
TYPE Review
PUBLISHED 03 August 2022| DOI 10.3389/falgy.2022.981126
EDITED BY

Dong-Ho Nahm,

Ajou University, South Korea

REVIEWED BY

Young-Il Koh,

Chonnam National University Medical School,

South Korea

Ulrich Matthias Zissler,

University Hospital rechts der Isar, Technical

University of Munich, Germany

*CORRESPONDENCE

Takeshi Nabe

t-nabe@pharm.setsunan.ac.jp

SPECIALTY SECTION

This article was submitted to Allergen

Immunotherapy, a section of the journal

Frontiers in Allergy

RECEIVED 29 June 2022

ACCEPTED 20 July 2022

PUBLISHED 03 August 2022

CITATION

Matsuda M, Terada T, Kitatani K, Kawata R and

Nabe T (2022) Roles of type 1 regulatory T (Tr1)

cells in allergen-specific immunotherapy.

Front. Allergy 3:981126.

doi: 10.3389/falgy.2022.981126

COPYRIGHT

© 2022 Matsuda, Terada, Kitatani, Kawata and
Nabe. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Allergy
Roles of type 1 regulatory T (Tr1)
cells in allergen-specific
immunotherapy
Masaya Matsuda1, Tetsuya Terada2, Kazuyuki Kitatani1,
Ryo Kawata2 and Takeshi Nabe1*
1Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University,
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Allergen-specific immunotherapy (AIT) is the only causative treatment for
allergic diseases by modification of the immune response to allergens. A key
feature of AIT is to induce immunotolerance to allergens by generating
antigen-specific regulatory T (Treg) cells in allergic patients. Type 1
regulatory T (Tr1) cells and forkhead box protein 3 (Foxp3)-expressing Treg
cells are well known among Treg cell subsets. Foxp3 was identified as a
master transcription factor of Treg cells, and its expression is necessary for
their suppressive activity. In contrast to Foxp3+ Treg cells, the master
transcription factor of Tr1 cells has not been elucidated. Nevertheless, Tr1
cells are generally considered as a distinct subset of Treg cells induced in
the periphery during antigen exposure in tolerogenic conditions and can
produce large amounts of anti-inflammatory cytokines such as interleukin-10
and transforming growth factor-β, followed by down-regulation of the
function of effector immune cells independently of Foxp3 expression. Since
the discovery of Tr1 cells more than 20 years ago, research on Tr1 cells has
expanded our understanding of the mechanism of AIT. Although the direct
precursors and true identity of these cells continues to be disputed, we and
others have demonstrated that Tr1 cells are induced in the periphery by AIT,
and the induced cells are re-activated by antigens, followed by suppression
of allergic symptoms. In this review, we discuss the immune mechanisms for
the induction of Tr1 cells by AIT and the immune-suppressive roles of Tr1
cells in AIT.
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Introduction

Breaking immunotolerance to innocuous antigens causes the development of allergic

diseases, such as asthma, rhinitis, and conjunctivitis. The development of allergic

diseases is mainly dominated by type 2 immunity. Allergen-specific Th2 cells and

type 2 innate lymphoid cells (ILC2) have essential roles in the development by

producing type 2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13 (1). These

cytokines induce allergen-specific IgE antibody production from B cells and

eosinophilic infiltration and proliferation, leading to exacerbation of allergic symptoms

(1). Epithelial cells are also regulated by type 2 cytokines. IL-4 orchestrates epithelial
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TABLE 1 CD4+ regulatory T (Treg) subsets.

Subsets Candidate markers References

Human Mouse

tTreg
cells

Foxp3+

tTreg cells
Helioshigh Nrp-1high – (40–42)
CD45RA+ CD25+ Foxp3+

(Resting tTreg)
(43, 44) –

CD45RA− CD25high

Foxp3high (Activated tTreg)
(43, 44) –

pTreg
cells

Foxp3+

pTreg cells
Helioslow Nrp-1low (45) (42, 46)
CD45RA− CD25+ Foxp3+ (43, 44) –

Foxp3− Tr1
cells

CD49b+ CD226+ LAG-3+

CD25low CTLA4low
(47) (47)

CTLA4, cytotoxic T-lymphocyte-associated protein 4; Foxp3, forkhead box

protein 3; LAG-3, lymphocyte activation gene-3; Nrp-1, neuropilin-1; pTreg,

peripherally induced Treg; tTreg, thymus-derived Treg; Tr1, type 1 regulatory T.
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cells toward type 2 phenotype (E2 phenotype), characterized by

upregulation of chemokine ligand 26 (CCL26) and IL-24

expressions, which induce the production of mucus and anti-

microbial peptides (2), leading to the development of airway

remodeling (3). Conversely, interferon-γ (IFN-γ) impedes the

acquisition of the E2 phenotype on epithelial cells (2).

