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Summary: 
Bam-readcount is a utility for generating low-level information about sequencing data at specific 

nucleotide positions. Originally designed to help filter genomic mutation calls, the metrics it 

outputs are useful as input for variant detection tools and for resolving ambiguity between 

variant callers1,2. In addition, it has found broad applicability in diverse fields including tumor 

evolution, single-cell genomics, climate change ecology, and tracking community spread of 

SARS-CoV-2.3–6. 

 

Availability and Implementation: 
Here we report on the release of version 1.0 of this tool, which adds CRAM support, among 

other improvements. It is released under a permissive MIT license and available at 

https://github.com/genome/bam-readcount. 
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Introduction 
Though many tools exist that can call simple genotypes from sequence data, there is frequently 

a need for rapid and comprehensive reporting of sequencing metrics at specific genomic 

locations. The bam-readcount tool reports 15 metrics chosen specifically because they are 

known to be associated with the quality of sequence reads and individual base calls. These 

include summarized mapping and base qualities, strandedness information, mismatch counts, 

and position within the reads. This information can be useful in a large number of contexts, with 

one frequent application being variant filtering and ensemble variant calling situations where 

consistent, tool-agnostic metrics are useful2,7,8. 

 

Implementation and results 
The ongoing adoption of compressed data formats has necessitated additions to the code, and 

the version 1.0 release that we report on here utilizes an updated version of HTSlib to support 

rapid CRAM file access9. This has also improved performance, and bam-readcount can report 

on 100,000 randomly selected sites from a 30x whole-genome sequencing (WGS) BAM in 

around 5 minutes10. It’s performance scales nearly linearly with the number of genomic sites 

queried and average sequencing depth (Figure 1). Querying the same 100,000 sites from a 

BAM with 300x WGS takes 48 minutes, roughly 10x as long.   

 

 
Figure 1: Performance of bam-readcount when querying randomly selected genomic positions 

from BAMs (left) or corresponding CRAMs (right) of varying sequencing depth. Colors 

correspond to average sequencing depth of the downsampled BAM/CRAM file.  

 

Memory usage likewise is dependent on depth of sequencing, but still requires less than 1 GB 

of RAM for a 300x WGS BAM. Processing small CRAM files is somewhat slower than BAMs 



 

with comparable amounts of data, due to the increased CPU usage for decompression, but as 

depth increases, retrieval from disk becomes the bottleneck and operations on CRAMs exceed 

the speed of BAM. In our testing, on a fast SSD tier of networked disk, this transition occurs at a 

depth of about 180x. The problem is also embarrassingly parallel, so assuming adequate disk 

I/O, a roughly linear increase in speed can be achieved with a scatter/gather approach.  

 

To lower barriers to adoption, we provide docker images for containerized workflows, and have 

developed a python wrapper that annotates a VCF file with read counts produced from this tool, 

(available as part of the VAtools package - https://github.com/griffithlab/VAtools).  

 

Conclusions 
Bam-readcount plays a central role in many genomic pipelines and there is a rich ecosystem of 

tools built on top of it that enable discovery. It has many uses in benchmarking and variant 

discovery, and it’s feature-rich output has enabled deep learning approaches to variant calling 

and filtering7,11. In cancer genomics, it has been used for understanding pre-leukemic 

phenotypes and for detecting therapy-altering mutations from cell-free DNA12,13. Viral 

researchers have applied it to understand diversity in Varicella Zoster Virus Encephalitis and to 

perform epidemiological surveillance in wastewater of SARS-CoV-214,15. Those with RNA-

sequencing data have found it useful for identifying allele-specific expression in cancer, or for 

enabling copy-number detection in single-cell RNA sequencing5,16. It also serves as core 

infrastructure that supports genomics pipelines of all sizes, from bespoke workflows produced 

by small research groups to the NCI’s Genomic Data Commons pipelines, where it has been 

run on tens of thousands of genomes17–19.  

  

Looking forward, we anticipate that as machine learning makes deeper inroads into genomics, 

the ability to extract highly informative features from large cohorts in a rapid manner will 

continue to make bam-readcount useful for the next generation of genomics research.  

 

The bam-readcount tool is available at https://github.com/genome/bam-readcount and is shared 

under a MIT license to enable broad re-use.  

 

Data availability 
The WGS data used for benchmarking is available through dbGaP study phs000159, under 

sample id 452198/AML31. An archived snapshot of this code is available at zenodo  
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