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As an industrial bacterium, Bacillus licheniformis DW2 produces bacitracin which is an
important antibiotic for many pathogenic microorganisms. Our previous study showed
AbrB-knockout could significantly increase the production of bacitracin. Accordingly, it
was meaningful to understand its genome features, expression differences between wild
and AbrB-knockout (1AbrB) strains, and the regulation of bacitracin biosynthesis. Here,
we sequenced, de novo assembled and annotated its genome, and also sequenced
the transcriptomes in three growth phases. The genome of DW2 contained a DNA
molecule of 4,468,952 bp with 45.93% GC content and 4,717 protein coding genes.
The transcriptome reads were mapped to the assembled genome, and obtained
4,102∼4,536 expressed genes from different samples. We investigated transcription
changes in B. licheniformis DW2 and showed that 1AbrB caused hundreds of genes
up-regulation and down-regulation in different growth phases. We identified a complete
bacitracin synthetase gene cluster, including the location and length of bacABC,
bcrABC, and bacT, as well as their arrangement. The gene cluster bcrABC were
significantly up-regulated in 1AbrB strain, which supported the hypothesis in previous
study of bcrABC transporting bacitracin out of the cell to avoid self-intoxication, and was
consistent with the previous experimental result that 1AbrB could yield more bacitracin.
This study provided a high quality reference genome for B. licheniformis DW2, and
the transcriptome data depicted global alterations across two strains and three phases
offered an understanding of AbrB regulation and bacitracin biosynthesis through gene
expression.

Keywords: Bacillus licheniformis, reference genome, transcriptome, AbrB-knockout, differentially expressed
genes, bacitracin biosynthesis

INTRODUCTION

Bacillus licheniformis (B. licheniformis) is a Gram-positive bacterium that is widely used in
multiple fields: in agriculture as a probiotic and microbial fertilizer (Pötter et al., 2001), and in
biotechnology industry for the production of enzymes, acetoin and poly-γ-glutamic acid (γ-PGA)
(Veith et al., 2004; Liu et al., 2011; Konglom et al., 2012). This facultative anaerobic organism can
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also produce a variety of antibiotics such as bacitracin,
which is an important peptide antibiotic for many pathogenic
microorganisms secreted by certain strains of B. licheniformis
and B. subtilis (Johnson et al., 1945; Mcinerney et al.,
1990). The branched cyclic dodecyl peptide bacitracin is the
most active against other Gram-positive and certain Gram-
negative microorganisms, which is synthesized by a large non-
ribosomal multi-enzyme complex bacABC (Konz et al., 1997).
The AbrB gene of B. licheniformis and B. subtilis is known
as an important global transcription repressor, but also act
as an activator for some genes by binding to promoters
(Kim et al., 2003). AbrB has a wide range of regulatory
functions, including cell wall and membrane synthesis, bacterial
chemotaxis, antibiotic synthesis, amino acid synthesis and
transport, protein modification and so on (Qian et al., 2002;
Strauch et al., 2007). AbrB directly regulates more than 100
genes and indirectly influence hundreds genes. The evidence
suggests that expression level of AbrB is inhibited by another
regulatory gene Spo0A-P, leading to an opposite tendency of
AbrB gene expression compares with that of Spo0A-P, i.e., high
expression during the logarithmic phase and low expression
during stationary phase (Strauch et al., 1990; Shafikhani
and Leighton, 2004; Banse et al., 2008; Chumsakul et al.,
2011).

Since the project of B. subtilis genome was completed as the
first gram-positive bacterium (Kunst et al., 1997), more and more
Bacillus strains have been sequenced including B. licheniformis
ATCC14580, 9945A, WX-02 and DSM13; B. subtilis CGMCC
12426, BSD-2, and so on (Veith et al., 2004; Guo et al., 2015;
Li et al., 2015; Liu et al., 2016). In contrast, some other studies
are limited to single or several proteins and metabolites, for
example, the production of increased isopentenyl pyrophosphate
(IPP) (Cain et al., 1993; Chalker et al., 2000), the secretion of
exopolysaccharides (Pollock et al., 1994) and bcrABC protein
transporting bacitracin in B. subtilis (Podlesek et al., 1995, 2000).
Although these studies provide great advances, there has never
been a comprehensive research focused on the effects of AbrB-
knockout in term of whole genome and transcriptome, especially
the effect on the bacitracin gene cluster.