Although understanding of the mechanisms underlying

allergic diseases has been advanced (4), pharmacotherapies

including molecular targeted drugs have been developed for

the treatment (5), the prevalence of allergic diseases has

gradually increased worldwide (6, 7). Therefore, modification

of the natural history of allergic diseases is crucial for a

radical cure of allergic diseases.

Allergen-specific immunotherapy (AIT) is the only causative

treatment for allergic diseases by induction of immune tolerance

to allergens (8). Since Noon (9) first demonstrated that

subcutaneous injection of a grass pollen extract was effective in

modulating sensitivity to grass pollen, the mechanisms and

development of further safe treatment routes have been

elucidated (10). Currently, AIT has been mainly conducted in

two forms: subcutaneous immunotherapy (SCIT) and

sublingual immunotherapy (SLIT) (11). The clinical

effectiveness and safety of SCIT and SLIT for allergic diseases,

especially allergic rhinitis (12, 13) and asthma (14, 15), have

been established. Moreover, AIT can prevent not only the

development of allergic diseases (16) but also sensitization to

new allergens (17). However, AIT remains underused mainly

because (1) long-term treatment is required to acquire

sustainable remission of allergic symptoms (18, 19), (2) some

patients are non-responders (20, 21) and (3) rare anaphylactic

reactions (22, 23). Therefore, a deeper understanding of the

mechanisms associated with AIT is essential in order to

develop more effective treatments.

The mechanisms of AIT have been dissected in different

compartments: (1) B cell-associated changes (24): induction of

regulatory B cells, an increase in allergen-specific IgG4

antibodies, and a decrease in allergen-specific IgE antibodies,

(2) ILC2-related changes (25, 26): immune deviation from

ILC2 toward ILC1, decreases in IL-5 and IL-13 productions,

and inversely an increase in IL-10 production, and (3) T-cell

associated changes (27–30): immune deviation from Th2-cell

toward Th1-cell response, suppression of T follicular helper

cells, trans-differentiation from Th17 cells into T regulatory

17 (Tr17) cells, and increases in regulatory T (Treg) cells.

Concurrent with Treg cells by AIT, studies (31–33) have

demonstrated that AIT induced T-cell exhaustion in humans

and mice. Interleukin (IL)-10 and transforming growth factor

(TGF)-β, which are produced by AIT-induced Treg cells, have

been demonstrated to enforce T-cell exhaustion (34, 35). On

the other hand, another AIT study (36) reported that the

exhaustion markers, programmed cell death-1 (PD-1) and

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), on

Th2 cells were decreased in the up-dosing of AIT, but
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persisted for long-term during the maintenance phase of the

treatment. Therefore, the induction of Treg cells by AIT could

be crucial for maintaining immunotolerance to allergens.

Although various subsets of Treg cells have been reported,

CD4+ Treg cells are well-characterized. In addition, the

existence of CD8+ Treg cells (37), CD4− CD8− Treg cells

(38), and γδ Treg cells (39) has also been reported. As shown

in Table 1, CD4+ Treg cells can be broadly classified into two

groups based on where the cells occurred: thymus-derived

Treg (tTreg) cells and peripherally induced Treg (pTreg) cells

(40–47). tTreg cells constitutively express the transcription

factor forkhead box protein 3 (Foxp3), which controls the

immunosuppressive functions of Treg cells (48). After their

maturation, they move to tissues to prevent harmful immune

responses against self-antigens. On the other hand, pTreg cells

develop from naïve CD4+ T cells when the cells are

persistently exposed to exogenous antigens, followed by the

induction of tolerance toward exogenous antigens such as

allergens. Moreover, pTreg cells are divided into two subsets

based on whether Foxp3 is expressed in the cells: Foxp3+

pTreg cells and Foxp3− type 1 regulatory T (Tr1) cells.

More than 30 years ago, an original study on human

leukocyte antigen (HLA) fully mismatched fetal liver

hematopoietic stem cells successfully transplanted into a

patient with severe combined immunodeficiency (SCID) led

to the groundbreaking discovery of Tr1 cells (49). In this

patient, immunological tolerance with mixed chimerism of

donor T cells and recipient antigen-presenting cells was

developed without immunosuppressive agents. However, T

cells derived from this patient significantly proliferated upon

exposure to host antigens in vitro. This result suggested the

presence of active suppression mechanisms in peripheral

tissues. The human interleukin (IL)-10 gene was subsequently

isolated from CD4+ T cells derived from this successfully

transplanted patient (50). Moreover, host-specific IL-10-

producing CD4+ T cells were identified in an another

successfully transplanted patient (51). Groux et al. (52)
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demonstrated that IL-10-producing CD4+ T cells can be

generated by chronic antigen stimulation in the presence of

IL-10 in mice and humans. These antigen-specific IL-10-

producing CD4+ T cells effectively suppressed the

development of colitis induced in SCID mice and were named

Tr1 cells (52). A subsequent study (53) demonstrated that Tr1

cells exerted immunosuppressive functions independent of

Foxp3.

