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Abstract: The loose accumulation CAUSED by landslide, collapse, debris flow, and mine blasting,
exerts considerable negative influence to human activities. Besides, it can easily trigger secondary
disaster under inner and outer geological conditions. Extraction and measurement of the particle
of loose accumulation is of importance for prediction of slope stability and mine blasting. In this
paper, the 3D laser scanning is utilized to collect the point clouds of granular materials in physical
model (three types of materials) and landslide accumulation in field, respectively. Then, the alpha
shapes (AS) and hill climbing-region growing (HC-RG) algorithms are introduced for identifying
particles and finding their dimensions (e.g., particle number and radii). Comparison between the
recognition results and reality shows that both algorithms can provide a good performance in
laboratory physical model, and acceptable results can be obtained when applying two algorithm
to field survey. AS algorithm needs less time to process data than HC-GR algorithm; however,
the recognition from HC-RG algorithm is more accurate than that by AS algorithm.

Keywords: particle size measurement; loose accumulation; alpha shapes (AS) algorithm;
hill climbing-region growing (HC-RG) algorithm; laser scanning

1. Introduction

Loose accumulation, caused by landslide, collapse, debris flow, and mine blasting, poses a huge
threat to human life and property. It tends to trigger more concatenated hazards and risks under the
conditions of rainfalls, water level fluctuation of reservoirs, and earthquakes, which in turn trigger
further hazards to form an interconnected hazard network [1–5]. Loose accumulation can be defined
as an assembly of granular materials without too much compaction; measuring the particle shape and
distribution is a fundamental task in various fields. In geohazards, the deposit (loose accumulation)
characteristics provide important and useful implications necessary to understand the landslide failure
model and evolution mechanism, and are considered necessary parameters to describe the impact
region of hazards [6–8]. In mining industry, rock fragmentation generated by blasting is also a kind of
loose accumulation, and the particle size distribution has a direct impact on the downstream process
of mining, including transportation, crushing, grinding, and industrial costing control [9]. In civil
engineering, the quality of concrete and compactness of filled earth highly depend on the particle size
distribution of building materials used in the construction [10,11]. In sedimentology, the structure of
gravel beach accumulation is regarded as a good indicator in the geological record, which records,
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in details, the information about the geological structure changing and paleoenvironmental evolution [12].
Therefore, accurately recognizing the particles from loose accumulation is an important and meaningful
study topic [13,14]. To date, many powerful tools are available to study the particle size distribution
both in microscopic and macroscopic scale, such as Scanning Electron Microscopy (SEM) [15] and image
segmentation [16,17]. However, there are some limitations based on the 2D geometric information, leading
to measurement error. In fact, in the loose accumulation of engineering construction and geological
disasters, the particles may be a combination of giant, medium, and fine mass. Due to the complexity of
particle shape, the traditional methods are not capable of good performance with high efficiency and
resolution. Fortunately, with 3D laser scanning, a newly-developed and non-contact measurement, we can
collect the point cloud of object surface in an accurate and fast way. Therefore, this technology can realize
the acquisition and reconstruction of topography for complex and irregular geometries [18]. Besides, laser
scanning is widely used in deformation monitoring for slope and construction, but it rarely appears in
particle analysis field [19–21].

With the rapid development of artificial intelligence (AI), the focus on digital image processing
for loose accumulation analysis has been evolving from basic applications to the development
of intelligence algorithms to detect loose accumulation and extract parameters automatically or
semi-automatically [22–24]. Currently, several researchers pay more attention to alpha shapes (AS) and
region growing (RG) algorithms, which are regarded as effective tools to recognize boundary of desired
objects [25–27]. The AS algorithm can reconstruct the non-convex hull of a point cloud depending
on the single α value, and extract the geometric features more accurately [28]. The RG algorithm is
an image segmentation method to separate the interested objects from the background by examining
the difference between the seed and neighboring points based on similarity criterion [29]. However,
it is difficult and time-consuming to specify the seed points, which are closely related to the calculation
results, from the huge number of points when applying RG into particle recognition. To enhance the
computational efficiency, the hill climbing (HC) algorithm is employed to find the highest point as the
vertex of the local region points, and the hill increasing-region growing (HC-RG) algorithm is proposed
to detect the particles from point cloud of deposit.

This article aims to develop an automatic procedure to detect particles in loose accumulation and
measure their geometric parameters from point cloud acquired by 3D laser scanning. A laboratory
physical model and field survey in a real landslide hazards were selected to test the applicability of AC
and HC-RG algorithms presented in this study.

