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Abstract: In this study, we have investigated the mathematical model of an immobilized enzyme
system that follows the Michaelis–Menten (MM) kinetics for a micro-disk biosensor. The film reaction
model under steady state conditions is transformed into a couple differential equations which are
based on dimensionless concentration of hydrogen peroxide with enzyme reaction (H) and substrate
(S) within the biosensor. The model is based on a reaction–diffusion equation which contains
highly non-linear terms related to MM kinetics of the enzymatic reaction. Further, to calculate the
effect of variations in parameters on the dimensionless concentration of substrate and hydrogen
peroxide, we have strengthened the computational ability of neural network (NN) architecture by
using a backpropagated Levenberg–Marquardt training (LMT) algorithm. NNs–LMT algorithm is a
supervised machine learning for which the initial data set is generated by using MATLAB built in
function known as “pdex4”. Furthermore, the data set is validated by the processing of the NNs–LMT
algorithm to find the approximate solutions for different scenarios and cases of mathematical model
of micro-disk biosensors. Absolute errors, curve fitting, error histograms, regression and complexity
analysis further validate the accuracy and robustness of the technique.

Keywords: micro-disk biosensor; mathematical modeling; Michaelis–Menten kinetics; enzymatic
reaction; artificial neural networks; soft computing; Levenber–Marquardt training

1. Introduction

A biosensor is a device that converts the results of biological processes into analyti-
cally accessible data. The amount of product created during the biological process affects
the information analysis. Generally, the process comprises of two components named
physicochemical transducer and biochemical recognition system [1–3]. Physical signals are
generated by converting biochemical results with a specified sensitivity, which is generally
considered analytic concentration, by a bioreceptor. Another component of a biosensor is
transducer that produces electric signals from receptor output categorized by transducer
and bioreceptor. Biosensor uses enzymes, cell structure, bioreceptors, antibodies, hormones,
nucleic acid, and tissues. Auxiliary enzymes are also used in the development of biosen-
sors. Transducers systems are categorized into thermometric, magnetic, electrochemical,
and piezoelectric [4]. Biochemical reactions between an immobilized bimolecular and the
target analyte form an electro-chemical biosensor. As a result, the theoretical foundation of
a biosensor measures the electric current [5]. Electrochemical biosensors are categorized

Molecules 2021, 26, 7310. https://doi.org/10.3390/molecules26237310 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-8680-723X
https://orcid.org/0000-0002-5402-8960
https://orcid.org/0000-0002-4606-7222
https://orcid.org/0000-0002-4040-6211
https://doi.org/10.3390/molecules26237310
https://doi.org/10.3390/molecules26237310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26237310
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26237310?type=check_update&version=1


Molecules 2021, 26, 7310 2 of 20

into potentiometric and amperometric, which are used for the mass production [6–8].
The functioning of an amperometric biosensor is based on calculating the Faraday current,
which is determined when the current is constant at the electrode. As a result, the current
is generated by the product’s oxidation or reduction [9–11]. Michaelis–Menten kinetic
equations are commonly used to simulate the process.

In 1975, Mell [12] developed a mathematical model for amperometric two enzyme
biosensors with multiple enzymes. Various numerical and analytical techniques have been
used to calculate the analytical and approximate solution to the model. Che and Dong [13]
reported analytical expressions for the steady-state concentration of current at the micro-
disk chemical sensor. An approximate solution in integral form has been calculated by
Phanthong [14] for micro-disk biosensor. Eswari derived the analytical solution in terms of
enzyme kinetics and film thickness [15] for all parameters of the Michaelis–Menten constant.
Manimozhi [16] study the steady-state concentration of substrate of nonlinear equations
representing the action of the biosensor using homotopy perturbation method (HPM).
Eswari in [15,17] 2010, derived an analytical solution for steady-state current on enzyme-
modified microcylinder electrodes, micro-disk, and spherical biosensor. Loghambal [18]
uses the asymptotic method (AM) to study the modeling of amperometric oxidase on
enzyme membrane electrodes.