Many studies have been reported that latency-associated

peptide (LAP)+ CD25− CD4+ T cells (54, 55), natural killer

group 2, member D (NKG2D)+ CD25− CD4+ T cells (56, 57),

CD127low CD25+ CD4+ T cells (58), CD49b+ CD25− CD4+ T

cells (59–62), lymphocyte activation gene 3 (LAG3)+ CD25−

CD4+ T cells (63), CD44high CD62Llow IL-7 receptor (IL-7R)−

LAG3+ CD49b+ LAP+ CD4+ T cells (64), and C-C chemokine

receptor type 5 (CCR5)+ programmed cell death 1 (PD-1)+

CD25− CD4+ T cells (65, 66) were Tr1 cells in mice or

humans (Table 2). Recently, Gagliani et al. (47) demonstrated

that CD49b- and LAG3-expressing CD4+ T cells can be

identified as the true phenotype of Tr1 cells in mice and

humans. On the other hand, Huang et al. (67) reported that

co-expression of CD49b and LAG3 were not restricted to

Foxp3− Tr1 cells but also observed in Foxp3+ Treg cells. In

this way, the specific markers of Tr1 cells continue to be

disputed.

Although there is a lack of specific markers of Tr1 cells, the

existence of various allergen-specific Tr1 cells whose

characteristic features are Foxp3-negative IL-10-producing

CD4+ T cells, have also been reported in allergic models of

mice (68–70) and allergic patients (71–78). Several clinical

studies (79–82) demonstrated that the number of Tr1 cells

increased in AIT-treated allergic patients, and the number

such cells correlated with the clinical score. These studies

suggested that Tr1 cells have crucial roles in immune
TABLE 2 Phenotypes of Tr1 cells in humans and mice.

Subsets References

Human Mouse

CD49b+ CD226+ LAG3+ CD25low CTLA4low

CD4+ T cells
(47) (47)

CD44high CD62Llow IL-7R− LAG3+ CD49b+ LAP+

CD4+ T cells
– (64)

CD49b+ CD25− CD4+ T cells – (59–62)

LAG3+ CD25− CD4+ T cells (63) –

CCR5+ PD-1+ CD25− CD4+ T cells (65, 66) –

LAP+ CD25− CD4+ T cells – (54, 55)

NKG2D+ CD25+ CD4+ T cells (56) (57)

CD127low CD25+ CD4+ T cells (58) –

CCR5, C-C chemokine receptor type 5; IL-7R, IL-7 receptor; LAG3,

lymphocyte activation gene 3; LAP, latency-associated peptide; NKG2D,

natural killer group 2, member D; PD-1, programmed cell death 1.
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tolerance to allergens. In this review, we focused on Tr1 cells,

and discussed the immune mechanisms for the induction of

Tr1 cells and the immune-suppressive roles of Tr1 cells in AIT.
Clinical relevance of Tr1 cells in
allergy and AIT

Breakdown of immunological tolerance to allergens results

in the development or exacerbation of allergic diseases. One

of the features in the breakdown of immunological tolerance

is the reduction or dysfunction of Tr1 cells. Studies (74, 76)

have reported that the numbers of Tr1 cells in allergic

patients was significantly lower than those in healthy subjects.

Our group also revealed that the numbers of Tr1 cells in

peripheral blood of Japanese cedar pollinosis patients was

markedly lower than those of healthy subjects (81). Han et al.

(76) demonstrated that the frequency of Dermatophagoides

pteronyssinus major allergen 1 (Der p 1)-specific Tr1 cells in

peripheral blood was decreased in house dust mite-induced

allergic rhinitis patients, and it correlated with the clinical

symptom scores. Moreover, the dysfunction of Tr1 cells was

observed in allergic patients. CD46 is a complement

regulatory protein that is upregulated in activated leukocytes

to protect these cells from autologous complement-induced

lysis at inflammatory sites (83). Cross-linking of CD46 during

T-cell stimulation leads to the strong induction of Tr1 cells

(84). Xu et al. (71) first demonstrated that the number of

CD46-induced Tr1 cells was decreased in the peripheral blood

of asthmatic patients compared with that of healthy subjects.

The failure of a generation of Tr1 cells was observed in

asthma but also multiple sclerosis (85). Ni Choileain et al.

(86) demonstrated this failure was caused by the incorrect

recruitment of CD46 to the immunological synapse, which

reduced the conversion of effector CD4+ T cells to Tr1 cells.

