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Trauma hemorrhage is a leading cause of death and disability
worldwide. Platelets are fundamental to primary hemostasis, but
become profoundly dysfunctional in critically injured patients by
an unknown mechanism, contributing to an acute coagulopathy
which exacerbates bleeding and increases mortality. The objective
of this study was to elucidate the mechanism of platelet dysfunc-
tion in critically injured patients. We found that circulating platelets
are transformed into procoagulant balloons within minutes of
injury, accompanied by the release of large numbers of activated
microparticles which coat leukocytes. Ballooning platelets were
decorated with histone H4, a damage-associated molecular pattern
released in massive quantities after severe injury, and exposure of
healthy platelets to histone H4 recapitulated the changes in platelet
structure and function observed in trauma patients. This is a report
of platelet ballooning in human disease and of a previously
unrecognized mechanism by which platelets contribute to the
innate response to tissue damage.
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Platelets are the primary cellular effectors of hemostasis, but
become profoundly dysfunctional in critically injured patients

(1–3). A global loss of platelet aggregatory function is part of an
acute coagulopathy which develops within minutes of injury,
exacerbates bleeding, and has a major impact on the risk of
multiple-organ failure and mortality (4, 5). The mechanisms
underlying trauma-induced platelet dysfunction are unknown,
but appear to result from an as yet undefined soluble factor in
the plasma of trauma patients (6). Current transfusion protocols
use platelet concentrates to support platelet function, but these
do not restore platelet responsiveness during active hemorrhage
(3, 7). Despite this, platelet transfusions appear to be critical to
the survival of trauma patients, but again the mechanisms re-
sponsible are unclear (8). As nearly half of the 5 million trauma
deaths every year are due to hemorrhage (9–11), understanding
the function of platelets in bleeding trauma patients is vital for
progress in the field.
The objective of this study was to elucidate the nature of and

mechanisms underpinning the phenotypic changes in platelets in
critically injured patients. We examined platelets and platelet
responses in blood samples taken from trauma patients imme-
diately on arrival at the trauma center. Here we show that re-
duction in the ability of platelets to aggregate occurs in parallel
with an increase in their procoagulant function. Using advanced
image analyses, we describe the transformation of platelets into
procoagulant balloons, accompanied by release of large numbers
of activated microparticles which coat leukocytes. We further
show that histone H4, a damage-associated molecular pattern
released into the circulation as a result of tissue damage and
shock (12), interacts with circulating platelets after trauma and
can entirely recapitulate these phenomena through its direct
action on platelet membranes. Thus we identify a central path-
way responsible for inducing a profound platelet function switch
in critically injured patients dependent upon extracellular histones
driving platelet ballooning and activated microparticle production.

Results
Thrombin Production Is Maintained in Patients with Platelet Dysfunction
Despite Procoagulant Factor Loss. We performed impedance
aggregometry, thromboelastometry, and measured circulating pro-
thrombin fragments in a cohort of 279 injured patients immediately
on arrival in the trauma center; characteristics of these patients are
reported in the SI Appendix, Table S1. Using unsupervised hierar-
chical clustering of these variables, we identified 4 high-level clusters
of patients based on variations in platelet function that had distinct
clinical characteristics and outcomes (Fig. 1 A and B). In clusters C3
and C4, which contained the most severely injured patients and the
highest rates of trauma-induced coagulopathy (TIC), platelet ag-
gregation in response to stimulation with multiple agonists was re-
duced but thrombin generation was profoundly elevated (Fig. 1C).
This signature alteration in platelet activity was associated with
higher blood transfusion requirements, more than twice the in-
cidence of multiple-organ dysfunction, and up to ten times higher
mortality (SI Appendix, Table S1). Together these data present a
paradoxical situation, where critically bleeding patients lose platelet
aggregatory function but maintain the ability to generate thrombin.