Recently, various techniques have been implemented on nonlinear ECE reactions
to study the steady-state concentration of substrate and products on rotating disk elec-
trodes [19]. M.C. Devi [20] uses hyperbolic function method (HFM) to find the analytical
expression for the EC-catalytic mechanism of the first order. Variational iteration method
(VIM), differential transformation method [21,21] and homotopy perturbation methods [22]
has been widely used to calculate the approximate series solutions for the mathematical
model of micro-disk biosensors. The implementation of these techniques has not been
straightforward. For most problems, the above-discussed techniques fail to converge the
solution into closed form and are time-consuming. In recent times, a stochastic numerical
technique based on artificial intelligence has been developed to solve stiff nonlinear prob-
lems arising in various fields. Such stochastic computing techniques use artificial neural
networks to model approximate solutions. These numerical solvers have wide applications
in various fields including petroleum engineering [23], wireless communication [24], heat
transfer [25–27], fuzzy systems [28], plasma system [29], civil engineering [30,31], wire coat-
ing dynamics [32] and Diabetic retinopathy classification [33]. The techniques mentioned
earlier inspire the authors to explore and incorporate the soft computing architectures as
an alternative, precise and feasible way for solving the mathematical model of micro-disk
biosensors. Some highlighted features of the presented study are illustrated as follows:

• A mathematical model for micro-disk biosensor has been presented to investigate the
influence of variations in different parameters on the dimensionless concentration of
substrate and hydrogen peroxide.

• An artificial-neural-networks-based backpropagated Levenberg–Marquardt training
(LMT) algorithm is developed to train the hidden neurons, calculate the validation
of reference data-set generated by “pdex4” for different cases and scenarios of micro-
disk biosensor.

• Extensive graphical analysis has been conducted based on mean square error (MSE),
absolute errors, regression, curve fitting, and error histograms that show the tech-
nique’s convergence, accuracy, and computational complexity. 3D plots of dimension-
less concentration for substrate (S) and hydrogen peroxide (H) are plotted against
dimensionless distance R and reaction–diffusion parameters to study the behavior
and changes in the model.

2. Problem Formulation

In this section, a mathematical derivation of the microdisk biosensor is presented.
A generalized form of the polymer solution of drop coating is considered the special case
for micro-disk electrodes. It has been observed that microdisk is insulated through droplets
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of enzymes or polymers, taking the form of hemisphere on isolating plane. Phanthong
and Somasundrum [14] describe the mathematical formulation of a micro-disk biosensor.
Figure 1 shows the schematic view of a micro-disk biosensor. It can be observed that the
radius of the film is greater than the size of the disk. Measurements can be simplified by
moving the micro-disk sensor to the micro-hemisphere. In [14] the micro-disk electrode is
modified by using redox polymer. In such case, the enzymatic reaction favors Michaelis–
Menten kinetics, and film reaction is given as
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Figure 1. Schematic of micro-disk biosensor.

S + E1
k1⇔k2 [E1S]

kcat→ P + E2, (1)

if the solution is agitated evenly such that S is continuously applied to the film, the mass
balance at steady state for S will be given by

DS
r2

d
dr

(
r2 dCS

dr

)
− kcatCECS

CS + KM
= 0, (2)

where CS, CE denotes the concentration profiles of substrate and enzymes, DS represents
the diffusion coefficient of reaction, KM is Michaelis constant which is defined as

KM =
(k−1 + kcat)

k1
, (3)

steady state mass balance for H is given as

DH

r2
d
dr

(
r2 dCH

dr

)
+

kcatCECS
CS + KM

= 0, (4)

concentration profile of steady state hydrogen peroxide is denoted by CH . Boundary
conditions at surfaces of electrode r0 and film r1 are defined as

r = r0 :
dCS
dr

= 0, CH = 0,

r = r1 : CS = C∗S, CH = 0,

where C∗S represents the bulk concentration of S.
Now introducing the following set of dimensionless variables

