 and 6 paralogs, respectively, and were

expressed at relatively high levels in multiple tissues.

(TIF)

S4 Fig. The ratio between the expression levels of causal genes and their paralogs visualized

according to the differential expression of the causal gene and its paralog. Each point repre-

sents the ratio of a specific pair in their disease tissue (DT) and unaffected tissues (UAT). Col-

ors indicate whether in the disease tissue the causal gene was significantly over-expressed

(red), the paralog was significantly under-expressed (blue), both co-occurred (purple), or none

occurred (gray). The panels show genes causal for diseases manifesting in the brain (A), liver

(B), muscle (C), Skin (D), testis (E), thyroid(F).

(TIF)

S5 Fig. The general difference in expression patterns between paralogs. Shown are the

expression ratios for 2,257 unique paralog pairs (not filtered for causal genes) in the seven dis-

ease-related tissues. The median ratios between paralogs observed per tissue ranged between

1.03–1.08 (namely ~0 on a log scale), suggesting that the general difference in expression pat-

terns between paralogs is very small.

(TIFF)
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