2. Methods

2.1. Data Collection

2.1.1. Data Collection in Laboratory Physical Model

A physical model is a powerful tool to reproduce the process of landslide failure and reveal
general regulation of real landslide hazards in spite of lacking in dynamic similarity [30]. Therefore,
the physical model (flume testing) was used to simulate the landslide loose accumulation in the
laboratory, and then a laser scanner was employed to collect the point cloud of accumulation.

The flume consists of an upper chute, a lower chute, a base, and a support (jack). One side of
lower chute is made of stlinite for the observation purpose, and SUS304 stainless steel is chosen for
other parts of flume. The upper chute is 1.5 m long, 0.5 m wide, and 0.3 m high, whereas the lower
chute has dimensions of 2 m (Length) × 0.5 m (Width) × 0.4 m (Height). The inclination of upper
chute can be changed by adjusting the hydraulic bottle jack. There is a steel sheet seated on the upper
chute whose position can be altered along the chute to set different volume of sliding body of landslide.
To test the reliability of proposed algorithms, three different types of materials were selected as sliding
body, including pebble, gravel, and mixed material. The river pebbles, a natural material, feature
smooth surface and good psephicity with relatively consistent shapes. The gravel, which is crushed
and graded by screens, is characterized by irregular and angular geometry. The third material is
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created by mixing both of pebbles and gravels. The sliding materials size roughly between 5 mm and
40 mm, which were placed behind the steel sheet released through taking out the steel sheet (Figure 1).
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Figure 1. The experiment equipment and sliding materials used in physical model: (a) flume, (b) steel
sheet, (c) pebbles, (d) gravels, and (e) mixtures.

In laboratory testing, the volume, height, and inclination angle of sliding materials was specified as
46,080 cm3, 110 cm, and 38◦, respectively. A portable laser scanner—3D OKIO-X5 free laser scanner—was
utilized to collect dense point clouds of deposit. According to the surrounding environment and
color of scanned objects, the lightness level of light-emitting diode (LED) was specified as 300 and
optical intensity was set as 500, respectively. In this manner, the point cloud has enough resolution
(average point interval = 0.1 mm) to accurately reflect the detailed geometrical characteristics of loose
accumulation surface (Figure 2).
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2.1.2. Study Area and Data Collection in Field Survey

The landslide, with coordinates of 103◦39′ E and 32◦04′ N, happened on 24 June 2017 in the back
mountain of Xinmo Village, Diexi Town, Mao County, Sichuan Province, China. This place locates in
the hinterland of Hengduan Mountains, and at the left bank of Songping valley, which is a branch of
Minjiang River. The failure materials slid down from the top of mountain with with 3450 m average
elevation and travelled a horizontal distance of about 2800 m within 100 s, causing 83 people dead.
The rock type in this region is dominated by jointed quartzite, which tends to fracture and break
due to the collision and friction in landslide failure processing [31,32]. Two locations of landslide
accumulation—upper part and lower part—were selected for particle size analysis, and a terrestrial
laser scanner (TLS), Optech Polaris LR, was employed to collect the dense point clouds (interval was
specified as 0.05 m) of landslide accumulation in this two regions (Figure 3).
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Figure 3. Location of Mao County landslide (a,b) and scanning regions in the accumulation (c). Field
configuration of the Optech Polaris LR laser scanner used to collect the dense point cloud of landslide
deposit (d).

2.2. Alpha Shapes (AS) Algorithm

There are many voids among the particles in the loose accumulation, and particles are not in
a close physical contact with each other. The information about these voids inside of accumulation
tends to be ignore using convex algorithms to determine the envelope of this type of point clouds.
The alpha-shape algorithm, a well-known non-convex algorithm, is a powerful tool to accurately
determine the alpha hull of a given set of points. The alpha hull can be considered as the boundary
created by rolling a disk with a radius of 1/alpha over the points (Figure 4). The alpha value is a key
parameter, and when it is specified as 0, the disk will have an infinite radius, and the alpha hull of
the given points will equal to the convex hull. For a given alpha value, the alpha hull of point cloud
associated with loose accumulation is reconstructed as follows. First, a vertex is created for each point
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in the given point cloud. Second, the edge between two vertices was generated when meeting two
properties. Then the connected edges are defined as the boundary of point set [33,34].
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2.3. Hill Climbing-Region Growing (HC-RG) Algorithm

Based on certain criterion (e.g., color, intensity, and point normal), the region growing algorithm
can correctly segment regions that share same defined properties. One of disadvantages for region
growing is lacking a method to determine the initial growing seed for landslide accumulation.
This defect can be addressed by block contraction and local growth that consider the global view of the
problem in HC-RG algorithm.