S =
CS
C∗S

, H =
CH
C∗H

, R =
r1
r0

, α =
C∗S
KM

, γE =
kcatCEr2

0
DSKM

, γS =
kcatCEr2

0
DHKM

,
DH
DS

=
γE
γS

, (5)

where S and H represent the dimensionless concentration profiles of substrate and hy-
drogen peroxide. R is dimensionless distance, γE, γS and α are reaction–diffusion and
saturation parameters respectively. Thus, dimensionless form of Equations (2) and (3) along
with boundary conditions can be written as
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d2S
dR2 +

2
R

dS
dR
− γES

1 + αS
= 0, (6)

d2H
dR2 +

2
R

dH
dR

+
γSS

1 + αS
= 0, (7)

with
dS
dR

= 0, H = 0 when R = 1,

S = 1, H = 0 when R = r1/r0.

3. Reference Solutions

Various analytical and numerical techniques have been previously developed to solve
the mathematical model of a micro-disk biosensor in the literature. A number of these ana-
lytical methods focus on obtaining an analytical expression for the model. These methods in-
clude variational iteration method (VIM) [34], Li-He’s variational principle methods [35–37],
Akbari-Ganji Method (AGM Method) [38], homotopy perturbation method (HPM) [39],
Modified Adomian decomposition method (MADM) [40,41], exp-function method [42],
Green’s function iteration method [20] and Taylor series method [43]. An analytical ex-
pression for concentration of substrate and hydrogen peroxide obtained by HPM [15] is
given as

CSP =
r
r0
− 0.5

r2

r2
0
+ 0.5

r2
1

r2
0
− r1

r0
, (8)

CH P =
1
2

[
r1r
r2

0
− r2

r2
0
− r1

r0
+

r
r0

]
, (9)

where CSP =
(cS−c∗S)
c∗S(γr0)

2 and CHP = cH DH
(xr0)

2DSc∗s
. Analytical solution by MADM [40,41] are

given as

S(R) = 1 +
γE

3(1 + α)

(
r1

r0

)
− γE

6(1 + α)

(
r1

r0

)2
− γE

3(1 + α)
R +

γE
6(1 + α)

R2, (10)

H(R) = − γS
6(1 + α)

(
r1

r0

)
+

γS
6(1 + α)

(1 + r1/r0)R− γS
6(1 + α)

R2. (11)

Analytical solution obtained by HAM [44] are given as

S(R) = 1 +
hγE

2(1 + α)

(
r1

r0

)2
− hγE

(1 + α)

(
r1

r0

)
+

hγE
(1 + α)

R− hγE
2(1 + α)

R2, (12)

H(R) =
hγS

2(1 + α)

(
r1

r0

)
− hγS

2(1 + α)
(r1/r0 + 1)R +

hγS
2(1 + α)

R2. (13)

4. Design Methodology

In this section, a novel machine learning technique based on supervised learning of
neurons in artificial neural networks (ANNs) is utilized to study the mathematical model of
an immobilized enzyme system that follows the Michaelis–Menten (MM) kinetics for micro-
disk biosensor. An Artificial Neural Networks (ANNs) is a collection of interconnected,
basic components known as neurons with multiple inputs and a single output, each neuron
represents a mapping. The output of a neuron is a function of the sum of its inputs which is
generated with the help of activation function. In this paper, multilayer perceptron (MLP)
is considered, with an objective to perform the optimization of the hidden units number in
the hidden layer. Additionally, the optimization of the connection weights and biases has
been conducted. The typical structure of MLP with one hidden layer is given as
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Sj =
n

∑
i=1

ωijR + β j, (14)

where, R denotes the input, β is a biased vector and ωij represents the connection weights.
Log-sigmoid is utilized as an activation function for the Feed-forword neural network
model which is given as

f j(x) =
1

1 + e−Sj
, (15)

