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In the present decade, we are seeing a rapid increase in available genetics and
multiomics information on blood and vascular components of the human and mam-
malian circulation, involved in haemostasis, athero- and venous thrombosis, and thrombo-
inflammation [1–4]. With this Special Issue, we aimed to collect state-of-the-art scientific
contributions that provide novel insights into the multi-molecular interactions in hemosta-
sis, thrombosis, and thrombo-inflammation. Particular aspects tackled are: (i) platelet and
coagulation activation processes during thrombus formation (one review, five original arti-
cles), as well as (ii) interactions between platelets, neutrophils, and formation of neutrophil
extracellular traps (NETs), monocytes and macrophages under pathological conditions
resulting in thrombo-inflammation (two reviews, four original articles).

With regard to deepened knowledge of platelet activation mechanisms, we received
a timely and extensive review by Veuthey et al. [5] which summarizes the phenotypical
features of procoagulant COAT platelets. It provides an update of the molecular mecha-
nisms leading to procoagulant COAT platelet formation. Furthermore, the authors discuss
the possible drivers of the dichotomous diversification toward procoagulant versus ag-
gregating platelets, with special attention to the platelet intrinsic factors and the external
environment during thrombus formation.

During thrombus formation, several molecular pathways of platelet and coagulation
activation are considered to operate simultaneously in hemostasis and thrombosis, but
the spatiotemporal manner of these pathways has not been elucidated so far. Navarro
et al. [6] adapted a microfluidics whole-blood perfusion assay to allow acute blockade
of molecular pathways by pharmacological intervention at desired time-points during
blood flow and thrombus formation. The paper shows that platelet activation processes
via collagen and glycoprotein VI (GPVI-induced Syk signaling) and coagulation activation
via tissue factor (TF)/thrombin (involving factor FVII and the PAR1/4 receptors) were
crucial for the formation of platelet-fibrin thrombi during the first two minutes of thrombus
formation. At later time-points, however, only platelet activation via PAR1/4 and integrin
αIIbβ3 contributed to stabilized thrombus build-up. The stability of such platelet-rich
arterial and venous thrombi depends on the presence of a core and shell region, which can
be distinguished by the absence of fibrin in the shell [7], making this region more prone
to breakdown. Perella et al. [8] investigated the contribution of the tyrosine kinase Syk
and other signaling mediators to the stability of platelet thrombi formed on collagen or
atherosclerotic plaque homogenate under shear in the absence of coagulation, resembling
shell region conditions. After 7 min, post-perfusion of a Syk inhibitor enhanced the
breakdown of thrombi and platelet detachment, both at room temperature and at 37 ◦C.
This was also true for inhibitors of Src, the P2Y12 ADP receptor and thromboxane A2
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(TxA2) formation. Furthermore, blocking of GPVI or Btk only resulted in minor thrombus
breakdown. Hence, it is stated that aggregate stability on collagen is supported by Syk and
Src kinases together with the secondary mediators ADP and TxA2.

Another important player in thrombus formation is von Willebrand factor (vWF),
which is converted to the open conformation by surface immobilization in combination with
shear stress, then allowing platelet adhesion to the vessel wall via the GPIbα receptor. The
study of Hrdinova et al. [9] provides further understanding of the multiple contributions of
the vWF A1 domain to the thrombotic process. Stable cyclic peptides were designed in silico
and chemically synthesized to specifically interfere with the opened conformation of the
vWF A1 domain and the platelet GPIbα receptor. Three peptides inhibited vWF-dependent
platelet adhesion and thrombus formation on collagen in whole blood under flow, although
they were not as effective as a blocking anti-VWF A1 domain antibody [9]. This shows
that the design of peptides based on structure results in physiologically active peptide-
based inhibitors, even for intricate complexes such as GPIα-vWF A1. The results may
provide a guide for the development of novel therapeutics, for example for the treatment
of immune-mediated thrombocytopenic purpura.

Also, more insight is gained into the process of GPVI shedding upon platelet activation,
which is mainly mediated by ADAM10 (a disintegrin and metalloproteinase 10). ADAM10
interacts with tetraspanin membrane proteins, of which Tspan14, Tspan15, and Tspan33 are
expressed in platelets. Koo et al. [10] investigated which of these tetraspanins regulate the
GPVI cleavage by ADAM10, by generating CRISPR/Cas9 knockout human cell lines. They
showed that Tspan15 and Tspan33 have redundant roles in GPVI cleavage, in contrast to
Tspan14. Tspan15 appeared to be the dominant ADAM10 regulator for cleavage, with the
extracellular region of GPVI being mechanistically crucial; a specific amino acid site close
to the membrane was cleaved by the Tspan15/ADAM10 complex.

Tspan15 can also interact with the Rho GTPase Rac1 [11], which modulates the GPVI
surface expression. Neagoe et al. [12] investigated the role of Rac1 in human platelet
activation and downstream signaling using the inhibitor EHT1864. This inhibitor did not
affect the collagen-induced clustering of GPVI, but decreased the spreading and aggregation
when platelets were stimulated by GPVI agonists. In contrast to the situation in Rac1-
deficient mouse platelets, EHT1864 enhanced GPVI shedding in both resting and activated
human platelets, and reduced phospholipase Cγ2 phosphorylation upon GPVI stimulation.
These data suggest that the Rac1 signaling pathway operates differently between human
and mouse platelets.