Our previous study showed that AbrB-knockout could
significantly increase the production of bacitracin, and the yields
were 17.5% higher than that of the wild-type strain (Wang
et al., 2017). As an industrial B. licheniformis strain, DW2 can
produce an extra yield using the improvement way of AbrB-
knockout in industrial application. In the present study, we
sequenced, annotated the genome and transcriptome of an
important industrial B. licheniformis strain DW2, and obtained
the following results. (1) The genome of B. licheniformis DW2 is
4,468,952 bp with 45.93% GC content and 4,717 predicted coding
sequences (CDSs). (2) B. licheniformis DW2 has good collinearity
with other B. licheniformis strains, and a unique ∼100 kb
genomic sequences. (3) N-6-methylated adenines (6mA) and 4-
methylated cytosines (4mC) methylation of B. licheniformis DW2
was analyzed, and two 6mA motifs were identified. (4) There
are 369∼1,517 differentially expressed genes (DEGs) between
the transcriptome of wild and 1AbrB strains in logarithmic
growth phase, transitional phase and stationary growth phase.

(5) We identified the location and length of bacitracin synthetase
gene cluster in B. licheniformis DW2. In this gene cluster, the
transporter genes bcrABC were significantly highly expressed
in 1AbrB strain, which supported the assumption that bcrABC
genes could pump bacitracin out to avoid self-intoxication.
The study produced a reference genome of B. licheniformis,
also enabled us to highlight global changes in gene expression
and provided theory and data support for industrial process of
bacitracin production.

MATERIALS AND METHODS

Genomic DNA Preparation
The DW2 strain used in this study was provided by China Center
for Type Culture Collection (CCTCC), whose number was
CCTCC M2011344. B. licheniformis DW2 was grown on Luria
Bertani (LB) agar plates or in LB broth at 37◦C, supplemented
with antibiotics (tetracycline, 20 mg/mL; ampicillin, 50 mg/mL;
kanamycin, 20 mg/mL) when necessary. The seed culture (1 mL)
was inoculated into a 250 mL Erlenmeyer flask containing
20 mL bacitracin fermentation medium [6% soybean meal,
4.5% starch, 0.1% (NH4)2SO4, 0.6% CaCO3, pH 6.5∼7.0],
followed by 40 h incubation on a rotary shaker (180 rpm)
at 37◦C. Genomic DNA was extracted using a standard SDS-
Phenol procedure (Sambrook et al., 1982) according to the
manufacturer’s instructions, combined with phenol-chloroform
extraction and RNase A treatment.

PacBio SMRT Sequencing
We determined the complete genome sequence of B. licheniformis
DW2 using PacBio single molecule real-time (SMRT) technology.
We prepared a 3 to 20 kb genomic DNA library suitable
for P6/C4 chemistry. Using two SMRT cell on PacBio RSII
sequencing platform, 116,486 polymerase reads with mean read
length of 4,268 bp were obtained. The polymerase reads were
assembled de novowith Hierarchical Genome Assembly Process 3
(HGAP3) within the SMRT Analysis version 2.3.0 software (Chin
et al., 2013). Subsequently, the best assembly was selected, and
Minimus 2 was used for trimming the circular contig (Sommer
et al., 2007). The replication origin was determined by aligning
the DW2 genomic sequence with B. licheniformis DSM13.

For identification of methylated bases and modification
motifs, the “RS_Modification_and_Motif_Analysis.1” protocol
in SMRT Portal under default parameter settings was used, with
the assembled genome. Putative restriction modification systems
have been identified using the Restriction-ModificationFinder-
1.0 server1 based on the Restriction Enzyme database (REBASE)
(Roberts et al., 2015).