Further, the working procedure of the design soft computing technique has been
discussed. Implementation of the proposed technique is based on two steps. Initially,
a data set is generated for the mathematical model using an efficient numerical technique
of Matlab builtin function known as “pdex4”. The date set of 1143 and 1251 points are
generated from 0 to 5 and 0 to 1.5, respectively. Furthermore, an intelligent strength of
neural networks with 60 hidden neurons is utilized by using the Levenberg–Marquardt
technique to find approximate solutions for different scenarios and cases of the problem.
The proposed NN’s-LMT algorithm in the form of a single neuron model is shown through
Figure 2. The supervised learning of the Levenberg–Marquardt technique uses the data
set generated in the first step by using the “nftool” package of MATLAB. The working
procedure of processing data for validation and testing is shown through the flow chart
given in Figure 3. Moreover, performance measures are defined in terms of mean square
error of the objective function, regression study, error histograms, and absolute errors to
study the accuracy and convergence of the design scheme.
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model of micro-disk biosensor.

5. Experimentation Setup and Discussion

In this section, to check the validity of the proposed technique and study the effect of
variations in reaction–diffusion parameters on substrate and hydrogen peroxide concentra-
tion profiles, we have considered certain scenarios. The scenarios are based on different
values of reaction–diffusion and saturation parameters with fixed values of thin-film r1/r0.
The details of different scenarios and cases are dictated in the flow chart given in Figure 4.

The data set values generated by the numerical technique are used to test, train and
validate the data with a probability of 75%, 15%, and 15%, respectively. Figures 5 and 6
represent the convergence of mean square error (MSE) function for scenarios I and II, respec-
tively. The performance values for each case of different scenario lies around 3.9474× 10−13,
6.4304× 10−12, 2.5348× 10−13, 4.56× 10−11, 1.3821× 10−13, 6.161× 10−12, 1.8469× 10−14,
1.6659× 10−12, 2.9481× 10−14, 7.3806× 10−12, 1.4037× 10−14 and 4.4535× 10−14. Figures 7
and 8 are plotted to investigate the influence of variations in saturation and reaction–
diffusion parameters with fixed values of film thickness. These parameters describe the
importance of reaction and diffusion in the enzyme layer. It is evident from the figures that
the concentration profile of substrate significantly increases when the values of reaction–
diffusion (γE) and saturation parameter α are increased. Additionally, a simultaneous
increase is observed in the concentration of hydrogen peroxide and substrate as γS and α
decreases. The approximate solutions for concentration of substrate obtained by design al-
gorithm are compared with the homotopy analysis method (HAM) [44], modified Adomain
decomposition method [40], hyperbolic function method [45,46] and numerical solutions
by Pdex4 as shown in Table 1. The fitting of approximate solution and targeted date overlap
each other with minimum absolute errors as shown in the Figures 9 and 10. The values of
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absolute errors in solutions for S(R) lies around 10−6 to 10−8, 10−6 to 10−9, 10−6 to 10−8,
10−7 to 10−8, 10−6 to 10−8 and 10−7 to 10−8 respectively. Additionally, AE for the solution
concentration of hydrogen peroxide lies around 10−6 to 10−7, 10−5 to 10−7, 10−6 to 10−7,
10−6 to 10−8, 10−6 to 10−8 and 10−7 to 10−8. The statistical performance in term of gradient,
mu, validation failures and regression analysis are plotted in Figures 11–14 and dictated in
Tables 2 and 3 respectively. The value gradient for all the cases of micro-disk biosensor are
9.92× 10−13, 4.11× 10−7, 9.76× 10−8, 9.65× 10−8, 9.94× 10−8, 4.53× 10−9, 9.91× 10−8,
8.39× 10−8, 9.76× 10−8, 8.98× 10−8, 2.59× 10−9 and 9.74× 10−8.
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Figure 4. Different scenarios and cases of micro-disk biosensor.