First, the neighboring point cloud is searched to form fitting the local neighborhood least square
plane for each point according to the surface digitized data of particles [35]. The neighborhood point
set is obtained by selecting m adjacent points for each point Pi in the point cloud.

The neighborhood point set was obtained by selecting m adjacent points for each point Pi in
the point cloud. Each point cloud is represented as [X1, X2, X3]

T, each point cloud representation is
denoted as Pi = [X1i, X2i, X3i]

T(i = 1, 2, · · · , m). Combining all the point cloud variables into a matrix:

X =


X11

X21

X31

X12

X22

X23

· · ·

· · ·

· · ·

X1m
X2m

X3m


3×m

(1)

Under normal circumstances, the mass center K point can be regarded as the center point of
all points in a point set: K = 1

n
∑m

i=1 xi, at the same time yi = Xi − K. The original point cloud
matrix subtracts the mean value [X1K, X2K, X3K]

T in the corresponding direction, the mean value was
calculated from local point cloud, and then a new point cloud variable matrix is reconstructed.

Y =


X11

X21

X31

X12

X22

X23

· · ·

· · ·

· · ·

X1m
X2m

X3m


3×m

−


X1K
X2K

X3K

 =


Y11

Y21

Y31

Y12

Y22

Y23

· · ·

· · ·

· · ·

Y1m
Y2m

Y3m


3×m

(2)

It is shown in Equation (3) that covariance matrix of the correlation between variables of point set
in local region.

S =
1
m

YYT (3)

The shortest distance from all point clouds to the fitted local region can be simplified to calculating
the minimum eigenvalue of the covariance matrix.

Eigenvalues and eigenvectors:

Sn = λn = (λE− S)n = 0 (4)
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Characteristic equation:
det(λE− S)n = 0 (5)

The corresponding eigenvector is solved, and the eigenvector of unitization corresponding to the
minimum eigenvalue is selected, which is the point normal vector of the point.

Then, the normal vector of a point is calculated as the normal vector of this region, and the point
is moved along the reverse direction of normal vector. After the movement for each point completed,
the separation of point cloud data is realized (Figure 5). In the separation process, the quantity of
neighboring point cloud influences the accuracy of point normal vector for questionable points, which
means a small quantity cannot represent its point normal vector and large quantity will produce error
for point normal vector. Moreover, the moving distance of the point influence the shapes and sizes
of particles after contraction, which implies that a short distance will hinder accurate identification
between blocks and long distance will change shapes and sizes of blocks. Therefore, we need to choose
appropriate quantity of neighboring point cloud and moving distance. Besides, restitution in integrum
is needed when calculating particle radius for accuracy.
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Figure 5. Schematic diagram of block separation; (a) definition of point normal, (b) original block point
cloud, and (c) block point cloud of after separation.

We first need to run the hill climbing algorithm for regional point set, and find its highest point.
In addition, duplicate points that a certain point identified as the highest point by multiple K-nearest
neighbors should be combined to prevent the production of redundant points (Figure 6).
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Then, the regional area growth is realized through increasing data points based on its radius from
the peak to bottom. Meanwhile, the appeared fragmentary regions that identified as small region with
different blocks because of its irregular shapes are combined into a similar region and recognized as
the point cloud region of this independent block (Figure 7).
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Figure 7. Performance of particle recognition.

3. Results and Discussion

3.1. Laboratory Physical Model

AS and HC-RG algorithms were used to identify the particle and calculate their radii from point
cloud of accumulation surface of three sliding materials (pebbles, gravels, and mixtures).

3.1.1. Pebbles Deposit

Totally 843,338 points with XYZ coordinates were generated for the loose accumulation surface
of pebbles using portable laser scanner. The AS algorithm was employed to recognize the particles
from the accumulation point cloud with 1.09 of alpha value. Data processing lasted 27 s and 648
particles were detected. On the other hand, based on the HC-RG algorithm, the point cloud is firstly
separated through moving along the reverse direction of point normal. Then, the point cloud data
were clustered into various local regions (637 blocks) based on separation results, and each region
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represented an individual pebble, and the peak point of the region was found via HC algorithm.
The region growing was performed to identify the points belonging to each block region by selecting
the peak point as the initial growth seed. The detection results of loose accumulation were obtained,
and the total processing time is 15,576 s for HC-RG algorithm (Figure 8d).
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Figure 8. Comparison of recognition performance of pebble loose accumulation: (a) point cloud,
(b) separation processing, (c) peak points of each block region, (d) recognition using HC-RG algorithm,
and (e) recognition using AS algorithm.