The other half of the papers in this Special Issue involve studies that concern aspects
of (thrombo-)inflammation. We could include two state-of-the-art reviews on this topic.
Mandel et al. [13] provided a clear and complete overview of the role of platelet activation in
hemostasis and inflammation, including the ways how platelets interact with neutrophils,
monocytes, and macrophages. Furthermore, they have zoomed in on several of these
interactions, such as NET formation, and relevant pathological circumstances, including
atherosclerosis, bacterial and viral infections (COVID-19), and cancer. Finally, they address
the issue of how platelet-macrophage interactions contribute to platelet aging and clearance.
The review of Carminita et al. [14] updates on arterial and venous thrombosis models that
have been developed in different animal species using various blood vessels. In some of
the mouse models, the involvement of neutrophils and/or NETs in thrombus formation
and clotting has been shown. Specifically, these models involve endothelial denudation
or damage by ferric chloride, and photochemical as well as ablative laser injury. In the
latter model, neutrophils have been shown to be the first cells to adhere at the location of
the injury, even before platelets [15]. Ligation of the vena cava as a model for deep vein
thrombosis (DVT) leads to a non-ablative dysfunction of the intact endothelium. Thrombus
formation in this model appears with the major cell population being more than 70%
neutrophils [16]. Together, these different mouse models illustrate that neutrophils can be
involved in thrombus formation via a triple coagulant mechanism. Upon NET formation,
the release of DNA from neutrophils can support platelet aggregation and fibrin formation.
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Furthermore, the highly adhesive NET surface binds proteins from the plasma such as
fibronectin and fibrinogen. Finally, the review of Carminita et al. calls upon the need for
specific markers for NETs, rather than for activated neutrophils to prevent premature and
unreliable conclusions.

One way to promote NET formation is by cholesterol depletion from the membrane
with methyl-β-cyclodextrin (MβCD). In the tissues within the body, oxygen levels are
much lower than the atmospheric O2 levels (normoxic), and infectious sites may show
even strongly reduced oxygen levels (highly hypoxic). The study of Henneck et al. [17]
showed that in mouse MβCD-induced NET formation was similar for wild-type and HIF-
1α knockout mice both under hypoxic (1% O2) and normoxic (21% O2) conditions. Yet, they
showed that phorbol ester-induced NET formation was reduced under hypoxic conditions.
This was confirmed by experiments with human neutrophils, which were stimulated with
phorbol ester, MβCD, or statins, the latter of which also depleted the cells from cholesterol.

Next to cholesterol depletion, platelet factor 4 (PF4) and high-mobility group box 1
(HMGB1), as well as histones, are strong inducers of NET formation, and the role of NETs
in immunothrombosis as a major complication in sepsis and COVID-19 has been well
described [13]. PF4 and HMGB1 are secreted and displayed on the surface by activated
platelets. Ebeyer-Masotta et al. [18] showed that heparin-bound adsorbents Sepharose and
Seraph-100 efficiently depleted activated platelets, extracellular vesicles, PF4, HMGB1, and
histones/nucleosomes. This study thus suggests that heparin-functionalized adsorbents
may be capable of eliminating NETs and that use of these adsorbents may be beneficial
to reduce excessive NET formation in critically ill patients requiring extracorporeal blood
purification.

Finally, more knowledge was gained about the role of monocytes and macrophages in
thrombo-inflammatory mechanisms. A proinflammatory effect is exerted by the proprotein
convertase subtilisin kexin 9 (PCSK9), independent of its action on the LDL receptors
regulating plasma cholesterol. Enhancement of the local cytokine production through
activation of nuclear factor kappa B (NFκB) and Toll-like receptor 4 (TLR4) may mediate
this proinflammatory effect. Scalise et al. [19] discovered that PCSK9 increased the pro-
coagulant activity and TF expression in human peripheral blood mononuclear cells (i.e.,
monocytes and lymphocytes) and cultured monocyte-like THP-1 cells. This effect was
mediated through the TLR4 and NFκB signaling. The expression of TF, together with other
components of the extrinsic coagulation pathway, also contributes to the amplification of
inflammatory reactions, thus highlighting the interplay between platelets, coagulation,
and inflammation [13,20]. These interactions may also affect proliferation processes in the
vessel wall. Chan et al. [21] showed in a mouse model of arteriovenous fistula stenosis that
both macrophage infiltration and cellular proliferation in the adventitia occur rapidly in
the early stages of vascular remodeling. These results may be important for intervention
strategies to prevent arteriovenous fistula maturation failure.

In conclusion, this Special Issue covers a wide range of novel molecular insights into
the complex interactions in the blood and the vessel wall in physiological and pathophys-
iological settings. We hope that these new results may inspire investigators to develop
novel research questions and will motivate to perform more research, which will lead to
more new insights into the topic of molecular mechanisms of hemostasis, thrombosis, and
thrombo-inflammation.
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