Three-dimensional plots of substrate and hydrogen peroxide are plotted against di-
mensionless distance R, reaction–diffusion parameters, and saturation parameters as shown
in Figures 15 and 16 respectively. From the figures, the influence of variations in param-
eters can be observed. From Figure 15a,b, the increase in reaction–diffusion parameters
(γE, γS) with fixed α = 50 causes a decrease in the concentration profile of substrate. In con-
trast, a significant increase is observed in the concentration profile of hydrogen peroxide.
Figure 16 represents the effect of variations in α. It is evident that slight increase in S(R)
is observed till α = 40 but increases sharply for α > 40. Simultaneously, a decrease in the
concentration of hydrogen peroxide is observed for R 6= 1. Normal probability curves are
plotted to study the computational complexity. The time taken by the system for obtaining
solutions for each scenario lies around 0.45 and 0.50 s, as shown in Figure 17.

Table 1. Comparison of approximate solutions obtained by NNs–LM algorithm with homotopy analysis method, modified
Adomain decomposition method, hyperbolic function method and numerical solver Pdex4.

α = 100, γE = 30 α = 50, γE = 20 α = 10, γE = 10

R HAM HFM MADM Numerical NNs–LMT HAM HFM MADM Numerical NNs–LMT HAM HFM MADM Numerical NNs–LMT

1.0 0.7038 0.7013 0.7025 0.7003 0.7003 0.6102 0.6000 0.6110 0.6010 0.6010 0.5316 0.5310 0.5320 0.5300 0.5300
1.5 0.7109 0.7074 0.7099 0.7075 0.7075 0.6014 0.6070 0.6121 0.6072 0.6072 0.5432 0.5397 0.5390 0.5398 0.5398
2.0 0.7112 0.7103 0.7108 0.7105 0.7105 0.6123 0.6081 0.6129 0.6080 0.6080 0.5473 0.5418 0.5454 0.5420 0.5420
2.5 0.7196 0.7159 0.7177 0.7158 0.7158 0.6158 0.6132 0.6145 0.6125 0.6125 0.5467 0.5474 0.5498 0.5476 0.5476
3.0 0.7332 0.7326 0.7329 0.7327 0.7327 0.6297 0.6282 0.6298 0.6280 0.6280 0.5678 0.5650 0.5698 0.5651 0.5651
3.5 0.7565 0.7590 0.7662 0.7595 0.7595 0.6671 0.6621 0.6701 0.6621 0.6621 0.6089 0.6035 0.6094 0.6037 0.6037
4.0 0.8132 0.8131 0.8132 0.8131 0.8131 0.7219 0.7289 0.7324 0.7289 0.7289 0.6780 0.6794 0.6768 0.6795 0.6795
4.5 0.8896 0.8894 0.8895 0.8894 0.8894 0.8190 0.8260 0.8270 0.8260 0.8260 0.7936 0.7905 0.7897 0.7905 0.7905
5.0 1 1 1 1 1 0.9967 0.9965 0.9963 1 1 0.9999 0.9993 0.9998 0.9992 0.9992
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Figure 5. Performance of NNs–LM technique in terms of mean square error for (a,c,e) dimensionless
concentration of substrate and (b,d,f) hydrogen peroxide of scenario I.
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Figure 6. Performance of NNs–LM technique in terms of mean square error for (a,c,e) dimensionless
concentration of substrate and (b,d,f) hydrogen peroxide of scenario II.

Table 2. Statistical analysis of performance measures including MSE, Gradient, mu, number of
iterations and time taken by the system for obtaining the results of Scenario I.

Case I Case II Case III

S(R) H(R) S(R) H(R) S(R) H(R)

Hidden Neurons 60 60 60 60 60 60
Training 3.02× 10−13 5.44× 10−12 1.91× 10−13 2.76× 10−11 9.21× 10−14 8.53× 10−12

Validation 3.95× 10−13 6.43× 10−12 2.53× 10−13 4.56× 10−11 1.38× 10−13 6.16× 10−12

Testing 5.29× 10−13 7.67× 10−12 2.68× 10−13 4.76× 10−11 3.11× 10−13 5.12× 10−13

Gradient 9.92× 10−13 4.11× 10−7 9.76× 10−8 9.65× 10−8 9.94× 10−8 4.53× 10−9

Mu 1.00× 10−15 1.00× 10−15 1.00× 10−15 1.00× 10−13 1.00× 10−13 1.00× 10−12

Epochs 58 166 59 63 78 138
Regression 1 1 1 1 1 1
Time (s) <1 s <1 s <1 s <1 s <1 s <1 s
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Table 3. Statistical analysis of performance measures including MSE, Gradient, mu, number of
iterations and time taken by the system for obtaining the results of Scenario II.

