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Background: Activation of brain insulin receptors modulates reward sensitivity, inhibitory control and memory.
Variations in the functioning of this mechanism likely associate with individual differences in the risk for related
mental disorders (attention deficit hyperactivity disorder or ADHD, addiction, dementia), in agreement with the
high co-morbidity between insulin resistance and psychopathology. These neurobiological mechanisms can
be explored using genetic studies. We propose a novel, biologically informed genetic score reflecting
the mesocorticolimbic and hippocampal insulin receptor-related gene networks, and investigate if it predicts
endophenotypes (impulsivity, cognitive ability) in community samples of children, and psychopathology (addic-
tion, dementia) in adults.
Methods: Lists of genes co-expressed with the insulin receptor in the mesocorticolimbic system or hippocampus
were created. SNPs from these genes (post-clumping) were compiled in a polygenic score using the association
betas described in a conventional GWAS (ADHD in themesocorticolimbic score and Alzheimer in the hippocam-
pal score). Across multiple samples (n = 4502), the biologically informed, mesocorticolimbic or hippocampal
specific insulin receptor polygenic scores were calculated, and their ability to predict impulsivity, risk for addic-
tion, cognitive performance and presence of Alzheimer's disease was investigated.
Findings: The biologically-informed ePRS-IR score showed better prediction of child impulsivity and cognitive
performance, as well as risk for addiction and Alzheimer's disease in comparison to conventional polygenic
scores for ADHD, addiction and dementia.
Interpretation: This novel, biologically-informed approach enables the use of genomic datasets to probe relevant
biological processes involved in neural function and disorders.
Fund: Toxic Stress Research network of the JPB Foundation, Jacobs Foundation (Switzerland), Sackler Foundation.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The co-morbiditybetweenmetabolic andneuropsychiatric disorders
is well-established, but poorly understood. The high co-occurrence of
several psychiatric conditions (e.g. major depression, bipolar disorder,
dementia)with insulin resistance suggests a commonunderlyingmech-
anism [1]. Metformin, a medication that corrects insulin resistance,
has beneficial psychotropic effects in psychiatric conditions [2–4].
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Research in context

Evidence before this study

Employing large sample sizes and specific statistical methods,
genome-wide association studies (GWAS) have permitted large
scale analyses of common markers for specific disorders. The
use of methods of genomic risk profiling is consistent with the
idea that the genetic contribution to a certain condition is derived
from a combination of small effects from many genetic variants.
To take into account the effects of many SNPs, the concept of
polygenic risk score (PRS) was introduced. PRS summarizes an in-
dividual's genetic risk for a specific condition. A polygenic risk
score is calculated for each subject in the target sample as a sum
of the risk alleles count, weighted by the effect size described in
a discovery GWAS. One problem of the GWAS technology is
that it identifies statistically significant associations between
scattered SNPs and a certain condition or trait, completely ignor-
ing the fact that genes operate in networks and code for precise bi-
ological functions in specific tissues.

Added value of this study

We created a novel approach to genomic profiling, informed by bi-
ological function, and characterizing gene networks based on the
levels of co-expressionwith a determined gene in a specific tissue.
In our study, the relevant biological unit of influence is a gene net-
work, and not a single gene. A gene network involves a number of
genes that are co-expressedwithin a specific tissue or brain region
and exert a concerted effect on a target biological process. Hence,
following our interest in deciphering the effects of variations in the
function of the insulin receptor on the mesocorticolimbic path-
way, we created a genetic score based on genes co-expressed
with the insulin receptor on the striatum and prefrontal cortex or
in the hippocampus, that we called ePRS-IR. The ePRS-IR repre-
sents a cohesive gene network and predicts impulsivity
endophenotypes and cognitive abilities in children, as well as risk
for addiction and dementia in adults.

Implications of all the available evidence

Our genomic approach integrates information frommolecular neu-
robiology with GWAS technology to develop a biologically-
informed polygenic score based on gene co-expression data
from specific brain regions. This approach creates a novel geno-
mic measure to identify genetic vulnerability for childhood behav-
ioral phenotypes that predict later neuropsychiatric conditions in
community-based samples, highlighting possible targets for drug
development.
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Insulin receptors (IR) are expressed throughout the brain [5]
(striatum, prefrontal cortex [6,7] and hippocampus [8,9]). Insulin is
actively transported across the blood-brain barrier, and its action on
mesocorticolimbic receptors modulates synaptic plasticity in dopami-
nergic neurons, affecting dopamine-related behaviors such as response
to reward [10], impulsivity [11], mood [12,13], cognition [14] and
decision-making [15]. Impulsivity associated with affected dopamine
signaling is also a core feature of attention deficit hyperactivity disorder
(ADHD),which is co-morbidwith obesity [16]. IR location on hippocam-
pal glutamatergic synapses suggests a role of insulin in neurotransmis-
sion, synaptic plasticity and modulation of learning and memory,
while its inhibition is described in Alzheimer's disease and related ani-
mal models [17].
Evidence suggests a developmental trajectory for the establishment
of these co-morbidities over the life-course [18–24]. For instance, varia-
tions in early growth trajectories during development – essentially an
insulin-dependent process [25] – are associated with differences in
childhood impulsivity [26]. It is suggested that both psychopathology
and metabolic dysfunction are preceded by a long “silent” phase of sev-
eral decades, that might start very early in life; however, it is likely that
subtle neuropsychological dysfunction or small endophenotypic differ-
ences may be apparent already in childhood, when neuroadaptations
related to individual variation in brain insulin function influence the
behavioral phenotype [11,12,27].

The neurobiological processes involved in the co-morbidity between
metabolic and neuropsychiatric conditions can be explored using ge-
netic studies. Genome-wide association studies (GWAS) provide the
basis for cumulative variants that associate with health outcomes and
reflect genetic predispositions to common disorders where individual
variants carry small effects. The cumulative polygenetic risk of the indi-
vidual can be used to estimate risk through polygenic risk scores (PRS),
that can be calculated as the sum of the count of risk alleles weighted by
the effect size of the association between a particular genotype and the
outcome from the relevant GWAS study [28,29]. PRSs are therefore de-
rived using existing GWAS data sets for specific disorders.

GWAS and PRSmethodologies are focused on statistically significant
candidate associations between scattered loci and a certain condition or
trait, not accounting for the fact that genes operate in networks, and
code for precise biological functions in specific tissues. Since the PRSs
are conventionally based on statistical thresholds, while they might as-
sociate with the final disease state, they are not informative of the var-
ious clinical manifestations or endophenotypes that may precede the
disease development. This makes the biological underpinnings of the
PRS complicated to disentangle, restricting their clinical scope/implica-
tions. A score that captures the genetic background associated with an
endophenotype – potentially an early onset manifestation – would be
able to mold subsequent preventive and therapeutic endeavors.