More recently, it has been shown that peanut-specific Tr1

cells can be induced in healthy subjects and patients with

peanut allergies, but those in patients with peanut allergies are

functionally defective (73). Therefore, the lack of the

generation and function of allergen-specific Tr1 cells led to

the development and deterioration of allergic diseases in

humans.

In vivo induction of allergen-specific Tr1 cells has been

explored to acquire immune tolerance to allergens. Repetitive

administration of bee venom through bee stings in non-

allergic beekeepers transformed from bee venom-specific Th2

cells into Tr1 cells (72). These Tr1 cells suppressed the

proliferation of bee venom-specific T cells in vitro. This result

suggested that AITs may be effective for allergic diseases

because of the conversion of allergen-specific effector Th2

cells into tolerance-inducing Tr1 cells by repeated allergen

administrations. Indeed, many studies [reviewed in (10, 87)]

have demonstrated that AIT can be effective for various
frontiersin.org
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allergic diseases, and the frequency of allergen-specific Tr1 cells

was correlated with the decrease in clinical scores (79–82).

Taken together, these studies suggested that Tr1 cells play a

critical role in the induction of immunotolerance to allergens

in humans.

Several studies (88–90) demonstrated that not only Tr1 cells

but also Foxp3+ Treg cells were increased in AIT-treated

patients with allergies. Although which subset of Tr1 cells or

Foxp3+ Treg cells is important for the improvement of

allergic symptoms in AIT has not been fully proven, it may

be dependent on the route of antigen administration. Our

group previously demonstrated that the number of Tr1 cells

but not Foxp3+ Treg cells was increased in peripheral blood

and inflamed tissues of SCIT-treated allergic patients and

mice (70, 81). Moreover, the induced Tr1 cells produced a

large amount of IL-10 in response to antigen stimulation,

followed by suppression of the development of asthma in the

OVA-induced airway inflammation model of mice (91, 92).

Lou et al. (79) also reported that the increase in Tr1 cells by

SCIT was correlated with improvement in nasal symptoms,

but the number of Foxp3+ Treg cells was not. These data

imply that the increase in Tr1 cells but not Foxp3+ Treg cells

could be crucial for the induction of immunotolerance to

allergens by SCIT. On the other hand, our group (82)

reported that both numbers of Tr1 cells and Foxp3+ Treg cells

were markedly increased in the peripheral blood of Japanese

cedar pollinosis patients who had received SLIT. Moreover,

the number of Foxp3+ Treg cells positively correlated with

improvement in nasal symptoms, whereas those of Tr1 cells

did not (82). Therefore, Foxp3+ Treg cells rather than Tr1

cells may have contributed to the clinical effects of SLIT. This

is also supported by a study of Xian et al. (93). Therefore,

which subset of Tr1 cells or Foxp3+ Treg cells is more

relevant to clinical tolerance may depend on the antigen

administration route.
Induction mechanisms of Tr1 cells
in AIT

High-dose allergen exposure in AIT promotes dendritic

cells to produce IL-27, IL-10, and transforming growth factor-

beta (TGF-β) (94, 95). Naïve CD4+ T cells can differentiate

into Tr1 cells upon T cell receptor (TCR) engagement in the

presence of these cytokines. The induction mechanisms of Tr1

cells in AIT are summarized in Figure 1.

Several reports (91, 96) demonstrated that antigen-specific

stimulation was crucial for the generation of Tr1 cells. We

also revealed that the number of Tr1 cells was increased

significantly when spleen cells isolated from ovalbumin

(OVA)-sensitized mice were cultured with a high

concentration of OVA (10−3 g/ml) for 7 days (91). On the

other hand, the induction of Tr1 cells was not observed in a
Frontiers in Allergy 04
culture of spleen cells derived from non-sensitized mice (91).

Motomura et al. (96) also reported that chronic antigen-

stimulated Th1 cells into IL-10-producing Tr1 cells via up-

regulation of a transcription factor of IL-10, E4-binding

protein 4 (E4BP4) in mice. One study demonstrated that the

expression of E4BP4 on CD4+ T-cell populations was

markedly up-regulated after AIT in mice (32). Our group also

reported that the expression of E4BP4 mRNA on peripheral

blood mononuclear cells in SCIT-treated Japanese cedar

pollinosis patients was higher than those in non-SCIT-treated

patients (81). These data suggested that antigen-specific

stimulation may be essential for the induction of Tr1 cells via

upregulation of E4BP4.

IL-2 inducible T cell kinase (ITK) is a non-receptor tyrosine

kinase mainly observed in T cells and has a vital role in the TCR

signaling (97). ITK signaling is critical for T-cell subset

differentiation and the regulation of cytokine gene expression.

Huang et al. (98) demonstrated that the induction of Tr1 cells

was not observed in the absence of ITK in mice and humans.