The Annotation of B. licheniformis DW2
Genome
After the complete sequence was obtained, the genome was
annotated using the rapid annotation tool RAST (Ogata
et al., 1999; Aziz et al., 2008). In addition, the unigenes

1https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder-1.0/
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were annotated by the public protein databases of Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Galperin et al.,
2015), Cluster of Orthologous Groups of Proteins (COG) (Gene
Ontology Consortium, 2015), Swiss-Prot protein2, NCBI non-
redundant (NR3), and Gene Ontology (GO) (Lagesen et al.,
2007) using BLASTP to get corresponding functional annotation
information. As each sequence had many alignments, we retain
the optimal comparison results as the annotation of the gene
to ensure its accuracy. The predictions of rRNA and tRNA
were performed using RNAmmer (Lowe and Eddy, 1997)
and tRNAscan-SE (Zhang et al., 2000), respectively. Insertion
sequence (IS) elements were predicted with IS Finder (Benson,
1999).

Whole-Genome Alignment and
Identification of Operon Structures
We constructed and visualized the multiple genome alignment
of four complete genomes of B. licheniformis strains DW2,
ATCC14580, 9945A and WX-02 using Mauve v2.4.0 (Darling
et al., 2010). Pairwise collinear comparisons of the four genome
sequences were performed using Mummer3 (Kurtz et al., 2004).
Operon of B. licheniformis DW2 was identified using DOOR
2.0 algorithm for prokaryotic operon analysis (Mao et al.,
2014).

RNA Isolation and Library Preparation
for ssRNA-seq
RNA samples were isolated at three time points for two bacterial
samples (wild strain and 1AbrB strain): 14 h (logarithmic
growth phase), 22 h (transitional phase) and 25 h (stationary
phase). Cells were collected by centrifugation at 12,000 rpm for
5 min, and then transferred to a 10-ml centrifuge tube after
grinding in liquid nitrogen. Cells were then lysed in 1 mL
of TRIzol for 30–60 s. To the lysate, 200 µL of chloroform
was added, and the sample was then mixed by inversion and
incubated at room temperature for 15 min. The sample was then
centrifuged at 12,000 rpm for 15 min at 4◦C, and supernatant
was precipitated with an equal volume of isopropanol at room
temperature for 10 min. After centrifugation, the supernatant
was discarded, and the pellet was air dried and dissolved in
20–40 µL of RNase-free water. Total RNA was treated with
RNase-free DNase I for 30 min at 37◦C to remove genomic
DNA. RNA concentration was measured using Qubit R© RNA
Assay Kit in Qubit R© 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, United States). At the same time, RNA integrity
was assessed using the RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, United States). Each sample had three replicates, and all
biological replicates were processed in separate batches from each
other.

Libraries for ssRNA sequencing (Novogene Experimental
Department) were constructed at three time points (14, 22, and
25 h). A total amount of 3 µg RNA per sample was used as

2http://www.expasy.ch/sprot
3http://www.ncbi.nlm.nih.gov

input material for the RNA sample preparations. Sequencing
libraries were generated using NEBNext R© UltraTM Directional
RNA Library Prep Kit for Illumina R© (NEB, United States)
following manufacturer’s recommendation and index codes
were added to attribute sequences to each sample. Briefly,
(epicentre Ribo-ZeroTM) fragmentation was carried out using
divalent cations under elevated temperature in NEBNext First
Strand Synthesis Reaction Buffer (5X). First strand cDNA was
synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase (RNaseH-). Second strand cDNA synthesis was
subsequently performed using DNA Polymerase I and RNase
H. In the reaction buffer, dNTPs with dTTP were replaced by
dUTP. Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylation of 3′ ends of
DNA fragments, NEBNext Adaptor with hairpin loop structure
were ligated to prepare for hybridization. In order to select cDNA
fragments of preferentially 150∼200 bp in length, the library
fragments were purified with AMPure XP system (Beckman
Coulter, Beverly, MA, United States). Then 3 µl USER Enzyme
(NEB, United States) was used with size-selected, adaptor-ligated
cDNA at 37◦C for 15 min followed by 5 min at 95◦C before
PCR. Then PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers and Index (X) Primer. At
last, products were purified (AMPure XP system) and library
quality was assessed on the Agilent Bioanalyzer 2100 system.