With the reduction in cost of genotyping strategies we are poised to
expand the implications of a multitude of GWA studies into healthcare.
Hence, we aimed to address this need by developing a novel genomics
approach that provides a biologically-informed genetic score, based on
genes co-expressed with the IR in specific brain regions. Our method
is based on the assumption that the relevant biological unit of influence
during development is a gene network, and not isolated statistically sig-
nificant SNPs. A gene network involves a number of genes that are co-
expressed within a specific tissue or brain region, and exert a concerted
effect on a target biological process. Our new methodology enables a
hypothesis-driven, neurobiological analysis of phenotypes linked to
brain disorders across developmental stages.

2. Materials and methods

2.1. Samples

Main Cohort: We used data from the prospective Maternal Adver-
sity, Vulnerability and Neurodevelopment (MAVAN) birth cohort [30]
that followed children at different time points in the first years of life
in Montreal (Quebec) and Hamilton (Ontario), Canada. The sample
size included in these analyses were 218 children at 48 months of age,
and 204 children at 72 months of age. Approval for the MAVAN project
was obtained from obstetricians performing deliveries at the study hos-
pitals and by the ethics committees and university affiliates (McGill Uni-
versity and Université de Montréal, the Royal Victoria Hospital, Jewish
General Hospital, Centre hospitalier de l'Université deMontréal, Hôpital
Maisonneuve-Rosemount, St Joseph's Hospital and McMaster Univer-
sity). Informed consent was obtained from all subjects.

Other Cohorts: (A) Study of Addiction, Genetics and Environment
(SAGE) repository [31–37], acquired from dbGaP (https://www.ncbi.
nlm.nih.gov/gap, Accession number: phs000092.v1.p). The SAGE
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datasetwas compiled from three studies: the Collaborative Study on the
Genetics of Alcoholism (COGA); the Family Study of Cocaine Depen-
dence (FSCD); and the Collaborative Genetic Study of Nicotine Depen-
dence (COGEND). The SAGE dataset contains genotyping and clinical
phenotypes related to substance dependence for adult subjects. The
sample size for these analysis was 2719 individuals. We received access
to the SAGE dataset based on the approval of our Data Access Request
(DAR) by the NIH Data Access Committee. We agree with the stipula-
tions of the Data Use Certification. (B) GEN-ADA [38,39] is a multi-site
study conducted at GlaxoSmithKline Inc. and nine medical centres.
The study was designed to capture genetic information from Alzhei-
mer's' disease patients and matched controls. The sample size for this
analysis was 1565 individuals. We received access to the GenADA
dataset based on the approval of our Data Access Request (DAR) by
the NIH Data Access Committee. We agree with the stipulations of the
Data Use Certification.

2.2. Behavioral Phenotyping

Reflection impulsivity in children: The Information Sampling Task
(IST) from the CANTAB battery was designed to measure reflection im-
pulsivity and decision making [40], and was applied at 72 months in
MAVAN. Despite the fact that we have applied other tasks in MAVAN,
we specifically analyzed the Information Sampling Task with regards
to the ePRS-IR, considering the theoretical background that insulin
modulates dopaminergic neurotransmission and, hence, impulsivity
and inhibitory control. Rather than relying on speed-accuracy indices,
IST measures reflection impulsivity by calculating the probability of
the subject selecting the correct answer after making a decision based
on the information sampled prior to making that decision. On each
trial, children are presented with a 5 × 5 matrix of grey boxes on the
computer screen, and two larger colored panels at the foot of the screen.
They are told that it is a game for points, won by correctly choosing the
colour under themajority of the grey boxes. Touching a grey box imme-
diately opens that box to reveal one of the two colors displayed at the
bottom of the screen. Subjects could open boxes at their own will with
no time limit before deciding between one of the two colors, indicating
their decision by touching one of the two panels at the bottom of the
screen. When they do, the remaining boxes are uncovered and a mes-
sage is displayed to inform them whether or not they were correct.
The primary performance outcome measure was the mean probability
of being correct at thepoint of decision (PCorrect). P Correct is theprob-
ability that the colour chosen by the subject at the point of decision
would be correct, based only on the evidence available to the subject
at the time (i.e., dependent on the amount of information they had sam-
pled). There was a recent update in the mean P Correct formula, which
was endorsed by the original authors of the measure [41,42], therefore
in this studywe calculated andused the newmeanP Correct [43].More-
over, as we have reported differences in impulsivity levels between
boys and girls in MAVAN [44], and impulsivity is highly influenced by
sex [45,46], we analyzed the effect of sex as well as sex by genetic
score interactions on IST.

Number Knowledge Task (NK): The Number Knowledge task is part
of the School Readiness Battery, applied at 48 months in MAVAN,
assessing school readiness which may be defined as the minimum de-
velopmental level allowing the child to respond adequately to school
demands [47]. This task is a well validated diagnostic screening test of
school readiness [48].

Addiction risk: The clinical assessment of substance dependency
was based on a Semi-StructuredAssessment for theGenetics of Alcohol-
ism (SSAGA II) [49] and adapted versions of the SSAGAII, which assesses
the physical, psychological and social manifestations of substance de-
pendence. For each type of substance (alcohol, cocaine, marijuana,
nicotine, opiates, other drugs than marijuana/cocaine/opiates), depen-
dence was characterized as a maladaptive pattern of substance use,
leading to clinically significant impairment or distress, as manifested
by three or more of the following occurring at any time in the same
12-month period: (a) tolerance, (b) withdrawal, (c) the substance is
often taken in larger amounts or over a longer period than intended,
(d) there is a persistent desire or unsuccessful efforts to cut down or
control substance use, (e) a great deal of time is spent in activities nec-
essary to obtain the substance, use the substance, or recover from its
effects, (f) important social, occupational, or recreational activities are
given up or reduced because of substance use, g) the substance use is
continued despite knowledge of having a persistent or recurrent physi-
cal or psychological problem that is likely to have been caused or exac-
erbated by the substance. The number of co-morbidities was calculated
as the number of reported dependencies according to these criteria.
Presence of alcohol dependence was also used as an outcome.

Alzheimer's diagnosis: The Alzheimer's disease status was diag-
nosed using the Diagnostic and Statistical manual of Mental Disorders
Fourth Edition [50].

2.3. Genotyping

In MAVAN, we genotyped 242,211 autosomal SNPs using genome-
wide platforms (PsychArray/PsychChip, Illumina) according to the
manufacturer's guidelines with 200 ng of genomic DNA derived from
buccal epithelial cells and our quality control procedures. Specifically,
we removed SNPs with a low call rate (b95%), low p-values on Hardy-
Weinberg Equilibriumexact test (p b 1e-40), andminor allele frequency
(b5%). Afterward, we performed imputation using the Sanger Imputa-
tion Service [51] resulting in 20,790,893 SNPs with an info score
N 0.80 and posterior genotype probabilities N0.90. In SAGE, we used
the imputed genotypes provided in the data repository. The imputation
was performed using BEAGLE. Post imputation, SNPs were filtered to
only include those with an r2 N 0.3 (total = 4,566,998). In GenADA,
genotyping data was provided for 402,708 SNPs, we removed SNPs
with a low call rate (b95%), low p-values on Hardy-Weinberg Equilib-
rium exact test (p b 1e-40), and minor allele frequency (b5%). After-
wards, we performed imputation using the Sanger Imputation Service
[51], resulting in 7,267,018 SNPs with an info score N 0.80 and posterior
genotype probabilities N0.90.