ITK deficiency impaired interferon regulatory factor 4 (IRF4)

expression, leading to the underdevelopment of Tr1 cells in

humans and mice. Overexpression of IRF4 rescued the

development of these cells in ITK-deficient cells derived from

both humans and mice. These findings suggest that ITK

signaling components are essential for developing Tr1 cells.

The phosphatidylinositol-3 kinase (PI3K)-protein kinase B

(AKT) signaling, which is a downstream of TCR activation, is

also involved in the induction and maintenance of Tr1 cells.

Once activated, PI3K-AKT-signaling by TCR engagement in

the presence of IL-27 resulted in both upregulation of IL-10

and IL-21 receptors on naive CD4+ T cells in mice (99).

These upregulated molecules are crucial for the induction and

maintenance of Tr1 phenotypes, as described below in this

paper. The authors also reported that FoxO1 phosphorylation

was dampened in the condition of suppression of the PI3K

and AKT phosphorylation, leading to impairment of Tr1 cell

differentiation by IL-27 (99). Although the roles of FoxO1 in

Tr1 differentiation have not been fully elucidated, FoxO1 was

described as a critical molecule for the induction of IL-10,

TGF-β, and CTLA-4 on CD4+ T cells in mice (100, 101).

These reports suggested that PI3K-AKT-FoxO1 signaling

could be crucial for the acquisition of Tr1 cell phenotypes.

IL-27 is a pleiotropic cytokine that is a heterodimer

composed of Epstein-Barr virus-induced gene 3 (Ebi3) and

IL-27 p28 (102). IL-27 is mainly produced by antigen-

presenting cells upon Toll-like receptor stimulation (102, 103)

or chronic antigen stimulation (104). IL-27 binds to the IL-27

receptor, a heterodimer composed of the orphan cytokine

receptor WSX-1 and a signal transducing chain, glycoprotein

130 (gp130) (105). IL-27 induces the activation of STAT1 and

STAT3, leading to the up-regulation of transcription factors

such as c-Maf and aryl hydrocarbon receptor (AHR). c-Maf

(106) and AHR (107) directly transactivated IL-10 gene
frontiersin.org
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FIGURE 1

Induction mechanisms of Tr1 cells in AIT. High-dose allergen exposure in AIT promotes dendritic cells to produce IL-27, IL-10, and TGF-β. Naïve
CD4+ T cells can differentiate into Tr1 cells upon TCR engagement in the presence of these cytokines. High-dose antigen exposure leads to the
upregulation and activation of IL-10-associated molecules such as ITK, E4BP4, IRF4, PI3K, and AKT, followed by the production of IL-10. PI3K
also enforces IL-21 receptor expression. IL-27 upregulates and activates IL-10-associated molecules, EGR-2, Blimp-1, AHR, and c-Maf, followed
by the production of IL-10 and IL-21 in cooperation with TGF-β via activation of STAT1 and STAT3. IL-27 also upregulates the expression of ICOS
and LAG3. The upregulated IL-10, IL-21, and ICOS by IL-27 amplify the productions of IL-10 and IL-21 in an autocrine manner, leading to the
acquisition of a Tr1 phenotype.
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expression through binding to a xenobiotic response element

motif and a c-Maf recognition element motif in the IL-10

promoter, respectively. The interaction of AHR with c-Maf

synergistically induces not only IL-10 but also IL-21

production, which is the hallmark of Tr1 cells (108). IL-27

also induces early growth response gene 2 (Egr-2) expression

in naïve CD4+ T cells via activation of STAT3 (109). Egr-2

has been reported to be the transcription factor that binds to
Frontiers in Allergy 05
the B lymphocyte-induced maturation protein-1 (Blimp-1)

promoter, leading to the upregulation of Blimp-1 (109).

Blimp-1 binds to intron 1 of the IL10 locus, leading to the

production of IL-10 from mouse CD4+ CD25+ Treg cells

(110). Egr-2 also enforces the expression of lymphocyte

activation gene 3 (LAG-3) (109). Moreover, the expression of

inducible T-cell co-stimulator (ICOS) was increased in IL-27-

stimulated naïve CD4+ T cells (111). ICOS is a coreceptor
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molecule, a member of the CD28 family, that is induced

in activated T cells (112). The expression of ICOS-ligand

(ICOS-L) is found in dendritic cells, macrophages, and CD4+

T cells, and the expression is further amplified upon activation

of these cells (113, 114). ICOS induced the upregulation of c-

Maf, followed by the production of IL-10 and IL-21 (115).

Therefore, IL-27 is important for initiating the differentiation

of Tr1 cells via up-regulation of STAT1 and STAT3.