Case I Case II Case III

S(R) H(R) S(R) H(R) S(R) H(R)

Hidden Neurons 60 60 60 60 60 60
Training 2.03× 10−14 1.55× 10−12 2.47× 10−14 4.98× 10−12 1.61× 10−14 3.02× 10−12

Validation 1.85× 10−14 1.67× 10−12 2.95× 10−14 7.38× 10−12 1.40× 10−14 4.45× 10−12

Testing 3.31× 10−14 1.75× 10−12 3.84× 10−14 6.51× 10−12 1.67× 10−13 3.58× 10−12

Gradient 9.91× 10−8 8.39× 10−8 9.76× 10−8 8.98× 10−8 2.59× 10−9 9.74× 10−8

Mu 1.00× 10−16 1.00× 10−17 1.00× 10−16 1.00× 10−15 1.00× 10−15 1.00× 10−15

Epochs 44 21 39 18 41 21
Time (s) <1 s <1 s <1 s <1 s <1 s <1 s
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Figure 7. Comparison of approximate solutions obtained by NNs–LMT with numerical solution for different cases of
Scenario-I.
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Figure 8. Comparison of approximate solutions obtained by NNs–LMT with numerical solution for different cases of
Scenario-II.
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Figure 9. Error histogram analysis between targeted data and approximate solutions for scenario I.
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Figure 10. Error histogram analysis between targeted data and approximate solutions for scenario II.
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Figure 11. Performance of NNs–LM based on gradient, mu and validations failure during the process of optimization for
different cases of Scenario I.



Molecules 2021, 26, 7310 15 of 20

100

g
ra

d
ie

n
t

Gradient = 9.9136e-08, at epoch 44

10-10

100

m
u

Mu = 1e-16, at epoch 44

0 5 10 15 20 25 30 35 40
44 Epochs

0

2

4

6

va
l f

ai
l

Validation Checks = 0, at epoch 44

(a) S(R)

10-5

100

g
ra

d
ie

n
t

Gradient = 8.3861e-08, at epoch 21

10-20

10-10

100

m
u

Mu = 1e-17, at epoch 21

0 2 4 6 8 10 12 14 16 18 20
21 Epochs

0

0.5

1

va
l f

ai
l

Validation Checks = 0, at epoch 21

(b) H(R)

10-5

100

g
ra

d
ie

n
t

Gradient = 9.7631e-08, at epoch 39

10-10

100

m
u

Mu = 1e-16, at epoch 39

0 5 10 15 20 25 30 35
39 Epochs

0

5

va
l f

ai
l

Validation Checks = 0, at epoch 39

(c) S(R)

10-5

100

g
ra

d
ie

n
t

Gradient = 8.982e-08, at epoch 18

10-10

100
m

u
Mu = 1e-15, at epoch 18

0 2 4 6 8 10 12 14 16 18
18 Epochs

-1

0

1

va
l f

ai
l

Validation Checks = 0, at epoch 18

(d) H(R)

10-10

10-5

100

g
ra

d
ie

n
t

Gradient = 2.5923e-09, at epoch 41

10-10

100

m
u

Mu = 1e-15, at epoch 41

0 5 10 15 20 25 30 35 40
41 Epochs

0

1

2

va
l f

ai
l

Validation Checks = 0, at epoch 41

(e) S(R)