Mapping Reads to B. licheniformis DW2
Genome and Analyzing Differentially
Expressed Genes
All the raw reads were initially processed to obtain clean reads
by the following steps: (1) reads with adaptor were discarded; (2)
reads with ambiguous bases (undetermined bases, N) larger than
10% were removed; (3) low-quality reads that contained more
than 50% Q-value < 5 bases were discarded. After filtering, all
clean reads were aligned to the assembled genome using Bowtie2
(Langmead and Salzberg, 2012), and reads with ambiguous
alignments or more than three mismatches were discarded. Only
uniquely mapped reads were used for further analysis. The per-
base–format coverage depth and read counts were calculated
using BEDTools (Quinlan and Hall, 2010). Because different
samples may have different total read counts, sequencing depth,
and biases, the normalized transcription level of genes was
expressed in reads per kilobase of ORF per million mapped reads
(RPKM) (Mortazavi et al., 2008). The transcriptome raw reads
have been deposited in NCBI Sequence Read Archive database
under accession number SRP045205. In addition, we generated
a distance matrix for expression data based on RPKM values by
using Pearson correlation as dissimilarity metric (El-Sharnouby
et al., 2013). Clustering was performed and deprograms were
generated using the cluster package in R.

Differentially expressed genes between wild strain and 1AbrB
strain were identified using the DESeq R package with the MARS
(MA-plot-based method with Random Sampling) model (Anders
and Huber, 2010). The DEGs were screened with the false
discovery rate (FDR) threshold of ≤0.01 and an absolute value
of fold change (FC) ≥2.
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RESULTS AND DISCUSSION

Genomic Features and Comparative
Genomics of B. licheniformis DW2
Bacillus licheniformis DW2 genome has one circular DNA with
4,468,952 bp length and 45.93% GC content. The DNA molecule
(Figure 1) contained 4,717 predicted CDSs accounting for∼87%
of the genome. Among the predicted CDSs, 3,896 were assigned
biological functions or putative functions and 821 could be
annotated as hypothetical protein. In addition, 24 rRNA genes
and 81 tRNA-coding genes were identified, and 71 IS elements
were found. Additional information about the genome statistics
is shown in Table 1.

To obtain further insights into B. licheniformis DW2 genome,
we performed comparative genomics analysis with other three
available B. licheniformis genomes: DW2, ATCC14580, 9945A
and WX-02 (Table 2). B. licheniformis DW2 had the largest
genome size and number of predicted CDSs, IS and tandem
repeat sequence. However, the number of rRNAs and tRNAs
was consistent with the others and the number of rRNAs was
almost same. The multi-genome alignments showed the four
genomes shared homologous blocks in order (Figure 2A). We
found that B. licheniformis DW2 genome contained a specific
fragment at 3.3∼3.4 Mb with 113 CDSs, most of them were
hypothetical proteins and phage-associated proteins (such as
phage-like protein, phage protein, phage capsid, and scaffold).
Considering that only B. licheniformis DW2 can highly yield
peptide antibiotics in the above four strains, we hypothesized
that this region might be associated with the yield of peptide
antibiotics and inhibition of pathogens. The B. licheniformis
DW2 genome was collinear with the other three B. licheniformis
strains (Supplementary Figure S1), and it has the best consistency
with B. licheniformis 9945A.

DNA Methylation Features in
B. licheniformis DW2
DNA methylation is an essential epigenetic modification that
can change the activity of a DNA segment without changing
the sequence. It typically represses gene transcription if it
locates in a gene promoter (Laird, 2010). In bacteria DNA
methylation often acts as a cellular defense system against phage
infection that confers a selective advantage to the host bacterium
(Sitaraman, 2016). If a foreign DNA is introduced into the
cell, it will be degraded by sequence-specific restriction enzymes
while the methylated DNA of the bacteria is not recognized
by the restriction enzymes. Therefore, DNA methylation
can be viewed as a primitive immune system to protect
bacteria from bacteriophage attack (Sitaraman, 2016). DNA
methylation transfers methyl groups from adenosylmethionine
to adenine or cytosine by DNA methyltransferase to form 6-
methyladenine (6mA), 4-methyl cell (4-Methylcytosine, 4mC)
and 5-Methylcytosine (5mC), of which 6mA and 4mC are
mainly found in prokaryotes (Kumar et al., 1994; Sánchezromero
et al., 2015). PacBio SMRT technology has been used to
simultaneously detect DNA methylation modification during
single-molecule genome sequencing (Flusberg et al., 2010). In