The produced IL-10 and IL-21 from induced Tr1 cells are

involved in the maintenance of phenotypes of Tr1 cells in an

autocrine manner. As mentioned above, IL-10 is an anti-

inflammatory cytokine that forms a homodimer and exerts its

function through binding to its receptor. The IL-10 receptor

consists of two subunits of IL-10R1 and two subunits of IL-10

receptor 2 (IL-10R2) (116). IL-10 only binds to IL-10R1 but

not IL-10R2 (117). The IL-10 binds to its receptor, followed

by the activation of STAT1 and STAT3. IL-21 is a potent

immunomodulatory four-alpha-helical bundle type I cytokine

that has pleiotropic roles in the regulation of T-cells, B-cells,

natural killer cells, and myeloid cells (118). The functional

receptor of IL-21 is composed of the IL-21Rα chain and the

common cytokine receptor γc chain (119). IL-21 binds to its

receptor, leading to the activation of STAT3. STAT3 activated

by IL-10 and IL-21 also enforces the expression of c-Maf,

leading to the maintenance of Tr1 phenotypes. TGF-β is also

an immunomodulatory cytokine that exacerbates the

induction of Tr1 cells via upregulation of c-Maf and AHR in

the presence of IL-27 (106, 108, 120).

Our group (91, 92) also demonstrated that the stimulation

of allergens, IL-21, IL-27, and TGF-β of CD4+ T cells have

crucial roles in the induction of allergen-specific Tr1 cells in

mice. Spleen cells isolated from OVA-sensitized mice were

cultured in the presence of OVA, IL-21, IL-27, and TGF-β for

7 days. After 7 days of culture, a significant increase in

Foxp3-negative IL-10-producing CD4+ T cells was observed in

the culture. Moreover, most of the induced Foxp3-negative

IL-10-producing CD4+ T cells were double positive for

CD49b and LAG3, which are surface markers of Tr1 cells.

Therefore, the antigen-presenting environment in the presence

of IL-21, IL-27, and TGF-β may be a suitable condition for

the induction of allergen-specific Tr1 cells.

In recent years, Zissler et al. (121) reported that AIT

induced upregulations of secretoglobin1A1 (SCGB1A1) and

IL-7 in the airway of patients with allergic rhinitis. These

factors are produced by airway epithelial cells (121, 122) and

could be involved in the induction of Tr1 cells. SCGB1A1 is

mainly produced by airway club cells, which are a kind of

epithelial cells (123). Mandal et al. (124) demonstrated that

SCGB1A1 down-regulated cyclooxygenase-2 gene expression

in airway epithelial cells of asthmatic mice, followed by

decreases in the production of prostaglandins (PGs). Hooper

et al. (125) reported that PGE2 inhibited Tr1 cell

differentiation by suppressing IL-27 production from dendritic
Frontiers in Allergy 06
cells in mice. These data suggested that SCGB1A1 is

associated with the induction of Tr1 cells via suppressing

the production of PGE2 at inflammatory milieus. IL-7 is a

cytokine that is required for the development and

maintenance of most major subsets of T cells (126). IL-7 also

supports Tr1 cell proliferation in cooperation with IL-2 and

IL-15 (127). Therefore, AIT could modulate the phenotypes of

epithelial cells, leading to the induction of Tr1 cells in the

inflamed tissues.

RNA interference by microRNA (miRNA) has also been

associated with the mechanisms of AIT. Jakwerth et al. (128)

demonstrated that the expression of miR-3595, whose target is

PTGER, prostaglandin EP3 receptor, was markedly up-

regulated in the sputum of AIT-treated patients with allergic

rhinitis. Moreover, it was reported that the level of its ligand

PGE2 in the sputum was decreased by AIT-treatment (128).

As mentioned above, PGE2 signaling suppresses the induction

of Tr1 cells. These data suggested that AIT could suppress the

PGE2-EP3 axis via a decrease in PGE2 production and

downregulation of EP3, leading to the induction of Tr1 cells.

Extracellular matrix components such as hyaluronan (HA)

are also involved in the induction and maintenance of Tr1

cells. The biological functions of HA are dependent on its size

(129). Although the low molecular weight of HA promotes

antigen presentation and allergic responses, intact high

molecular weight HA (HMW-HA) has anti-inflammatory

properties and contributes to healing tissues (129). Bollyky

et al. (130) demonstrated that HMW-HA promoted the

induction of Tr1 cells from effector memory T-cell precursors

via binding its receptor, CD44, in humans and mice. The

produced IL-10 from Tr1 cells also enforces HMW-HA

production from fibroblast via activating the STAT3-

dependent signaling pathway in mice (131, 132). Therefore,

the crosstalk of Tr1 cells and extracellular matrix such as

HMW-HA could be essential for wound healing in inflamed

tissues. The combination SLIT with HMW-HA markedly

suppressed the development of airway hyperresponsiveness in

comparison with the only SLIT-treated asthmatic mice (133).