10-5

g
ra

d
ie

n
t

Gradient = 9.743e-08, at epoch 21

10-10

100

m
u

Mu = 1e-15, at epoch 21

0 2 4 6 8 10 12 14 16 18 20
21 Epochs

0

0.5

1

va
l f

ai
l

Validation Checks = 0, at epoch 21

(f) H(R)

Figure 12. Performance of NNs–LM based on gradient, mu and validations failure during the process of optimization for
different cases of Scenario II.
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(a) Case I (b) Case II (c) Case III

(d) Case I (e) Case II (f) Case III

Figure 13. (a–f) shows the regressionanalysis for dimensionless concentration of substrate of micro-
disk biosensor model.

(a) Case I (b) Case II (c) Case III

(d) Case I (e) Case II (f) Case III

Figure 14. (a–f) shows the regression analysis for dimensionless concentration of hydrogen peroxide
of micro-disk biosensor model.
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Figure 15. Plotof three dimensional (a) concentration profiles of substrate and (b) hydrogen peroxide
against dimensionless distance R and reaction–diffusion parameters. Saturation parameter α is equal
to 50.
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Figure 16. Plot of three dimensional (a) concentration profiles of substrate and (b) hydrogen peroxide
against dimensionless distance R and Saturation parameter α . Reaction–diffusion parameters are
equal to 50.
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Figure 17. Normal probability curves for the computational complexity of different scenarios for
(a) concentration profiles of substrate and (b) hydrogen peroxide of micro-disk biosensor.

To check the performance and validity of the proposed ANN–GNDO–SQP algorithm,
we defined different statistical operators along with their global form. The performance
operators are fitness functions, Theil’s inequality coefficient (TIC), mean absolute deviations
(MAD), Nash Sutcliffe efficiency (NSE), and error in Nash Sutcliffe efficiency (ENSE).
A mathematical formulation of these indices is defined as

MAD =
1
N

N

∑
m=1

∣∣Sm(R)− Ŝm(R)
∣∣, (16)

TIC =

√
1
N ∑N

n=1
(
Sm(R)− Ŝm(R)

)2

(
√

1
N ∑N

m=1(Sm(R))2 +
√

1
N ∑N

m=1(Ŝm(R))2)
, (17)
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NSE =

{
1− ∑N

m=1
(
Sm(H)− Ŝm(H)

)2

∑N
m=1

(
(Sm(H)− Ŝm(H)

)2 , Ŝm(H) =
1
N

N

∑
m=1

Ŝ(H), (18)

ENSE = (1− NSE). (19)

where, Sm is analytical solution and Ŝm represents the approximate solution by proposed
algorithm. N denotes the grid points.

The stability, efficiency and accuracy of the proposed algorithm is established by
executing the design algorithms for twenty multiple runs. Global values of performance
function in terms of mean square error for each scenario lies around 3.8110−10 to 3.7510−12

and 1.1410−11 to 2.7510−13 with standard deviations 5.8910−9 to 1.0710−12 and 1.9810−11

to 3.1610−13 respectively. In addition, from Tables 4 and 5 the values of MAD, TIC and
ENSE are also approaching zero, which shows the perfect modeling of the approximate
solutions by the design algorithm.

Table 4. Stability analysis on the values of performance function and performance indicators in terms of minimum, mean
and standard deviations for different cases of scenario-I.

MSE MAD TIC ENSE

Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std.

Case I S(R) 3.95× 10−13 3.75× 10−12 4.86× 10−12 6.54× 10−6 1.23× 10−5 4.42× 10−5 1.96× 10−7 3.78× 10−7 1.76× 10−7 7.23× 10−14 2.81× 10−13 1.72× 10−13

H(R) 6.43× 10−12 4.27× 10−11 3.71× 10−11 2.55× 10−6 2.22× 10−5 6.74× 10−5 2.35× 10−8 5.35× 10−6 2.88× 10−7 6.35× 10−13 9.17× 10−12 5.32× 10−13