2.4. ePRS-IR calculation

The steps for the development of the IR expression-based polygenic
risk score (ePRS-IR) are depicted in Fig. 1 (Fig. 1A). The polygenic risk
score based on genes co-expressed with the insulin receptor (ePRS-
IR) was created using gene co-expression databases including
(1) GeneNetwork (http://genenetwork.org) [52], (2) BrainSpan
(http://brainspan.org) [53], (3) NCBI Variation Viewer (https://www.
ncbi.nlm.nih.gov/variation/view/). These resources allowed us to iden-
tify genes co-expressedwith the IR in the striatumand prefrontal cortex
(PFC) regions in mice (GeneNetwork), find their homologous human
genes (BrainSpan), and identify SNPs for these genes in humans (NCBI
Variation Viewer). The PRS was constructed as follows: (1) we used
GeneNetwork to generate co-expression matrices with IR in the
(i) ventral striatum, (ii) PFC in mice (absolute value of the co-
expression correlation r ≥ |0.5|). The two matrices generated two lists
of genes co-expressed with IR in these brain regions. These two gene
lists were aggregated into a single list of genes; (2) we then used
BrainSpan to identify human homologous transcripts from this list;
(3) we selected autosomal transcripts differentially expressed in these
brain regions at ≥1.5 fold during child and fetal development as com-
pared to adulthood [53]; the final list included 281 genes; (4) based
on their functional annotation in the National Center for Biotechnology
Information, U.S. National Library of Medicine (https://www.ncbi.nlm.
nih.gov/variation/view/) usingGRCh37.p13we gathered all the existing
SNPs from these genes (total = 11,068); 5) we subjected this list of
SNPs to linkage disequilibrium clumping, which uses the lowest associ-
ation p-values in the ADHD GWAS to inform removal of highly

http://genenetwork.org/
http://brainspan.org
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correlated SNPs (r2 N 0.2) across 500 kb regions [28], resulting in 1897
independent functional SNPs based on the children's genotype data
from MAVAN; (6) we used a count function of the number of alleles at
a given SNP weighted by the effect size of the association between the
individual SNP and ADHD [54]. We compared the distributions of the
score in the two cohorts (MAVAN and SAGE) using Kolmogorov-
Smirnov test and there were no significant differences between the
scores (p=.996). All SNPs were subjected to linkage disequilibrium
clumping (r2 N 0.2 across 500 kb) so only independent SNPs that are
most associated to ADHD, based on the association p-values in the
ADHD GWAS, comprised the ePRS-IR (Table S1).

To further validate the brain-specificity of the biologically-informed
polygenic score, we followed the same approach depicted in Fig. 1A and
created the hippocampal ePRS-IR by changing the brain region of inter-
est in the process, and compiling the SNPs using the association betas
described in the Alzheimer's GWAS [55] (Table S2). The final list in-
cluded 544 genes (530 excluding genes on X and Y chromosomes)
and 363,412 SNPs; this list was subjected to linkage disequilibrium
clumping, resulting in 6594 independent functional SNPs based on the
children's genotype data from MAVAN. We compared the distrib-
utions of the score in the two cohorts (MAVAN and GenADA) using
Kolmogorov-Smirnov test and there were no significant differences be-
tween the scores (p= .668).We used a count function of the number of
alleles at a given SNP weighted by the effect size of the association be-
tween the individual SNP and Alzheimer's disease [55].

2.5. Gene network analysis

Weextracted a list of the 281 genes from the SNPswith the lowest p-
values based on the post clumped results of the ADHDGWAS [54]. RNA-
sequencing data was downloaded from BrainSpan [53], including sam-
ples from 8 postconceptional weeks to 11 years old within prefrontal
cortex (dorsolateral, ventrolateral, anterior cingulate cortex and
orbitofrontal cortex) and striatum, for three gene lists: (a) ePRS-IR;
(b) Random gene list (as detailed below in 2.7) and (c) ADHD top 281
genes. A mean expression value was computed across the mentioned
brain regions for each subject from the BrainSpan dataset. The
protein-protein interaction data were retrieved from STRING (https://
string-db.org/) [56] and GeneMANIA (https://genemania.org) [57] da-
tabases and the protein-protein interaction networks were constructed
and visualized in the Cytoscape software [58]. One-way ANOVA was
used to compare these values across the three gene lists. The gene
Fig. 1. Themesocorticolimbic ePRS-IR: (A) Flowchart depicting the steps involved in creating th
expressedwith the insulin receptor (ePRS-IR) using gene co-expression databases. (i) GeneNet
striatum and in the prefrontal cortex in mice (absolute value of the co-expression correlation r
from this list; (iii) BrainSpan was also used for selecting genes differentially expressed at ≥1.5
areas. The final list included 281 genes; (iv) Based on their functional annotation in the Nation
p13, we gathered all the existing SNPs from these genes (total = 11,068) and subjected this
SNPs (r2 N 0.2) across 500 kb regions, resulting in 1897 independent functional SNPs based
function of the number of alleles at a given SNP (rs1, rs2…) weighted by the effect size (ES)
the total number of SNPs provides the ePRS-IR score. References: 1. Mulligan, et al. 2017, 2.
nucleotide polymorphisms (SNPs) included in the mesocorticolimbic ePRS-IR, shown in green
for selecting SNPs is designed to capture signals associated with a functional gene network,
statistically significantly associated with the disease (in this case, ADHD). C) Gene Network a
most significant or “top” 1897 SNPs) and genes associated with a random selection of 185
network with significantly higher connectivity than a list of genes associated with a ra
D) Comparison of the number of connections between the genes in each network (mesocorti
mesocorticolimbic ePRS-IR have significantly more interactions than the random list, and t
cohesive gene network of biological relevance. E) Coexpression of the genes included in the m
from PFC and striatal regions. Top panels: The heatmap of the genes' co-expression in childh
not maintained in the retained order heatmap for adulthood (right), some other clusters of co
coefficients in childhood (left) and adulthood (right). Each vertical line represents correlatio
included are the ones that generate the ePRS-IR (see supplementary tables). The red line is dr
have highly correlated gene expression values. Data for this analysis were extracted from Br
panel) and a comparable number of genes associated with the most significant SNPs from
striatal regions. The heatmaps demonstrate that while the mesocorticolimbic ePRS-IR include
GWAS are less consistently co-expressed in these brain regions. This suggests that the ePRS
may not be represented when analyzing a GWAS based on peripheral insulin levels.
network for the hippocampal ePRS-IRwas built using the samemethod-
ology. Gene set enrichment and transcription factor analysis were per-
formed using MetaCore™ (Clarivate Analytics).