order to characterize the methylation of B. licheniformis DW2,
using the SMRT Analysis Modification and Motif detection,
we identified 2,939 6 mA, 2,784 4 mC and 88,319 unspecific
“modified bases” where the type of modification was not
recognized by the software.

We then detected candidate methylation motifs using a
sliding window of 5 kb, and identified two dominant motifs
(GCANNNNNNNNRTRTC and GAYAYNNNNNNNNTGC),
both of them were recognized by N-6 adenine-specific
methyltransferases. Figure 2B shows the distribution of
two motifs in B. licheniformis DW2 genome, approximately
40% of 6 mA bases are clustered into the two motifs. However,
there is no consensus motif for 4mC-methylated bases or other
unspecific modified bases. We aligned the two motifs to a
comprehensive restriction-modification (RM) system database
REBASE (Roberts et al., 2015) to make sure whether the two
motifs have been identified in other species, and found that both
motifs could not match existing recognition sequences of the
restriction systems.

Prediction and Analysis of Operons in
B. licheniformis DW2
We predicted 1021 operons based on RNA-seq data of
B. licheniformis DW2 using software DOOR. Among these
operons, 446 (43.7%) of them are composed of two genes
and 19 of them are composed of more than 10 genes.
Figure 2C shows the operon acoABCL associated with acetoin
catabolism, where acoR is a transcriptional regulator, acoL is
dihydrolipoamide dehydrogenase, and acoABC is a gene related
to acetoin dehydrogenase (Ali et al., 2001). Many microorganisms
can convert carbohydrates into acetone during glycolysis to
avoid over-acidification. As shown in the figure, these genes
had high expression at 22 and 25 h in DW2 strain, while
they were almost not expressed at 14 h in DW2 and all
the three time points in 1AbrB strain. These results indicate
that AbrB may have a great effect on the expression of this
operon, and this effect is time-specific, which has a significant
effect in stationary phase and no obvious effect in logarithmic
phase.

Figure 2D shows the stage V sporulation protein. The spoVA
operon of B. subtilis is expressed only in the developing spore
during sporulation and at least five SpoVA proteins, SpoVAA, -
B, -C, -D, and -Eb, are necessary for normal B. subtilis spore
formation (Perez-Valdespino et al., 2014). Many genes of 1AbrB
strain showed much higher expression than DW2 strain, which
fitted the basic fact that AbrB was a global regulatory gene
and had inhibition effect on many genes. The expression level
significantly increased when AbrB gene was knocked out. The
1AbrB genes at 14 h were highly expressed compared with
that at 22 and 25 h. In general, B. licheniformis would not
sporulate during logarithmic growth phase. As for spoVAC and
spoVAB, we observed that the expression at 22 and 25 h were
significantly lower than those at 14 h, which indicated they were
activated during logarithmic growth phase. These results suggest
that knockout of AbrB is favorable for sporulation. Then the
knockout of AbrB may be able to directly relieve the inhibition of
AbrB on other genes related to spore synthesis, thereby increasing
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FIGURE 1 | The circular plot of B. licheniformis DW2 chromosome. Circles are numbered from 1 (outermost) to 7 (innermost). Circle 1 represents the whole
chromosome; Circles 2 and 3 show the locations of predicted CDSs on the positive and negative strands, respectively; Circle 4, tRNA genes; Circle 5, rRNA genes;
Circle 6, %G + C; Circle 7, GC skew
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)
/
(
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the transcription level of spore-related genes and promote the
synthesis of spores.