Gebe et al. (134) also reported that modified HMW-HA,

which was thiolated and tethered to OVA via thiol linkages,

enforced allergen-specific immune tolerance via IL-10

upregulation in the lungs of OVA-induced asthmatic model of

mice. These data imply that HMW-HA is an attractive

adjuvant for AIT.
Immunosuppressive roles of Tr1 cells

Tr1 cells need to be activated by specific antigen recognition

via their TCR. Once activated by a specific antigen, Tr1 cells can

also suppress the activities of other antigen-specific T cells in

their proximity. Therefore, Tr1 cells mediate both antigen-

specific and antigen-non-specific immune reactions. However,
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the antigen-non-specific immunosuppression is restricted to

the tissue where these cells are activated (135). As

immunosuppressive mechanisms by activated Tr1 cells, (1)

suppression of effector cells by anti-inflammatory cytokines,

(2) down-modulation of antigen-presenting cells by immune

checkpoint molecules, (3) cytolysis of effector cells by

granzyme B, and (4) metabolic disruption by CD39 and

CD73 have been demonstrated (Figure 2). These suppressive

mechanisms have been reported both for murine and human

Tr1 cells (Table 3).

Upon being activated by a specific antigen, Tr1 cells

produce large amounts of anti-inflammatory cytokines,

especially IL-10 and TGF-β in both mice and humans (47).

We previously demonstrated that the adoptive transfer of Tr1

cells significantly suppressed the development of airway

hyperresponsiveness and increased levels of eosinophils and

neutrophils in the lung via the production of a large amount

of IL-10 in an asthmatic model in mice (91, 92). Other

studies (136, 137) demonstrated that IL-10 significantly

inhibited the upregulation of vascular adhesion molecule-1

(VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)

on endothelial cells and leukocyte adhesion to endothelium.

Our group also demonstrated that the intratracheal

administration of IL-10 suppressed the infiltration of

eosinophils and neutrophils into the lung via down-regulation
FIGURE 2

Immunosuppressive roles of Tr1 cells in AIT. As immunosuppressive
mechanisms by activated Tr1 cells, (1) suppression of effector cells
by anti-inflammatory cytokines, (2) down-modulation of antigen-
presenting cells (APCs) by immune checkpoint molecules, (3)
cytolysis of effector cells by granzyme B, and (4) metabolic
disruption by CD39 and CD73 have been clarified. IL-10 can
suppress the production of IL-5 and IL-13 from Th2 and ILC2.
IL-10 and TGF-β downregulate the expression of major
histocompatibility complex class II molecules and co-stimulatory
molecules such as CD80 and CD86, and the production of pro-
inflammatory cytokines by antigen-presenting cells, followed by
suppression of activation of effector T cells. Tr1 cells suppress the
functions of Th2 by down-modulating APCs through expression of
CTLA-4 and PD-1. Granzyme B produced from Tr1 cells induces
apoptosis of the interacted APCs. Adenosine produced by CD39
and CD73-expressed on Tr1 cells restrained the functions of Th2
cells and ILC2. The induced Tr1 cells by AIT are involved in the
suppression of allergic symptoms using these four mechanisms.
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of the expression of VCAM-1 and ICAM-1 on pulmonary

vascular endothelial cells in severely asthmatic mice (138).

IL-10 also induces the downregulation of the expression of

major histocompatibility complex class II molecules and co-

stimulatory molecules such as CD80 and CD86, and the

production of pro-inflammatory cytokines by antigen-

presenting cells, followed by suppression of activation of

effector T cells (139). IL-10 can also directly suppress the

production of type 2 cytokines such as IL-4, IL-5, and IL-13

from Th2 cells (140) and group 2 innate lymphoid cells

(ILC2) (141). TGF-β also down-regulates the expression of

CD80 and CD86 on dendritic cells, followed by inhibition of

the interaction with effector T cells (142). In recent years,

Branchett et al. (143) demonstrated that TGF-β suppressed

the production of CCL8, a chemokine of Th2 and ILC2, from

alveolar macrophages in a house dust mite-induced allergic

airway inflammation model in mice. In addition to

suppressing the functions of effector cells, TGF-β can elicit

Foxp3 expression in naïve CD4+ T cells (144). However, TGF-

β inversely induces the differentiation of naïve CD4+ T cells

into Th9 cells (145) and Th17 cells (146) in the presence of

pro-inflammatory cytokines, such as IL-4 and IL-6. Even

upon allergen exposure, TGF-β1 was described as a crucial

accelerator of induction of Th2, Th9 and Th17 cells in a

recent publication (147). On the other hand, we previously

demonstrated that TGF-β1 amplified the differentiation of Tr1

cells upon allergen exposure in cooperation with IL-27 and

IL-21 in mice (91). Moreover, Th17 cell induction was not

observed in this culture condition (91). As mentioned above,

large amounts of IL-21, IL-27 and TGF-β1 could be produced

in the milieu of Tr1 induction by AIT. Therefore, TGF-β1

may be associated with Tr1 induction rather than

inflammatory Th cell differentiation in AIT.