Case II S(R) 2.53× 10−13 1.13× 10−12 4.60× 10−12 1.06× 10−6 6.75× 10−5 3.06× 10−6 4.64× 10−8 4.51× 10−6 4.95× 10−6 5.05× 10−14 4.97× 10−13 2.41× 10−13

H(R) 4.56× 10−11 3.81× 10−10 5.89× 10−9 6.92× 10−6 4.40× 10−5 3.18× 10−5 6.23× 10−7 1.36× 10−8 6.25× 10−7 1.18× 10−13 1.67× 10−12 2.10× 10−13

Case III S(R) 1.38× 10−13 6.51× 10−12 1.07× 10−12 2.08× 10−7 6.17× 10−6 2.20× 10−6 4.25× 10−7 4.51× 10−6 3.35× 10−6 2.09× 10−15 7.95× 10−14 1.59× 10−13

H(R) 6.16× 10−12 8.96× 10−11 1.23× 10−11 7.56× 10−6 8.64× 10−5 3.38× 10−6 1.49× 10−7 2.19× 10−6 2.49× 10−7 2.75× 10−13 2.95× 10−12 9.41× 10−12

Table 5. Stability analysis on the values of performance function and performance indicators in terms of minimum, mean
and standard deviations for different cases of scenario-II.

MSE MAD TIC ENSE

Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std.

Case I S(R) 1.84× 10−14 3.40× 10−12 5.87× 10−11 1.37× 10−6 9.08× 10−6 2.12× 10−6 1.97× 10−7 1.49× 10−6 7.33× 10−7 3.10× 10−14 2.76× 10−13 2.13× 10−14

H(R) 1.66× 10−12 1.14× 10−11 1.98× 10−11 2.58× 10−6 2.83× 10−5 2.68× 10−6 2.15× 10−7 1.28× 10−6 2.06× 10−7 9.32× 10−14 1.97× 10−13 2.75× 10−13

Case II S(R) 2.95× 10−14 2.75× 10−13 3.16× 10−13 3.13× 10−6 2.66× 10−5 1.82× 10−6 7.44× 10−8 4.11× 10−6 1.46× 10−6 2.24× 10−15 2.63× 10−14 2.56× 10−14

H(R) 7.38× 10−12 9.12× 10−11 1.80× 10−11 2.34× 10−6 2.44× 10−5 2.08× 10−6 1.30× 10−7 7.59× 10−7 8.68× 10−7 1.87× 10−13 2.55× 10−12 2.79× 10−13

Case III
S(R) 1.40× 10−14 7.43× 10−13 4.49× 10−13 1.56× 10−6 2.37× 10−5 2.72× 10−6 2.56× 10−7 1.90× 10−6 8.85× 10−7 2.85× 10−14 1.37× 10−13 2.14× 10−13

H(R) 4.45× 10−12 2.69× 10−11 1.03× 10−11 2.23× 10−6 3.10× 10−5 3.44× 10−6 3.19× 10−7 2.38× 10−6 1.15× 10−6 2.73× 10−13 1.61× 10−12 2.61× 10−12

6. Conclusions

This paper investigated the mathematical model of an immobilized enzyme system
that follows the Michaelis–Menten (MM) kinetics for micro-disk biosensors. The model
was based on reaction–diffusion phenomena, which was given by a system of nonlinear
differential equations. Furthermore, a soft computing technique based on supervised
learning of Levenberg–Marquardt backpropagation neural networks is used to calculate
substrate and hydrogen peroxide concentration under the influence of variations in several
parameters, including reaction diffusion and film thickness, and saturation parameter.
The results illustrated in the figures conclude that increase in reaction–diffusion and
saturation parameters causes a decrease in substrate concentration while an increase in
the concentration profile of hydrogen peroxide. It is also concluded that an increase in
saturation parameter directly relates to substrate concentration, while inversely relating to
the concentration of hydrogen peroxide. An extensive graphical analysis based on MSE,
error histogram, absolute errors, regressions, and computational complexity are conducted,
showing the robustness, accuracy, and efficiency of the designed scheme.
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