Differentially Expressed Genes (DEGs) of
Wild and 1AbrB B. licheniformis DW2
Strains under Different Conditions
In the experiment of RNA isolation and preparation, we
performed three biological replicates. Consequently, we
obtained RNA-seq data at three time points from two
strains and three biological replicates, 18 sets of RNA-seq

data in total. It is important to examine the correlation
of the three biological replicates. We calculated the
Spearman coefficient of correlation among the data sets.
The results in Figure 3A show that the RPKM of biological
replicates are highly correlated. The AbrB gene has been
completely knocked out according to the expression levels
(Figure 3B).

We screened the expressed genes of wild-type strain and
1AbrB strain at different time points with the threshold of
RPKM > 1, and the number of expressed genes in different
time points were in the range of 4,102∼4,536 (Figure 3C).
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DEGs were obtained using DEseq package between the two
data sets of both strains and three growth phases (Table 3).
As shown in Figure 3D, the number of expressed genes of

TABLE 1 | Genome statistics of B. licheniformis DW2.

Feature Value

Genome size (bp) 4,468,952

DNA coding (bp) 3,918,654

DNA G+C (bp) 2,052,745

DNA scaffolds 1

Total genes 4,822

Protein coding genes 4,717

RNA genes 105

Genes with function predictions 3,896

Genes assigned to COGs 3,205

1AbrB increased significantly than that of wild type in all
three time points, indicating many inhibited genes expressed
after AbrB gene was knocked out. In Table 3, more than
a few hundred genes were up-regulated and down-regulated
between wild type and 1AbrB strains in all time points, which
supported the above conclusion that AbrB can regulate numerous
genes directly and indirectly. The number of expressed genes
of DW2 wild type at 14 h is greater than that at 22 and
25 h. It is shown that more genes are activated in logarithmic
growth phase, while quite a few of them are absent or very
lowly expressed in stationary and transitional phases. Both up-
regulated and down-regulated genes in 1AbrB are far fewer
than that of wild type, as shown in Table 3, may be caused
by the inhabitation absence of AbrB. Many regulated genes
expressed at all time points after AbrB was knocked out, and
no longer were differentially genes. We also note that the

TABLE 2 | General genome features of the four B. licheniformis strains.

Strain Size (Mp) GC% No. CDS No. rRNA No. tRNA No. Insertion sequence No. Tandem repeats

B. licheniformis DW2 4.47 45.93 4,717 24 81 71 144

B. licheniformis ATCC14580 4.22 46.19 4,173 21 72 57 116

B. licheniformis 9945A 4.38 45.92 4,225 21 72 67 116

B. licheniformis WX-02 4.29 46.06 4,512 24 79 62 103

FIGURE 2 | Comparative genomics of four B. licheniformis strains and other genomic features of B. licheniformis DW2. (A) Multiple genomic alignments of four
B. licheniformis strains. (B) Distribution of 6mA motifs in B. licheniformis DW2 genome. (C) The operon acoABCL associated with acetoin catabolism in
B. licheniformis DW2. (D) The stage V sporulation protein in B. licheniformis DW2.

Frontiers in Microbiology | www.frontiersin.org 6 February 2018 | Volume 9 | Article 307

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00307 February 22, 2018 Time: 14:48 # 7

Shu et al. Genome Sequencing and Transcriptome of Bacillus licheniformis DW2

FIGURE 3 | Gene expression of wild B. licheniformis DW2 and AbrB-knockout strains. (A) The correlation of three biological replicates in three time points of wild
and AbrB-knockout strains. (B) The AbrB gene was knocked out and not expressed in AbrB-knockout strain. (C) The number of expressed genes in three different
time points of wild and AbrB-knockout strains. (D) The different gene expression pattern between wild and AbrB-knockout strains.

number of DEGs correlate with time length. Among three
columns either in wild type or 1AbrB type, the middle column
represents the DEGs numbers between 25 and 14 h, which
are significantly greater the others. On the contrary, the DEGs
between 22 and 25 h with the shortest time length correspond
to the smallest numbers. It suggested that more and more
genes begin to transcript or stop transcription and become
DEGs with the development process of organism. To gain
insight into the differential expression of these DEGs, complete
linkage hierarchical cluster analysis based on RPKM values was
performed using R. The heat map showed significant differential
expression between strains, we identified six broad clusters of
genes that exhibited expression changes over time. Genes in
cluster found that about 30% of the DEGs in DW2 strains
show high expression at logarithmic growth phase (14 h) and

low expression at transitional phase (22 h) and stationary phase
(25 h).