2.6. Coexpression analysis

We used publicly available gene expression data from BrainSpan
(http://www.brainspan.org) [53] to analyze the correlation between
the expression levels of the genes included in the ePRS-IR in the
human mesocorticolimbic system and hippocampus, comparing chil-
dren (1 to 12 years; n = 26) to adults (20 to 40 years; n = 22), or in-
cluding all subjects in the same matrix to compare with the same
number of genes (281) associated with the most significant SNPs from
the fasting insulin GWAS [70]. The analyses were carried out in R
using the heatmaply package.

2.7. Other genetic scores – Analysis of validation

We generated other polygenic scores using our accelerated pipeline
(https://github.com/MeaneyLab/PRSoS) [59], for each subject. The
ePRS-IR was compared to many other polygenic risk scores for
validation:

1) Traditional polygenic risk score for ADHD based on the GWAS pub-
lished in 2010 [54]; the most significant 1897 SNPs from this
GWAS were included in this score.

2) Traditional polygenic risk score for ADHD based on the GWAS pub-
lished in 2019 [60]; the most significant 1897 SNPs from this
GWAS were included in this score.

3) Traditional polygenic risk score for addiction based on the GWAS for
tobacco smoking [61]; the most significant 1897 SNPs from this
GWAS were included in this score.

4) A random list of 1854 SNPs from the clumped version of the ADHD
GWAS [54] was included in the ‘random’ score. We created 30 ran-
dom scores and repeated linear regression analyses for each of the
random PRSs. The results of the regression analyses involving differ-
ent random scores were pooled together to obtain an overall
estimate and standard error of the effect of the random PRS interac-
tion with sex on the IST performance at 72months (MAVAN) or ad-
diction risk (SAGE), using Rubin's set of rules implemented in a
function pool [62] of the R package mice [63].
e expression-based andmesocorticolimbic-specific polygenic risk score based on genes co-
work was used to generate a co-expressionmatrix with insulin receptor (IR) in the ventral
≥ 0.5); (ii) BrainSpan was then used to identify consensus human homologous transcripts
fold during child and fetal development as compared to adulthood within the same brain
al Center for Biotechnology Information, U.S. National Library of Medicine using GRCh37.
list of SNPs to linkage disequilibrium clumping, to inform removal of highly correlated
on the children's genotype data from MAVAN (Study Sample ids); (v) We used a count
of the association between the individual SNP and ADHD. The sum of these values from
Miller et al. 2014, 3. Neale et al. 2010, 4. Wray et al. 2014, 5. Chen et al. 2018. (B) Single
, in relation to the Manhattan plot of the ADHD GWAS. The biologically-informed method
and hence it can be expected that none of the individual SNPs included in the score are
nalysis of the mesocorticolimbic ePRS-IR 281 genes, ADHD 2010 (genes associated with
4 SNPs (bottom small panel). The picture demonstrates that the ePRS-IR represents a
ndom list of SNPs, and also in comparison to the top genes from the ADHD GWAS.
colimbic ePRS-IR, random list and top genes in the ADHD GWAS). Genes included in the
he top genes from the ADHD GWAS (One-Way ANOVA, p b .05). This suggests a more
esocorticolimbic ePRS-IR, in childhood and adulthood, combining gene expression data

ood (left) shows several clusters of highly co-expressed genes. Although the clusters are
-expressed genes are observed. Bottom panels: values of the gene expression correlation
n with a unique gene (the same genes are depicted in the lines vs. columns). The genes
awn at a correlation score of 0. Especially in childhood, most genes included in the score
ainSpan . F) Co-expression of the genes included in the mesocorticolimbic ePRS-IR (top
the fasting insulin GWAS (bottom panel), from birth to 11 years of age in the PFC and
s genes that are highly co-expressed in striatum and PFC, genes from the fasting insulin
methodology captures gene networks that are cohesive in specific brain regions, which
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The traditional PRSs are cumulative summary scores computed as
the sum of the allele count weighted by the effect size across SNPs at
certain p-value thresholds (PT) based on the relevant GWAS [28]. In all
the genetic scores above, the number of SNPs is comparable to the num-
ber of SNPs included in the mesocorticolimbic ePRS-IR.

2.8. Statistical analysis

2.8.1. Descriptive statistics for all cohorts
The statistical analysis of the baseline characteristics was performed

using Spearman's correlations, One-Way ANOVA and Student's t-Test.
We examined population structure within our data using a principal
component analysis [64,65]. First, we pruned our dataset to common
variants (MAF N 0.05) that were not in linkage disequilibrium (r2
b 0.20) with a sliding window (50 kilobases) approach that examined
linkage disequilibrium in increments of 5 SNPs using PLINK 1.9 [66].
We performed a principal component analysis using SMARTPCA on
this pruned dataset and generated a scree plot (see Supplementary
Fig. S1). Based on the inspection of the screeplot, the first three principal
components were the most informative of population structure in this
cohort and were included in all analyses.

2.8.2. Mesocorticolimbic ePRS-IR
A linear regression analysis was performed to explore if the sex by

ePRS-IR interaction was associated with the IST outcomes, adjusting
for population structure and birth weight in MAVAN [26]. Similarly, in
SAGE, a linear regression analysis was performed to explore if the sex
by ePRS interaction was associated with the number of addiction co-
morbidities. Logistic regression was applied to explore the association
with the presence of alcohol dependence. In all cases we adjusted for
the population structure and study source. Simple slopes analysis was
performed to test the association between the ePRS-IR and the outcome
in males and females when appropriate.

2.8.3. Hippocampal ePRS-IR
In MAVAN, we explored the association between the hippocampal

ePRS-IR and number knowledge task performance at 48 months of
age using linear regression analysis, adjusting by population stratifica-
tion and sex. In ADA, we used logistic regression to investigate the asso-
ciation between the hippocampal ePRS-IR and the presence of
Alzheimer's disease.

As a validation of the associations described, for themain analysis in
MAVAN, SAGE and ADA,we applied a permutation test to assess the sig-
nificance of the associations. After permuting the outcome 5000 times,
we computed the sampling distribution of the test statistics of interest
(mesocorticolimbic ePRS-IR *sex interaction coefficient, or hippocampal
ePRS-IR main effect) under the null hypothesis that there is no signifi-
cant association, and calculated associated p-values as a proportion of
number of times the test statistic was bigger than the real observed one.

Data were analyzed using the Statistical Package for the Social Sci-
ences (SPSS) version 20.0 software (SPSS Inc., Chicago, IL, USA) and R
[67].We ran all the analysis in the full datasets and repeated it excluding
influential observations. As the resultswere similar, we chose to present
the more conservative statistical approach excluding influential obser-
vations. Significance levels for all measures were set at α = 0.05.