On the other hand, many studies (51, 148–150) reported

that the addition of neutralizing antibodies against IL-10 and

TGF-β did not completely abrogate the suppressive functions

of human Tr1 cells. These data suggested that a cell contact-

dependent mechanism was associated with inhibiting immune

responses by Tr1 cells. Magnani et al. (151) demonstrated that
TABLE 3 Immunosuppressive roles of Tr1 cells in humans and mice.

Mechanisms of suppression References

Human Mouse

Anti-inflammatory cytokines
(IL-10 and TGF-β)

(52, 139) (69, 170, 171)

Cytolysis (Granzyme B) (151, 152, 172–174) –

APC down-modulation
(PD-1 and CTLA-4)

(74, 154) –

Metabolic disruption (CD39 and CD73) (158–160) (161)

APC, antigen-presenting cell; CTLA-4, cytotoxic T-lymphocyte-associated

protein 4; IL-10, interleukin-10; PD-1, programmed cell death 1; TGF-b,

transforming growth factor-β.
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human Tr1 cells were activated by binding CD54, CD58, and

CD155 on antigen-presenting cells via their own expression of

lymphocyte function-associated antigen 1, CD2, and CD226,

respectively, followed by the production of granzyme B. The

produced granzyme B from Tr1 cells induces apoptosis of the

interacting antigen-presenting cells. This cytolysis of antigen-

presenting cells leads to suppression of both antigen-specific

CD4+ T cells and CD8+ T cells, and non-specific T cells

(152). In mice, although the expression of granzyme B on

Tr1 cells was reported (153), the contribution to the

immunosuppressive ability of Tr1 cells has not been elucidated.

Tr1 cells can also inhibit the activation of effector cells via

binding immune checkpoint molecules such as PD-1 and

CTLA-4. Chen et al. (154) demonstrated that blocking CTLA-

4 or PD-1/ programmed cell death ligand 1 almost completely

abolished human Tr1 cell-mediated inhibition of effector T

cell proliferation. Akdis et al. (74) also reported that human

Tr1 cells suppressed the production of IL-13 from Der p 1 or

Bet v 1-specific Th2 by down-modulation of antigen-

presenting cells through expressions of CTLA-4 and PD-1 on

Tr1 cells. In mice, the expression of CTLA-4 (155, 156) and

PD-1 (66, 157) on Tr1 cells has also been reported in mice,

but their contribution to the immunosuppressive potential of

Tr1 cells is unclear.

The expression of the ectonucleotidase CD39 and the ecto-

5′-nucleotidase CD73 were observed on the surface of human

Tr1 cells (158–160). In mice, the expression of CD39 but not

CD73 was observed in mouse Tr1 cells (161). The

extracellular adenosine triphosphates produced in

inflammatory environments are sequentially hydrolyzed to 5′-
adenosine monophosphate (AMP) and then to adenosine by

CD39 and CD73 (162, 163). Adenosine binds to A1, A2a, A2b,

and A3 receptors (R), which are expressed on the surface of

various immune cells and non-immune cells (164). In

immune cells, adenosine mainly binds to A2aR and A2bR,

followed by suppressing the functions via upregulation of

intercellular cAMP (165, 166). Csoka et al. (167)

demonstrated that the interaction of adenosine with A2aR

suppressed the development of Th2 cells from naïve CD4+ T

cells in mice. Moreover, Csoka’s group (168) reported that

A2bR had suppressive roles in the production of IL-5 and IL-

13 from ILC2 in mice. Xiao et al. (169) also demonstrated

that adenosine restrained ILC2-driven allergic airway

inflammation via binding to A2aR in mice.
Conclusion

Since the discovery of Tr1 cells, our understanding of the

mechanisms of AIT has expanded through the constant
Frontiers in Allergy 08
efforts of many groups. As for the induction mechanisms of

Tr1 cells in AIT, it has been clarified that three key events are

essential for the induction and maintenance of these cells: (1)

antigen presentation, (2) the production of IL-10, IL-27, and

TGF-β from high-dose allergen-stimulated dendritic cells, and

(3) the production of IL-10 and IL-21 from the induced Tr1

cells in an autocrine manner. When the induced Tr1 cells are

reactivated by the specific antigen, the cells suppress effector

cells by using anti-inflammatory cytokines, immune

checkpoint molecules, granzyme B, and ectoenzymes such as

CD39 and CD73. However, the master regulator of these cells

is still unclear. The discovery of the master regulator of Tr1

cells may lead to the development of more-effective AIT.

Therefore, understanding the biology of Tr1 cells should

continue to be expanded.
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