To understand the function of these DEGs, they were
grouped according to their COG functional categories. As
shown in Figure 4A, a majority of the functional categories
in B. licheniformis DW2 contained both induce and repressed
genes, indicating that this bacterium needs to balance many
biological pathways under different conditions. We found that
the pathways had a very unequal distribution, and some of them
were significantly affected, such as ‘Carbohydrate transport and
metabolism (G),’ ‘Amino Acid transport and metabolism (E),’ ‘Cell
wall/membrane/envelope biogenesis (M),’ ‘Energy production
and conversion (C)’ and ‘Lipid transport and metabolism (I).’
Notably, almost all DEGs in the functional categories of ‘cell
motility (N)’ were down-regulated in logarithmic growth phase
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TABLE 3 | The number of DEGs between wild strain and knockout strain.

1AbrB-DW2 1AbrB strain DW2 wild strain

14 h 22 h 25 h 14–22 h 14–25 h 22–25 h 14–22 h 14–25 h 22–25 h

Total 1517 1439 1416 575 950 369 1651 1897 710

Up 808 790 827 311 406 115 870 965 291

Down 709 649 589 264 544 254 781 932 419

FIGURE 4 | Functional enrichment of DEGs and different expression of bacitracin biosynthesis related genes. (A) The functional categories of DEGs in three different
time points of wild type and AbrB-knockout strains. (B) The top 20 significantly enriched pathways of DEGs in three time points. (C) The cluster of bacitracin
biosynthesis related genes in B. licheniformis DW2. (D) The different expression of bacitracin biosynthesis related genes bacA, bacB, bacC and bacT between wild
and AbrB-knockout strains.

(14 h) and up-regulated in transitional phase (22 h) and
stationary phase (25 h). Previous observations suggested one of
the major functions of AbrB in repressing biofilm formation by

repressing signal peptidase sipW, and sipW-processed protein
may have a role in a motility structure in B. subtilis (Hamon et al.,
2004). We speculated that AbrB repressed some genes related
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to cell motility in transitional phase (22 h) and stationary phase
(25 h).

In addition, we mapped all DEGs to KEGG terms to identify
significantly enriched metabolic pathways and got 190 pathways,
which contained 1,271 DEGs. To obtain a better visual display of
the results, top 20 significantly enriched pathways of each time
points were shown in Figure 4B. The pathway flagellar assembly
was significantly at logarithmic growth phase (14 h), which was
consistent with the results of COG function enrichment. We
also found that the number of genes in significantly enriched
pathways was different among three time points, 14 h is much
more than 22 and 25 h. These results also coincide with the
variations of DEGs RPKM in 1AbrB strain.