Trauma Patients Develop Procoagulant Balloon Platelets Early in
Severe Hemorrhage. To explore potential mechanisms underly-
ing these observations, we performed a series of experiments on
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a prospectively recruited cohort of severely injured patients.
These patients had clinical characteristics, rates of TIC, and an
incidence of platelet dysfunction comparable to those in clusters
C3 and C4 (SI Appendix, Table S2). We first performed trans-
mission electron microscopy to evaluate changes in platelet
morphology. Unexpectedly, we identified large numbers of bal-
loon structures that accumulated during resuscitation and on-
going bleeding (Fig. 2A). These structures displayed loss of
membrane integrity and absent cytoplasmic contents and were
not present in healthy volunteers. We confirmed with imaging
flow cytometry that the balloon structures were derived from
platelets as they expressed the platelet-specific integrin αIIbβ3
and were procoagulant by annexin V binding in keeping with
previous descriptions of platelet balloons (Fig. 2B and refs. 13
and 14). The proportion of balloon platelets in the circulation
increased as injury severity increased (Fig. 2C) and after ad-
ministration of platelet transfusions (Fig. 2D).
Platelet balloons have never been identified in human blood

samples ex vivo, but have been generated in vitro and charac-
terized as highly procoagulant (15). The ballooned structures
provide a large surface area of phosphatidylserine (PS) on
the outer membrane leaflet which enables assembly of the
procoagulant enzyme complexes required for thrombin gener-
ation (13). In resting platelets from trauma patients on ad-
mission, the PS-expressing subset was significantly expanded
compared to healthy controls (8.9 ± 1.5% vs. 3.9 ± 1.6%, P <
0.001; Fig. 2E and SI Appendix, Fig. S1). Procoagulant platelets
have also been identified as a subpopulation of activated
platelets which do not bind PAC-1, a monoclonal antibody
targeting the ligand-binding site on the activated conformation
of integrin αIIbβ3 (16). The trauma patients had a substantial
population of P-selectin–positive/PAC-1–negative platelets, repre-
senting a greatly expanded platelet population when compared to
healthy volunteers (14.5 ± 5.5% vs. 3.1 ± 1.5%, P = 0.004; Fig.
2F and SI Appendix, Fig. S1). Together, these data indicate a
procoagulant ballooning process in trauma patients which had

not been identified in human disease and occurs in proportion to
the severity of injury.

Balloon Formation Is Associated with Release of Platelet-Derived
Microparticles Which Coat Circulating Leukocytes. Balloons are fri-
able structures that eventually disintegrate, leading to a surge in
microparticle release (13, 17, 18). Levels of platelet-derived
microparticles (PMPs) in plasma are known to be elevated in
the acute phase after major injury (19, 20). Using imaging flow
cytometry, we found that trauma patients’ leukocytes were coated
with PMPs in numbers proportional to the numbers of circulating
balloons (Fig. 3 A and B). The proportion of these PMP-covered
leukocytes increased with injury severity, whereas whole-platelet
leukocyte interactions were infrequent and did not increase (Fig.
3C). Whole platelets were minimally activated whereas PMPs on
leukocytes were strongly positive for P-selectin and CD63, indi-
cating that they were derived from activated platelets (Fig. 3D).
Patients who later developed multiple-organ dysfunction syn-
drome (MODS) were more severely injured than those who re-
covered without organ complications [injury severity score (ISS)
39 vs. 19, P < 0.001] and had a much higher proportion of PMP-
coated leukocytes (22 ± 11% vs. 10 ± 5%, P = 0.005; Fig. 3E).
We postulated that these alterations in platelet structure and

function result from exposure to damage-associated molecular
patterns (DAMPs), molecules which are released into the ex-
tracellular space by activated, damaged, or necrotic cells after
injury and which act as a signal that damage has occurred (21).
Histones are archetypal DAMPs that are released from damaged
tissues into the circulation in high concentrations after severe
trauma (12), affect platelet function (22, 23), and induce cyto-
toxicity through direct membrane disruption (24). We therefore
hypothesized that histones may be responsible for platelet bal-
looning and microparticle release in acute traumatic coagulopathy.
We focused on histone H4 in particular, as this has been shown to
have the most pronounced effects on platelets and cell membranes
compared to other histones (25, 26).
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Fig. 1. Hierarchical clustering analysis of platelet function parameters in trauma patients. (A) Heatmap and dendrogram illustrating 4 major clusters of
patients (C1–C4). Each column represents a patient, and each row represents a platelet function parameter. Red cells indicate values which are increased
relative to the reference population; blue cells indicate values which are reduced relative to the reference population. (B) Injury characteristics and outcomes in
the 4 clusters. (C) Coagulation and platelet function profile in the 4 clusters. Box plots depict median, interquartile range and 10th–90th percentiles. Dashed
lines denote normal range. *P < 0.05 **P < 0.01 ***P < 0.001 vs. cluster 1, 1-way ANOVA with Tukey’s posttest for multiple comparisons.
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Histone H4 Is Cytotoxic to Platelets, Inducing Sustained Cytosolic
Calcium Elevation and Reducing Agonist Responses. Histone H4
was detectable on the surface of circulating platelets from
trauma patients, and the degree of histone binding was strongly
correlated with the size of the procoagulant subset (Fig. 4A). In
vitro, exposure of platelets sourced from healthy volunteers to
histone H4 at concentrations previously reported in injured hu-
mans produced sustained rises in cytosolic calcium concentra-
tions of platelets which persisted for at least 60 min from
exposure (Fig. 4B). This population could not respond to sub-
sequent agonist stimulation (Fig. 4C). Histone-platelet interac-
tion resulted in membrane damage, evidenced by a concentration-
dependent increase in lactate dehydrogenase (LDH) release from
platelets (Fig. 4D). This was not attenuated by blockade of Toll-
like receptor 2 (TLR2) or TLR4, the major receptors for histones
on platelets (23) (SI Appendix, Fig. S2), consistent with the direct
effect that histones are known to exert on cell membranes (24, 27)