3. Results

3.1. Establishment of the mesocorticolimbic biologically-informed genetic
score based on genes co-expressed with the insulin receptor (ePRS-IR)

This biologically-informed method for selecting SNPs is designed to
capture risk associated with a functional unit of a gene network, and
hence it can be expected that none of the individual SNPs included in
the score are statistically significantly associated with ADHD diagnosis
in the GWAS (Fig. 1B), but instead, the cumulative ePRS-IR score
associates with the relevant endophenotypes. A gene network analysis
was performed comparing the list of the 281 genes included in the
ePRS-IR with (a) the genes associated with a random selection of 1854
SNPs from the clumped version of the ADHD GWAS [54] and (b) the
genes associated with the 1897 most significant SNPs from the ADHD
GWAS [54] (Fig. 1C). The analysis shows that the number of interactions
between the genes that comprise the ePRS-IR is significantly higher
than the control random list, or the genes from the ADHD GWAS
(Fig. 1D), suggesting that the biologically-informed score represents a
much more cohesive gene network. The reasons why the ‘random’
gene network seems small are: (a) not all randomSNPswere located in-
side the genes and (b) most of the resulting genes had no connection at
all with the other genes from the gene set, and hence are not depicted in
the figure.

We examined the co-expression patterns of the genes included in
the mesocorticolimbic ePRS-IR over the life-course using data from
BrainSpan [53]. Several genes are highly co-expressed in childhood,
confirming the co-expression matrix from mice that was used to select
the genes included in the score. Although co-expression continues into
adulthood, this is re-arranged in other, more discrete clusters of co-
expression (Fig. 1E).

The brain specificity of our score is demonstrated when compar-
ing the co-expression patterns of the genes included in our score and
an equivalent number of genes associated with the most significant
SNPs from the fasting insulin GWAS [70] in the PFC and striatal
regions (Fig. 1F). While the mesocorticolimbic ePRS-IR has highly
co-expressed genes in these brain areas, genes from the fasting insu-
lin GWAS are less consistently co-expressed in these regions. This
confirms the ability of the ePRS methodology to generate a genetic
score that denotes tissue-specific gene networks, and highlights
the meaningful difference between the information contained in
the ePRS-IR score and peripheral levels of metabolic hormones
such as insulin.
3.2. Endophenotypic differences predicted by themesocorticolimbic ePRS-IR

We then analyzedwhether the ePRS-IR would predict impulsivity, a
highly sex-specific trait, in 6-year old children [30] tested using a
computer-based, Information Sampling Task (IST). There was a signifi-
cant interaction effect between ePRS-IR and sex on the Information

Sampling Task (IST) (fixed condition β̂ = 0.052, p = .016; decreasing

condition β̂ = 0.054, p = .006) applied at 72 months (Fig. 2A and B).
While a simple slopes analysis showed no relationship between the

ePRS-IR score and mean P Correct values in girls (fixed condition β̂ =

−0.014, p = .36; decreasing condition β̂ = −0.02, p = .15), a lower
ePRS-IRwas significantly related to lowermean P Correct (less certainty
when coming up to a decision or higher reflection impulsivity) in boys

(fixed condition β̂ = 0.038, p = .01; decreasing condition β̂ = 0.034,
p = .01). Results in MAVAN remain significant after adjustment for
multiple comparisons. A large scale permutation analysis was signifi-
cant for the interaction between the ePRS-IR and sex in both fixed
(p = .008) and decreasing conditions (p = .004).

We next examined whether a “random” PRS or other conven-
tional PRSs (for ADHD [54,60] or addiction [61]) of comparable size
in terms of SNP number could also predict impulsivity in these chil-
dren.We created 30 random ePRS and repeated the linear regression
analyses for each of the random ePRSs. The pooled results showed a

non-significant interaction term (fixed condition: β̂=0.009, p= .75;

decreasing condition: β̂=0.004, p= .90). None of the control scores
was associated with the interaction effect (sex vs. ePRS) on reflec-
tion impulsivity in this sample (Fig. 2C). Plots describing themain ef-
fects both of the mesocorticolimbic ePRS-IR and of sex on IST fixed
and decreasing conditions can be found on the Supplementary mate-
rial (Fig. S2).



Fig. 2. Phenotypic differences predicted by the mesocorticolombic ePRS-IR: (A) and (B) Performance in the Information Sampling Task (IST, CANTAB) at 72 months according to sex and
ePRS-IR in fixed (A) and decreasing (B) conditions. There is a significant interaction between the genetic score and sex on IST outcome, in which boys with lower ePRS-IR sample less
information before taking the decision, being more impulsive than boys with higher ePRS-IR. Boys are depicted in blue and girls in red. N = 204. (C) Validation of the findings by using
different polygenic risk scores to investigate the interaction with sex on the Information Sampling Task in children and in SAGE outcomes. PRS with a random SNP selection, a classic
PRS from two different GWASes for ADHD or a PRS for addiction (i.e. smoking) were unable to predict the behavioral phenotypes, but the mesocorticolimbic ePRS-IR has an
interaction effect with sex on IST outcomes in children and with addiction risk in adults. (D) Number of addiction co-morbidities according to sex and mesocorticolimbic ePRS-IR in
the SAGE cohort. There is a significant interaction between the genetic score and sex on the number of co-morbidities, in which ePRS-IR has an effect on the number of co-morbidities
in men but not women. (E) Probability of alcohol abuse in the SAGE cohort. A significant interaction between the genetic score and sex was found on the probability of alcohol
dependence, in which ePRS-IR has an effect on the probability of alcohol dependence in men but not women (N = 2719).
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We then hypothesized that a lower ePRS-IR, associated with child-
hood impulsivity in boys as shown above, would predict risk for addic-
tion in men, considering the clinical overlap between impulsive
phenotypes and risk for addiction [72]. We therefore investigated if
the ePRS-IR was associated with the risk for addiction phenotypes
using data from the Study of Addiction: Genetics and Environment
(SAGE) repository [31]. The analysis revealed a significant interaction
between the ePRS-IR score and sex for the number of addiction comor-

bidities (interaction effect; β̂=−0.17, p= .01) and probability of alco-

hol dependence (interaction effect; β̂=−0.21, p= .01). Further simple
slopes analysis confirmed that a lower ePRS-IR was significantly associ-

ated with number of addiction comorbidities only in males (males, β̂=

−0.11, p= .04; females, β̂ = 0.07, p= .14); the simple slopes analysis
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for alcohol dependence returned amarginally significant effect inmales

(β̂ = −0.12, p = .06, OR = 3.38) with no effect in females (β̂ = 0.09,
p= .10) (Fig. 2D and E). A large scale permutation analysis of the inter-
action between ePRS-IR and sex was significant for alcohol dependency
(p = .005) and co-morbidities (p = .008). The interaction results in
SAGE remain significant after adjustment for multiple comparisons.