The Expression of Bacitracin
Biosynthesis Related Genes
Bacitracin, comprised of 12 cyclic polypeptides, is an important
non-ribosomal peptide antibiotic. It is produced by several
Bacillus strains that are usually active against other Gram-positive
and some strains of Gram-negative microorganisms, but not
against the strain itself. B. subtilis C126 was reported as a
bacitracin producer (Azevedo et al., 1993). B. subtilis 168, which
has no bacitracin synthetase, but is more sensitive to bacitracin
than B. licheniformis, has several homologs of bcrABC (Ohki
et al., 2003). In previous studies, the bacitracin synthetase gene
cluster was clearly described (Konz et al., 1997; Neumüller et al.,
2001; Mascher et al., 2003). A thioesterase bacT and a non-
ribosomal peptide synthetase (NPRS) bacABC operon compose
the bacitracin synthetase gene cluster in B. licheniformis. The
bcrABC genes of transporter system which are hypothesized
to pump out bacitracin from the cells localize downstream of
bacABC, between the bacABC operon and transporter system
bcrABC is two-component system bacRS. Using antiSMASH
4.0.0 tool (Blin et al., 2017), we identified a complete bacitracin
synthetase gene cluster in B. licheniformis DW2, and all genes
of this cluster shows high similarity (identity > 90%) to
bacitracin synthetase operon in B. licheniformis strain ATCC
10716 (Figure 4C). The bacT gene is 705 bp and encodes a
protein of 235 amino acids. The bacABC gene cluster starts from
downstream of the bacT gene and encoding bacitracin synthetase,
it consists of the gene bacA (15,771 bp), bacB (7,809 bp), and
bacC (19,080 bp). Gene bacR (717 bp) and bacS (1,035 bp)
encode two-component regulatory system bacRS. The bcrABC
gene cluster locates after 80 bp downstream of the bacRS genes,
which is composed of bcrA (921 bp), bcrB (735 bp), and
bcrC (612 bp) and encoding ABC transporter. These findings
provided gene level information of bacitracin biosynthesis for
B. licheniformis DW2.

Previous study suggested that AbrB might repress the
expression of both bacT and bacA through binding to the
promoter regions in B. licheniformis (Wang et al., 2017).
Although bacABC and bacT are in the same bacitracin synthetase
gene cluster, their transcription levels tremendously vary in both
wild type and 1AbrB (Figure 4D). The highest expressed gene
bacA has about 10-fold RPKM comparing with bacT, the lowest
expressed one; while bacB and bacC are between the two. In
addition, the genes of bacitracin synthetase cluster did not share

an identical differentiated expression manner when AbrB was
knocked out, the up/down regulations of bacT and bacABC did
not show an obvious regularity. However, at 22 h their expression
level of 1AbrB were lower than those of 14 and 25 h, which was
found in all the above four genes, especially in bacT and bacA.

Notably, the bcrABC were significantly up-regulated in
1AbrB strain at all three time points in contrast to wild type
(Supplementary Figure S3). In previous study, B. licheniformis
was hypothesized to pump out bacitracin for self-resistance
by bcrABC (Neumüller et al., 2001). Besides, experiments
showed that 1AbrB strains would increase bacitracin yield
(Supplementary Figure S2; Wang et al., 2017). Our findings
provided evidence for bacitracin up-regulation and transport,
which was accordance with the above two studies and linked
them together. Comparing with wild type, AbrB-knockout strains
secreted more bacitracin, thus they had to increase resistance
to the extra bacitracin in order to avoid self-intoxication. The
up-regulation of bcrABC enabled 1AbrB strain produce more
transporters to remove the bacitracin out of the cell. So it is
reasonable to view the differential expression of bcrABC as a
response to the change of bacitracin production.

CONCLUSION

In this study, we successfully assemble the complete genome of
B. licheniformis DW2 using PacBio SMRT sequencing system and
de novo assembly based on the HGAP method. The genomic
information obtained in this study would help subsequent
comparative genomic analysis with other B. licheniformis
strains. Meanwhile, we conducted comprehensive analyses of
B. licheniformis DW2 by ssRNA-seq in wild and 1AbrB strains.
The ssRNA-seq data enabled us to comparatively analyze DEGs
between different strains and growth phases and provided
us information on bacitracin synthesis. In previous studies,
B. licheniformis was considered to transport bacitracin for self-
resistance by bcrABC (Neumüller et al., 2001). The global
transcription regulator AbrB represses the transcription of the
bacitracin synthase operon by directly binding to the bacitracin
synthase operon promoter region (Wang et al., 2017). In our
study, we identified a complete bacitracin synthetase gene cluster
in the genome including the location and length of each gene.
The expressions of bcrABC were significantly upregulated in
1AbrB strain. These findings provided evidence for bacitracin
up-regulation and removing out of the cell, which were consistent
with the above two studies and linked them together. This
study would be helpful for improving the industrial process
of bacitracin production through AbrB-knockout and further
understanding of bacitracin transport in B. licheniformis.
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