Extracellular Histone H4 Induces Platelet Ballooning and Microparticle
Production.A sustained elevation in platelet cytosolic calcium is a
requirement for balloon formation (13, 28). In accord with this,

we found that platelets from healthy individuals exposed to histone
H4 were rapidly converted into platelet balloons, with histone de-
posited both on the remnant body of the ballooning platelets and
around the balloon itself (Fig. 5A). Histones were also present on the
surface of ballooning platelets in samples taken from trauma patients
(Fig. 5A). Exposure of platelets from healthy volunteers to histone
H4 in vitro led to a concentration-dependent increase in expression
of histones on the surface of platelets, procoagulant platelet trans-
formation, and platelet ballooning (Fig. 5 B–D). Blockade of TLR2
or TLR4 in isolation or in combination did not significantly reduce
histone-induced platelet ballooning (SI Appendix, Fig. S2). Histone
H4–treated platelets also produced large quantities of microparticles
which retained histone H4 on their surfaces (Fig. 5 E–G) and
expressed phosphatidylserine on their outer leaflets (Fig. 5H), sug-
gesting that they originated from the procoagulant subset and in-
dicating their potential to support coagulation and modulate
immune cell function. These microparticles coated the surfaces of
leukocytes (Fig. 5I), reflecting our observations in trauma patients.
Finally, histone H4 caused a concentration-dependent release of the
proinflammatory alpha granule protein platelet factor 4 (PF4) from
platelets in vitro, mirroring observations of elevations in PF4 seen
in plasma samples of trauma patients (SI Appendix, Fig. S3).

Discussion
The results presented in this study demonstrate a fundamental
switch in platelet behavior toward a procoagulant and proin-
flammatory phenotype at the expense of platelet aggregation,
which occurs during traumatic hemorrhage as a direct response
to tissue damage. We propose a model in which histone H4 re-
leased into the circulation by mechanically damaged or ischemic
tissues exerts a direct cytotoxic effect on platelets. This interac-
tion drives platelet ballooning, leading to the release of micro-
particles which interact with circulating leukocytes.
Platelet balloons are thought to form at wound sites as a re-

sponse to vascular injury (13, 28–30). The agonist requirements
for platelet ballooning in vitro are high concentrations of colla-
gen (or collagen-related peptide) and thrombin—conditions
found at the site of endothelial damage (31). The ballooned
platelet membrane maximizes the surface area for assembly of
procoagulant enzyme complexes on the platelet surface, which is
critical for amplification of thrombin generation at sites of in-
jury (13, 32). Histones have been shown to promote platelet-
dependent thrombin generation (23), but have not been shown
to induce ballooning. In this study, we observed interactions
between histone H4 and platelets in vivo after major injury in
humans, and found that this interaction induces sustained rises
in cytosolic calcium levels leading to membrane ballooning and
procoagulant transformation. Histone H4 is released from tis-
sues which have been mechanically disrupted or subjected to
ischemia, resulting in massive elevations in circulating histone
levels after severe injury and hemorrhage (12, 33). Of the 5
proteins which make up the histone family, H4 has the most
potent effects on platelets (22) and has pore-forming activity on
contact with cell membranes which induces lytic cell death (26).
Our data suggest that this direct membrane-toxic effect of H4
drives platelet ballooning, although other histones may also play
a contributory role. This alternative mechanism accounts for the
presence of balloons free in the peripheral circulation in trauma
patients at sites remote from vascular damage, and provides a
potential explanation for the widespread development of pro-
coagulant platelets in other diseases which involve histone release
but not collagen exposure, such as ischemia-reperfusion injury and
sepsis-induced disseminated intravascular coagulation (30, 34, 35).
Due to their lack of cytoskeletal architecture, balloons are del-