Figure 8d,e illustrates the recognition results from HC-RG and AS algorithms, in which different
colors represent different blocks. The processing time for AS algorithm (27 s) is far less than that of
HC-RG algorithm (15,576 s). To quantificationally measure the level of confidence or the precision
and bias of the obtained results for each method, the root-mean-squared error (RMSE) and the mean
absolute error (MAE) are determined according to Equations (6) and (7). Smaller values of RMSE and
MAE indicate higher precision.

RMSE =

√√√√ n∑
i=1

(
ppi − poi

)2

n
(6)

MAE =
1
n

n∑
i=1

∣∣∣ppi − poi
∣∣∣ (7)

where, ppi indicates the predicated values of pebbles radius using AS or HC-RG algorithm, poi denotes
the observed values of pebbles radius measured by vernier caliper (VC), and n is the amount of pebbles.
Statistical analysis show that both results are acceptable, and a better agreement is observed between
recognition using HC-RG algorithm and real measurement (Figure 9).
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3.1.2. Gravels Deposit

The point cloud of gravel loose accumulation involves 1,006,987 points. Similarly, AS and Hc-RG
algorithms were used to identify the particles and determine their size. Totally, 31,523s and 576 blocks
were recognized using HC-RG algorithm, whereas in the AS algorithm, 624 blocks were identified in
40s by specifying alpha value as 1.09 (Figure 10).Sensors 2020, 20, x FOR PEER REVIEW 9 of 16 
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Figure 10. Comparison of recognition performance of gravel loose accumulation: (a) point cloud,
(b) separation processing, (c) peak points of each block region, (d) recognition using HC-RG algorithm,
and (e) recognition using AS algorithm.

Both HC-RG and AS algorithms are capable to accurately identify gravels with different size
from the point clouds. However, the result for HC-RG algorithm is consistent with reality better with
a lower RMSE and MAE values (Figure 11).
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Figure 11. Particle radius distribution of gravel.

3.1.3. Mixture of Pebbles and Gravels Deposit

The point cloud of loose accumulation for mixed materials has 1,356,435 points in total.
The accumulation was identified using AS algorithm by setting alpha value as 1.09. It cost 27 s
for detection, and 870 individual blocks were recognized. Meanwhile, the accumulation was identified
by HC-RG algorithm with a 31,523 s processing time, and 588 individual blocks were recognized
(Figure 12). A comparison of block size distribution between two methods and real measurement is
conducted, and it indicates that results from two algorithms correspond to the manual measurement
(Figure 13).Sensors 2020, 20, x FOR PEER REVIEW 10 of 16 
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Figure 12. Comparison of recognition performance of mixed material loose accumulation: (a) point
cloud, (b) separation processing, (c) peak points of each block region, (d) recognition using HC-RG
algorithm, and (e) recognition using AS algorithm.
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Furthermore, we chose other three parameters to characterize the particle size distribution and
test the accuracy of two algorithms, namely, average particle radius (Ra), coefficient of uniformity (Cu),
and coefficient of curvature (Cc). Cu and Cc can be determined by,

Cu =
D60
D10

(8)

Cc =
(D30)2

D60×D10
(9)

where, D10, D30, and D60 are the particle size that 10%, 30%, and 60% of the particles are finer than
those size by volume. The higher the value of the Cu the larger the range of particle sizes. A well
graded loose accumulation has a Cc between 1 and 3 [36]. Table 1 shows the comparison of distribution
characteristic parameters obtained from different methods between pebbles, gravels and mixture
loose accumulation.

Table 1. Comparison of distribution characteristic parameters among pebbles, gravels, and mixtures.

Parameters Methods
Materials

Pebbles Gravels Mixture

Ra (mm)
AS 17.06 16.2 16.75

HC-RG 21.14 18.29 19.31
MM 18.38 17.59 18.58

Cu
AS 3.19 2.14 2.36

HC-RG 1.52 1.73 1.7
MM 2.26 2.05 1.76

Cc
AS 1.15 1.09 1.15

HC-RG 0.99 0.97 0.96
MM 1.17 0.99 1.11
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From the above-mentioned particle measurement, it is obviously observed that AS algorithm
always recognize more number of particles with a smaller size than reality. On the contrary, particle
size detected using HC-RG algorithm is slightly larger than real measurement, and has a better
agreement with real situation than AS algorithm. The reason can be discussed as follows. (1) For
the AS algorithm, a block with irregular shapes and high variance in boundary curvature may be
recognized as different blocks, leading to the block number increase and radius reduce. Additionally,
there are several limitations when only using a single global alpha value to identify particles from
the overall point cloud [37,38]. (2) For the HC-RG algorithm, distinction between adjacent blocks in
loose accumulation was enlarged through separation processing which was a useful way to recognize
particle accurately. However, there is also a problem existing in the HC-RG algorithm, when some
irregular blocks located in a close distance with each other, these particles would be identified as
an individual particle. In this manner, small size of particle close to the big one were also considered as
a larger group of rock blocks, resulting in larger radius, but fewer number, than real situation.