We also examined in SAGE whether a “random” PRS or other con-
ventional PRSs (for ADHD [54,60] or addiction [61]) interact with sex
predicting addiction co-morbidities or alcohol dependence in adults.
The pooled results from the random PRS showed a non-significant in-
teraction term (co-morbidities: β̂ = −0.016, p = .87; alcohol depen-

dence: β̂ = −0.005, p = .96). None of the control scores had any
interaction effect (sex vs. ePRS) on co-morbidities or alcohol intake in
this sample (Fig. 2C).

3.3. Comparison between mesocorticolimbic ePRS-IR using two versions of
the ADHD GWAS – 2010 and 2019

Considering the theoretical premise of the ePRS-IR (biological poly-
genic score based on gene co-expression), we hypothesized that the
choice of the GWAS for providing effect sizes for weighing the SNPs
would not have a major influence on the prediction ability of the ex-
pression based polygenic score. We then created simultaneously two
mesocorticolimbic ePRS-IR scores at the point of the SNP selection,
weighing one using the 2010 ADHD GWAS [54] and the second one
using the recently published 2019 ADHD GWAS [60]. Confirming
our hypothesis, both scores had a significant interaction effect with
sex on impulsivity phenotype measured by the IST task in MAVAN

(2010: β̂ = 0.02, p= .05; 2019: β̂ = 0.02, p = .05) (Fig. S3). This hap-
pens despite the large differences in the 2 studies' sample sizes (2010:
5415; 2019: 55,374), number of significant hits (2010: none; 2019:
12) and variance explained (2010 below 0.5; 2019: 5%). We highlight
the fact that our approach is focused on the biological processes under-
lying endophenotypic differences in healthy/community samples,
rather than in SNPs statistically associated with a disorder in clinical
samples as identified by these two GWAS. As our score represents bio-
logical variability rather than presence or absence of disease, it is ex-
tremely important that our score predicts variation in
endophenotypes rather than simply including statistically significant
Table 1
Baseline characteristics of the study samples in relation to the genetic scores.

Sample descriptives Spearman correlation
coefficient

P-value

Study participants' characteristics correlation with mesocorticolimbic ePRS-IR
MAVAN cohort
Sexa NA 0.785
Birth weight (grams)c −0.05 0.459
Gestational age (weeks)c 0.02 0.817
Family income below Low Income Cut Off a NA 0.945

SAGE cohort
Sexa NA 0.193
Family income below $20 Ka NA 0.266
Age at interviewc 0.03 0.159
Study sourceb NA 0.033*

Study participants' characteristics correlation with hippocampal ePRS-IR.
MAVAN cohort
Sexa NA 0.584
Birth weight (grams)c −0.07 0.276
Gestational age (weeks)c −0.04 0.585
Family income below Low Income Cut Offa NA 0.063

ADA cohort
Sexa NA 0.558
Study siteb NA 0.180
Age at onsetc 0.08 0.033*

Statistical analyses: a t-tests, b one-way ANOVA, c Spearman correlation. Low Income Cut
Off according to Statistics Canada [96].
SNPs (please refer to Fig. 1B). Several studies described associations be-
tween polygenic scores based on the 2010 ADHD GWAS and
endophenotypes associated with attention-impulsivity problems in
community samples (rather than ADHD cases vs. controls, similar to
our main cohort MAVAN [73,74]). On the other hand, the new ADHD
GWAS (2019), despite being adequately powered for detecting disease
state, failed to demonstrate any associations with attention problems
(= variation in endophenotype, assessed by the Child Behavior Check-
list at 48 and 60 months) in our community-based sample MAVAN
(data not shown). Therefore, in this study, we opted for our main anal-
ysis to be focused on the ePRS-IR weighted using the effect sizes de-
scribed in the 2010 ADHD GWAS.

Table 1 describes the baseline characteristics of the samples
(MAVAN and SAGE) in relation to the mesocorticolimbic ePRS-IR.

3.4. The Hippocampal ePRS-IR

To explore the ability of ePRS-IR to capture specific biological roles
associatedwith IR in particular brain regions, we created the hippocam-
pal ePRS-IR, considering that IRs are expressed in the hippocampus and
are associated with cognitive processes. Similarly to the mesocorti-
colimbic ePRS-IR, the selected SNPs are not statistically significantly as-
sociated with Alzheimer's in the GWAS [55](Fig. 3A). The gene network
analysis demonstrates that the hippocampal ePRS-IR also represents a
highly interconnected network (Fig. 3B). Analysis of the co-expression
pattern of the genes included in the hippocampal ePRS-IR revealed
that the high co-expression clusters from childhood are not maintained
in adult life (Fig. 3C). Informed by the role of the IR in the hippocampus
on cognition,we explored this endophenotype in children by evaluating
cognitive performance on the Number Knowledge Task applied at
48 months [30]. There was a main effect of the hippocampal ePRS-IR

in predicting task performance (48 months: β̂ =−0.384, p = .03, per-
mutation analysis p = .018), in which children with higher ePRS-IR
scores have lower performance on the cognitive test (Fig. 3D). We
found no significant interaction effect between the hippocampal ePRS-
IR and sex on the task at this age. The hippocampal ePRS-IR was also
able to distinguish the presence of Alzheimer's disease diagnosis in

the GenADA study [38] (β̂ = 0.32, p = 6.82e-09, permutation analysis
p b 1e-6), in which there are more cases in individuals with higher
ePRS-IR scores (Fig. 3E). No significant interaction between ePRS and
sex was found in the adult cohort.

Table 1 describes the baseline characteristics of the samples
(MAVAN and GenADA) in relation to the hippocampal ePRS-IR.

3.5. Comparison Between Mesocorticolimbic and Hippocampal ePRS-IR
Scores

To examine the isolated contribution of unique SNPs (as opposed to
the global ePRS scores) to the above described effects, we performed a
SNP by sex association analysis for the mesocorticolimbic ePRS-IR (in-
vestigating the interaction with sex) using linear regression models
(each SNP included in the ePRS-IR by sex interaction models). No
unique SNP included in the mesocorticolimbic ePRS-IR reached
genome-wide significance level on the SNP by sex interaction on impul-
sivity in children, or risk for addiction in adults.

We also performed an association analysis for each SNP included in
the hippocampal ePRS-IR (investigating the main effects of each SNP
from the hippocampal ePRS-IR on the outcomes) using linear regres-
sions. Similarly, no isolated SNP included in the hippocampal ePRS-IR
was associated with poorer cognitive performance in children, or
Alzheimer's disease at the genome-wide significance level, confirming
that variations in the biological function of the gene networks repre-
sented in the ePRS-IR scores predict their respective outcomes as a
global score, with small contributions from all included SNPs, but not
by any isolated mutation (Fig. 4A).