icate structures which readily disintegrate, producing large quan-
tities of microparticles (13, 17). Histone H4 exposure recapitulates
this phenomenon. In trauma patients, we found large numbers of
circulating leukocytes bound by material from activated platelets
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Fig. 2. Platelet ballooning during trauma hemorrhage. (A) Representative
transmission electron microscopy images of platelet-rich plasma from 3 patients
with severe injuries showing ballooning platelets (red arrows) with loss of mem-
brane integrity and absent cytoplasmic contents. White arrows indicate non-
ballooned platelets. (Scale bars, 2 μm.) (B) Representative images from trauma
patients demonstrating a morphologically normal platelet (Top) and platelets dis-
playing membrane ballooning and annexin V binding. (C) Number of ballooning
platelets in healthy volunteers (black, n = 10) and in trauma patients (red) with
mild–moderate injuries (ISS ≤ 15, n = 13), severe injuries (ISS 16–25, n = 17), and
critical injuries (ISS > 25, n = 18). Results expressed as proportion of platelets. Box
plots display median with interquartile range and 10th–90th percentiles. ***P <
0.01, 1-way ANOVA. (D) Level of ballooning before (pre-) and after (post-) platelet
transfusion in serial samples taken during active hemorrhage (n = 9). Lines indicate
mean. **P < 0.01, paired t test. (E) Annexin V binding to platelets isolated from
healthy volunteers (n = 8) and trauma patients (n = 18). ***P < 0.001, Mann–
Whitney U test. (F) Frequency of P-selectin+ve/PAC-1−ve platelets in healthy vol-
unteers (n = 8) and trauma patients (n = 28). **P < 0.01, Mann–Whitney U test.
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which was almost entirely in the form of microparticles rather than
whole platelets; these interactions were most frequent in patients
with severe injuries who developedMODS. Our observations build
on previous reports of increased levels of circulating platelet–
derived microparticles in plasma from trauma patients (19, 20, 36)
and support previous findings suggesting that platelet responses
can bridge coagulation and inflammatory systems to shape the
immune response during acute sterile inflammation (37). Platelet-
derived microparticles have been shown to have immunomodulatory
effects on leukocytes (18, 38, 39), and platelet-leukocyte interactions

are implicated in organ dysfunction during sterile inflammation in
experimental models (40, 41). We postulate that microparticles re-
leased from histone-stimulated platelets are an additional facet of
the platelet functional repertoire, allowing them to act as messen-
gers which alert the immune response to tissue injury by interactions
with circulating neutrophils and monocytes. The molecular inter-
actions involved in these interactions and their ability to cause
immunomodulation in trauma patients warrants future research.
Our findings have important implications for the management

of trauma hemorrhage and our understanding of TIC. Several
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authors have described a state of elevated thrombin–generating
potential despite loss of procoagulant clotting factors in severely
injured patients (42, 43). This study identifies ballooning plate-
lets as the previously undefined procoagulant factor underlying
this apparently paradoxical situation. Our findings illustrate that
posttraumatic changes in platelet behavior are more complex
than solely the impairment of platelet aggregation that has
been described (1, 2). It is unclear how platelet ballooning
and PMP release impact global assays of hemostasis, such as
thromboelastometry, that are increasingly used to guide resuscitation
(44). Although allogeneic platelets are routinely administered to
bleeding patients as part of major hemorrhage protocols to
support platelet function during TIC, there is uncertainty around their
efficacy and mechanism of action (45, 46). Transfused platelets are

exposed to the same intravascular conditions as endogenous plate-
lets and are therefore susceptible to histone-induced procoagulant
transformation. This provides one potential explanation as to why
platelet transfusions do not support aggregation (3, 7) but lead to
increases in circulating alpha granule proteins (3) and increases in
circulating platelet balloons.
In conclusion, this study describes a dramatic phenotypic

change in circulating platelets induced by histone release after
major trauma. Our findings provide insights into aspects of platelet
behavior previously unrecognized in trauma patients, and broaden
the concept of platelet “dysfunction” during coagulopathic hem-
orrhage. We describe a previously undefined and fundamental
component of the innate response to damage, which is manifest by
the development of platelet ballooning and microparticle pro-
duction. These observations have implications for the pathophys-
iology of trauma-induced coagulopathy and multiple-organ
dysfunction, and for the future development of effective platelet
therapeutics for critically bleeding patients.