3.2. In-Situ Field Survey in Landslide Region

3.2.1. Upper Part of Landslide Accumulation

An upper part of the landslide deposit was chosen for block detection using two algorithms,
where lots of rock blocks with irregular shapes and various sizes; 292,622 points were generated by
TLS for the scanning region. Prior to recognition using AS algorithm, the alpha value was specified as
0.1 m, and 19 s was the cost to identify 5495 blocks. In the HC-RG algorithm, data processing lasted
303 s and 582 blocks were extracted from point cloud (Figure 14).
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Figure 14. Comparison of recognition performance of upper part of landslide accumulation between
two algorithms: (a) original point cloud with RGB color, (b) point cloud without color, (c) separation and
peak point searching, (d) recognition using HC-RG algorithm, and (e) recognition using AS algorithm.

The AS algorithm can identify various blocks, but the identified amount is large, and the radius is
small. Compared with AS algorithm, HC-RG algorithm is better in identification, and the results are
closer to reality with RMSE = 23.87 and MAE = 9.49. Particularly notable is that it is very difficult and
time-consuming to manually measure the blocks size in the landslide deposit. Hereon, the real size
was obtained by performing manual measurement (MM) in Geomagic software based on the point
clouds (Figure 15).
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Figure 15. Particle radius distribution of upper accumulation of landslide.

3.2.2. Lower Part of Landslide Accumulation

There are 200,306 points totally collected using TLS for the lower part of landslide loose
accumulation. Then, it was identified by HC-RG algorithm, the processing time was 230 s and
240 blocks were identified. For AS algorithm, alpha value was set as 0.1. The computational time was
9 s and 1768 blocks were recognized (Figure 16). Similarly, reletively large difference between real
measurement and identification results were observed in the comparison, but the HC-RG algorithm
had a better recognition than AS algorithm (Figure 17).
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Table 2 shows the estimation of three distribution characteristic parameters. On the whole,
the average particle size in upper region is larger than that in the lower region, and particles in the
upper region have a larger Cu and Cc values than those in lower region. We have to admit that obvious
differences of average particle size exist between recognition results and real size. However, the Cu
and Cc results obtained from AS and HC-RG algorithms are acceptable. On the other hand, good
agreements can be observed in the laboratory physical model due to the controlled conditions.

Table 2. Comparison of distribution characteristic parameters among upper and lower part of
landslide deposit.

Parameters Methods
Location

Upper Part Lower Part

Ra (mm)
AS 242.38 281.96

HC-RG 3478.13 3430.46
MM 2162.53 2040.81

Cu
AS 1.72 1.81

HC-RG 1.24 1.22
MM 1.51 1.33

Cc
AS 0.76 0.69

HC-RG 0.97 0.95
MM 0.96 0.99

Two main reasons for analysis errors have been found as follows. (1) More noise data tend to
be generated under the field environment when the point clouds are collected using long range TLS,
because of the effects from vegetation, humidity, dust in air, microvibration, etc. These non-ideal
environmental factors greatly reduce the measuring accuracy and data quality [39,40]. (2) The landslide
loose accumulation consists of particles with various size ranges, and there are many small particles
formed by extrusion and collision during landslide failure. The gaps among large particles are filled
with these small particles, enlarging the recognition difficulty since the particles in accumulation
contact tightly with each other [41,42].
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4. Conclusions

Both AS and HC-RG algorithms used in this study show a high performance, and are capable
of identifying the particles from point clouds and determining the amount and radii of particles
reasonably, especially under the controlled conditions.

The AS algorithm can accurately identify loose accumulation particles in laboratory conditions
by setting a proper alpha value. It takes less time for the identification and characterization process
but with lower accuracy than the HC-RG algorithm. By contrast, although the HC-RG algorithm
has a lower computing efficiency, it can detect the particles from point cloud with higher level of
confidence, and the recognition results match the actual situation better. Nevertheless, acceptable
results can be obtained when employing the two algorithms for field survey. However, due to the low
quality of point cloud data and complexity of particle geometry and contact status, some errors tend to
be produced.
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