196 S.A. Hari Dass et al. / EBioMedicine 42 (2019) 188–202



197S.A. Hari Dass et al. / EBioMedicine 42 (2019) 188–202
To further validate the brain region specificity of the scores, we
analyzed the distribution of children in each quartile of the
mesocorticolimbic and hippocampal ePRS-IR in MAVAN (Fig. 4B)
and verified that the scores are independent (r = 0.062, p = .416).
In addition, the mesocorticolimbic ePRS-IR did not predict cognitive

performance (β̂=−0.27, p= .08 for main effect, β̂=−0.15, p= .62
for the interaction with sex). Likewise, the hippocampal ePRS-IR was

not associated with IST scores (β̂=−0.006, p= .62 for main effect, β̂
=0.020, p= .29, for the interaction with sex). Gene ontology (path-
ways and processes networks) of the gene set comprising the
mesocorticolimbic ePRS-IR using Metacore® (Thomson Reuters)
showed statistically significant enrichment for pathways involved
in cell cycle regulation (FDR q = 1.18e-02). Process networks were
significant for neurogenesis/axonal guidance (FDR q = 6.667e-03),
transcription and translation (FDR q = 1.39e-02). The gene set in-
cluded in the hippocampal ePRS-IR is enriched for pathways in-
volved in development (hedgehog signaling, FDR q = 1.19e-05)
and transcription (FDR q = 1.42e-04). Process networks involve
cell division (Fig. 4C). Both ePRS-IRs were significantly associated
with similar transcription factors including CREB1, C-Myc, SP1 and
ESF1 (Fig. 4D).
4. Discussion

Recently, there has been a marked increase in the number of
GWAS available. We now have access to association studies ad-
dressing a range of health related outcomes. Conventional poly-
genic risk scores derived from existing GWAS's are intended to
reflect genetic vulnerability. However, the PRS approach is limited
by the small explained variance in GWAS of common disorders and
a lack of insight into the phenotypic constructs of the disease. We
propose an alternative approach that integrates the power of
GWAS datasets to create an ePRS informed by biological informa-
tion in specific tissues. The resulting brain-region specific ePRS re-
flects an integrated gene network and molecular pathway that
allows the use of genotyping data to test candidate biological
mechanisms (Fig. 5).

The conventional polygenic profiling method is driven by a sta-
tistical approach. Additional levels of biological complexity, such as
biomarkers and neuroanatomic loci of relevance – from experi-
mental or theoretical databases – can be superimposed and inform
the use of this technology, as we demonstrate here. The need to
consider gene networks is further exemplified by the observation
that the power to detect a causal SNP is drastically reduced when
the trait/disorder is caused by two or more pathways [75]. We
showed that a biologically-informed polygenic risk score based on
genes co-expressed with the central IR represents highly cohesive
and relevant gene networks. The mesocorticolimbic-specific ePRS-
IR is more strongly associated with impulsivity and the risk for
substance dependence in males than is a conventional PRS for ei-
ther ADHD or addiction. The sex-specificity of our findings was ex-
pected, given the increased prevalence of ADHD and behavioral
alterations associated with this condition (such as impulsivity) in
boys compared to girls [44,76]. Likewise the hippocampal-specific
Fig. 3. The hippocampal ePRS-IR: (A) Single nucleotide polymorphisms (SNPs) included in the h
GWAS. The SNPs captured in the score do not have genome-wide significance. (B) Gene netw
hippocampal ePRS-IR also represents a highly cohesive gene network. (C) Coexpression of th
The heatmap of the genes' co-expression in childhood (left) shows several clusters of highly
adulthood (right) suggesting that these gene networks are relatedly connected in childhood, b
gene expression values in childhood (left) and adulthood (right). Each vertical line represent
included in the score have highly correlated gene expression in childhood, but this is not see
performance, applied at 48 months, in which children with higher ePRS-IR scores have lower
found at this age (N = 218). (E) Presence of Alzheimer's disease diagnosis according to hippo
ePRS-IR in predicting Alzheimer's cases. There is an increased number of cases in individuals w
ePRS-IR was associated both with cognitive performance in chil-
dren and with Alzheimer's diagnosis at later ages, demonstrating
that the biologically-informed framework is brain region and
endophenotype-specific.

We highlight the fact that our approach is focused on the bio-
logical processes underlying endophenotypic differences in
healthy/community samples, rather than in SNPs statistically asso-
ciated with a disorder in clinical samples as identified by the tradi-
tional GWAS and PRS methodologies. This is clear in Figs. 1B and
2A, in which we demonstrate that the SNPs selected to be part of
the ePRS-IR scores are not statistically significant in the GWAS.
However, they are biologically relevant for the insulin receptor
gene network in the mesocorticolimbic system and hippocampus,
which makes their statistical significance with regards to ADHD
or Alzheimer's disease irrelevant for the purpose of the creation
of the score. The betas extracted from the GWAS are used simply
as a way to weight the SNPs and be able to aggregate them in a
meaningful way. We could have used arbitrary weights as previ-
ously done in past multilocus approaches [77,78]. The comparison
shown here (point 3.3), performing an interchange in SNP weights
between 2010 and 2019 ADHD GWASes suggests that the weight
attributed to each individual SNP contributes minimally to the pre-
diction of the outcome. Fig. 4A also highlights the fact that no iso-
lated SNP was associated with the outcomes in any of the analysis
– which is consistent with the idea that the functional unit of anal-
ysis is the gene network (represented by the ePRS) rather than a
single or only a few SNPs. Our approach is then more biologically
plausible, considering that genes code for biological functions,
and not for a disease state. Our methodology innovates in the
SNP selection method – focused on the biological process rather
than the statistical significance. Hence, as our scores represent bio-
logical variability rather than presence or absence of disease, our
method is more likely linked to subtle variations in endopheno-
types rather than the dichotomous presence or absence of a diag-
nosis. We are interested in predicting potential risk for disease
later in life in healthy subjects, therefore the focus on children
and on community samples.

Our network analysis shows that the ePRS-IR represents a cohe-
sive gene network with significantly more connections than the list
of genes extracted from the GWAS for ADHD, or random lists of
SNPs. This robust approach therefore goes beyond describing asso-
ciations between single gene variants and the outcomes, but cap-
tures information about the whole gene network, and its function,
in specific brain regions. One of the critiques of GWAS is that
they are ‘a static global’ measure, unable to discern spatial or tem-
poral differences, as compared to techniques such as RNA sequenc-
ing or whole genome bisulfite sequencing (WGBS), which are
fundamental to the study of any trait/disorder. Our approach inte-
grates a static global measure – which is easy to acquire in your
dataset of interest – with a temporal and spatial information,
which are, usually, not feasible to acquire in all human datasets –
to compute a score that is adept at informing spatially relevant
endophenotypes.