Materials and Methods
Additional methodological details can be found in the SI Appendix.

Study Design. Adult trauma patients recruited into the Activation of Coag-
ulation and Inflammation after Trauma (ACIT) study who met criteria for
advanced trauma team activation at a single urbanmajor trauma center were
included in this study. Inclusion and exclusion criteria have been published
previously (3, 5). The study was approved by the London – City and East
Research Ethics Committee (reference 07/Q0603/29). In patients who lacked
capacity, consent for participation was provided by an independent clinician
prior to any study-related activities. Informed consent was then obtained
from the patient or next of kin at the earliest opportunity. Blood samples
were obtained in the emergency department within 2 hours of injury and
processed immediately after collection. Characteristics of the study cohorts
are described in the SI Appendix, Tables S1 and S2. Healthy volunteers taking
no regular medication acted as a control group (reference 07/Q0702/24).

Transmission Electron Microscopy. Platelet-rich plasma was fixed in graded
buffers, washed, and stored overnight in sodium cacodylate buffer. Samples
were dehydrated in a graded ethanol series and then infiltrated with London
Resin white resin prior to examination with a JOEL JEM-1230 microscope
(JOEL USA). Further details can be found in the SI Appendix.

Flow Cytometry and Imaging Flow Cytometry. P-selectin (CD62P) expression,
integrin αIIbβ3 activation, annexin V binding, and histone H4 were quan-
tified on platelets by flow cytometry using an LSRII flow cytometer (Becton
Dickinson). Platelet balloons, platelet-leukocyte interactions, and PMPs were
characterized and quantified using the ImageStreamx Mk II imaging flow
cyometer (Amnis). Antibody panels and gating strategies are described in
the SI Appendix, Figs. S1 and S4.

Platelet Stimulation. Washed platelets (3 × 108/mL) were recalcified to 2 mM
and incubated at 37 °C under stirring conditions with vehicle or Histone H4
Human, Recombinant (New England Biolabs), at the stated concentrations.
Reactions were stopped by addition of 1:2 acid-citrate-dextrose (5 mM
dextrose, 6.8 mM trisodium citrate, 3.8 mM citric acid). Platelets were then
prepared for flow cytometry or imaging flow cytometry as described in the
SI Appendix.

CalciumMobilization.Washed platelets were loadedwith Fluo 3-AM (Biotium)
for 30 min and then incubated with anti-CD42b-APC for 15 min. Platelets
were then diluted 1:10 with Tyrode’s buffer with 2 mM calcium. Basal
fluorescence was recorded in unstimulated platelets, and changes were
quantified in real time following challenge with thrombin receptor–acti-
vating peptide 6 (TRAP) or H4 using the LSRII flow cytometer.

Data Analysis. Hierarchical clustering analysis was performed with Morpheus
software (Broad Institute). Statistical analyses were performed using Prism v6.0
(GraphPad). A 2-tailed P value of <0.05 was considered significant throughout.
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Fig. 5. Histone H4 induces platelet ballooning and release of procoagulant,
proinflammatory microparticles. (A) Representative images of platelets from
healthy volunteers and trauma patients. (B–D) Impact of histone H4 expo-
sure on platelets. Platelet ballooning (B), surface expression of histone H4
(C), and annexin V binding (D) after stimulation with histone H4 at the in-
dicated concentrations or vehicle for 5 min under stirring conditions (1,200
rpm). (E–I) Histone-induced microparticle production by platelets. Repre-
sentative flow cytometry plots of vehicle- and histone-treated platelets (E).
Quantity of PMPs released (F), expression of histone H4 on surface of PMPs
(G), annexin V binding to PMPs (H), and interaction of PMPs with leukocytes
(I). Box plots display median, interquartile range, minimum values, and
maximum values from 6 independent experiments. *P < 0.05 **P < 0.01
***P < 0.001 vs. vehicle, 1-way ANOVA with Dunnett’s posttest.
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