We filtered our gene set by genes overexpressed in early develop-
ment by comparison to adulthood. According to [79], most of the
ippocampal ePRS-IR, shown in green, in relation to the Manhattan plot of the Alzheimer's
ork analysis in the hippocampal ePRS-IR 543 genes. The picture demonstrates that the
e genes included in the hippocampal ePRS-IR, in childhood and adulthood. Top panels:
co-expressed genes. The clusters are not maintained in the retained order heatmap for
ut not anymore in adulthood. Bottom panels: values of the correlation coefficients of the
s correlation with a unique gene. The red line is drawn at a correlation score of 0. Genes
n in adult samples. (D) Main effect of hippocampal ePRS-IR on Number Knowledge Task
performance on the cognitive test. No significant interaction between ePRS and sex was
campal ePRS-IR scores in the GenADA study. There was a main effect of the hippocampal
ith higher ePRS-IR scores. N = 1565.



Fig. 4. ePRS-IR scores are brain-region specific: (A) Manhattan plots investigating the contribution of isolated SNPs into the reported findings. There was no unique SNP included in the
mesocorticolimbic ePRS-IR responsible for the SNP by sex interaction on impulsivity in children (top left) or alcohol dependence in adults (top right). Similarly, no isolated SNP
included in the hippocampal ePRS-IR was associated with poorer cognitive performance in children (bottom left), or Alzheimer's disease (bottom right). These findings confirm that
variations in the biological function of the gene networks represented in the mesocorticolimbic ePRS-IR and hippocampal ePRS-IR can predict these outcomes as a global score, with
small contributions from all included SNPs, but not by any isolated mutations. (B) Pearson's product-moment correlation demonstrating the distribution of children in each quartile of
the mesocorticolimbic and hippocampal ePRS-IRs. There is no correlation between the quartiles of the two ePRSs (r = 0.062, p = .416). This shows that a subject with a high
mescorticolimbic ePRS-IR would not necessarily have a high score in the hippocampal ePRS-IR, and vice-versa, demonstrating their brain specificity and independence. (C) Enrichment
analysis of mesocorticolimbic (upper panel) and hippocampal (bottom panel) ePRS-IR. (D) Transcription factor analysis of the two brain-region specific ePRS-IRs.
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Fig. 5. Theoretical framework and applications: The expression based, brain region specific ePRS-IR represents a developmentally relevant gene network with enrichment for specific
processes like neurogenesis, chromatin modification and translation processes. Variation in this score predicts particular endophenotypes in childhood – for example, impulsivity and
cognitive performance. These behaviors map onto risk for diseases later in life, such as risk for addiction and Alzheimer's disease, and the eRPS-IR is equally associated with these
outcomes. Psychopathology related to poor inhibitory control or decision-making encompasses a wide range of conditions (ADHD, addiction, eating disorders, gambling, suicide, etc.).
Similarly, there is an increasing incidence of Alzheimer's disease and other dementias. The neurobiological understanding of these conditions contributes to the development of tools
for early identification and primary prevention.
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differentially expressed genes during development have the highest
expression in the fetal/early childhood period (81% of all differently
expressed genes during development, as opposed to only 5% in
adulthood). The same author describes that these overexpressed
genes in early life are enriched for gene ontology processes related
to synaptic transmission and signaling [79], which are relevant for
the current study. Genes that are overexpressed in adulthood vs.
early life are enriched for cellular respiration [79]. The threshold
that we used for selection was based on previous literature examin-
ing enrichment of genes associated with neuropsychiatric disorders
in fetal versus adult brain [80].
Our mesocorticolimbic ePRS-IR predicted both impulsivity in
male children as well as risk for addiction in adults. Conduct disor-
der and impulsivity are the foremost risk traits for alcohol use dis-
order among the 80 personality disorder criteria of DSM-IV [81].
There is a relationship between childhood ADHD and the risk for
developing drug addiction later in life [82], especially considering
the impulsivity component, rather than inattention [83], in agree-
ment to the findings described here. Insulin function is associated
with the risk for drug addiction [84]. Diminished insulin sensitivity
is related to less endogenous dopamine at D2/3 receptors in the
ventral striatum [85], reinforcing the idea that metabolic processes
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are involved in dysfunctions of the mesocorticolimbic system, such
as drug dependence. The enrichment analysis of our mesocor-
ticolimbic ePRS-IR is consistent with the known role of insulin in
cell division [86], neurogenesis [87], signal transduction [88], and
axon guidance [89].

The hippocampal formation is the region with the higher IR
gene expression in the brain [90]. Lower expression of IR and al-
tered levels of different components of the insulin signaling path-
ways were described in hippocampi from Alzheimer's patients
[91]. A down-regulation in insulin signaling causes memory im-
pairment through inhibition of serine phosphorylation of the insu-
lin receptor via activation of stress kinases like c-Jun-n-terminal
kinase (JNK) [17]. JNK enhances glycogen synthase kinase 3β
(GSK3β) activity that leads to tau phosphorylation followed by ac-
cumulation of neurofibrillary tangles – a hallmark of Alzheimer's
disease – in the brain [92]. Others have shown that impaired insu-
lin sensitivity is linked to cognitive deficits in the elderly [93], and
that measures of cognitive function in youth predict later risk for
Alzheimer's disease [94,95]. Our study is based on this premise.
That's why we (1) created the scores favoring genes that are
overexpressed in childhood vs. adulthood; (2) started our analysis
by verifying if the hippocampal ePRS-IR would predict cognitive
function in children and (3) tested if the same genetic score
could predict Alzheimer's diagnosis in a cohort of adults. It is inter-
esting to note that, as opposed to the mesocorticolimbic ePRS-IR
gene set, clusters of co-expression of the hippocampal ePRS-IR
gene set are not maintained in adulthood. This indeed suggests
that the function of this gene network early in life defines an
endophenotype in childhood (cognitive ability), that persists as
an increased risk for dementia at older ages.

It is important to note that the co-expression data is derived exclu-
sively from mice in this work (see Fig. 1A). The co-expression was
then confirmed in humans using the Brainspan dataset (see Figs. 1E,
3C). The use of co-expression data from mice allows the establishment
of direct translational studies, integrating information from clinically-
relevant experimental models into this bioinformatic approach. In this
study, we used a publicly available dataset (GeneNetwork); in future
studies, co-expression data from relevant animal models can be the
source for the co-expression data.

Our genomic approach integrates information from molecular
neurobiology with GWAS technology to develop a biologically-
informed polygenic score based on gene co-expression data from
specific brain regions. The insulin receptor work shown here
serves as a proof-of-concept for this methodology, that can be
focused on other gene networks or other tissues, and be applicable
to virtually all fields of research. As GWASes become more power-
ful and more specific for detecting disease states in clinical
samples, they are also progressively less sensitive to capture the
biological spectrum and endophenotypes – therefore less relevant
for community samples and for large-scale applicability in
preventative measures. The concept that genes code for biological
processes rather than for disease, and work in networks
rather than in isolation, is the basic idea of our method. Our
ground-breaking approach applies the GWAS technology to the
understanding of the adaptive and plasticity responses to
developmental and environmental variation.
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