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Introduction

Gastric and esophageal cancer remains a major cause of 
cancer-associated deaths. In 2019, it was estimated that 
there were approximately 11,000 deaths due to gastric 
cancer and 16,000 deaths due to esophageal cancer in the 
U.S (1). To improve clinical outcomes for patients with 
locally advanced non-metastatic disease, a combination 
of radiation, chemotherapy, and surgery has been the 
fundamental approach.

Despite the multidisciplinary approach to therapy, the 
prognosis of gastroesophageal cancer (GEC) patients 
remains poor due to recurrence, development of metastasis 
and treatment complications (2). Advances in next-
generation sequencing have led to the discovery of several 
processes that contribute to carcinogenesis, driver gene 
mutations, dysregulation of cellular signaling pathways 
and alterations of the tumor microenvironment. The 
successful use of immune checkpoint inhibitors including 
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programmed death 1/programmed death ligand 1 (PD-1/
PD-L1) inhibitors have improved the prognosis of various 
malignancies including melanoma and non-small cell 
lung cancer (3,4). However, the majority of patients with 
metastatic GECs do not garner a response to single agent 
immune checkpoint inhibitors (5).

Traditionally, radiation therapy (RT) has been widely 
used for local tumor control. However, growing evidence 
has shown RT’s ability to generate a systemic immune 
response to decrease the burden of metastases outside of the 
radiation field aptly named the abscopal effect (6). Growing 
evidence supports that the abscopal effect is likely driven 
by T cell-dependent processes involving immunogenic and 
proinflammatory pathways (7-15). Previously, the reports 
of abscopal effects have been limited to 46 cases over  
45 years (16). The possible explanation for the rarity of the 
abscopal effects despite the pro-immunogenic mechanisms 
of RT is that cancers establish a strong immunosuppressive 
tumor microenvironment (17). Numerous phase II/III 
clinical trials in tumor histologies outside of GEC have 
explored combining checkpoint inhibition with RT to 
improve anti-tumor effects (18,19). In this review article, 
we discuss the current role of immunotherapy and radiation 
in GECs. Also, we highlight the rationale behind preclinical 
studies and clinical studies that are exploring a potential 
role for the combination of checkpoint inhibition and RT 
specifically in GECs. We present the following article in 
accordance with the Narrative Review reporting checklist 
(available at http://dx.doi.org/10.21037/tcr-20-2210).

The rationale for immune checkpoint blockade 
in GEC

T cells are activated by the adaptive immune response 
during carcinogenesis. However, cancer cells can escape 
immune response by controlling immune checkpoint 
pathways typically reserved for restraining of pathologic 
autoimmunity (20). Over the past several years, immune 
checkpoint inhibitors have emerged as a powerful tool in 
the treatment of cancer. Typically engineered as monoclonal 
antibodies, these agents can inhibit immune checkpoints, 
putatively restoring T cell response against dysregulated 
cancer cell growth. Currently approved antibodies include 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
inhibitors, PD-1 and PD-L1 inhibitors.

The PD-1/PD-L1 axis has emerged as a major immune 
checkpoint whose targeting has yielded favorable outcomes 
in a subset of patients with GEC.  Unlike other solid 

tumors (such as melanoma, lung or renal cell carcinoma), 
for GEC PD-L1 expression in tumor cells is relatively low 
and is mostly observed in infiltrating myeloid cells at the 
invasive margins (21-23). In addition, prevalence of PD-L1 
overexpression may be influenced by the major molecular 
subclassifications characterized by The Cancer Genome 
Atlas (TCGA) for GEC, i.e., tumors associated with Epstein 
Barr virus (EBV), microsatellite instability (MSI), genome 
stability (GS) and chromosomal instability (CIN) (24). For 
instance, EBV associated gastric cancers express PD-L1 in 
tumor cells and immune cells in approximately 50% and 
94% of cases, respectively (25). The presence of MSI is 
also associated with PD-L1 expression on tumor cells and 
immune cells (33% and 45% of cases, respectively) (25). 
As of 2017, detection of DNA mismatch repair deficiency 
(MMR-D) and MSI garnered regulatory approval as 
biomarkers predicting for benefit from PD-1 inhibitors in 
GEC (26).

Initial U.S. regulatory approval for pembrolizumab for 
metastatic gastric and GEJ adenocarcinomas stemmed 
from the multi-cohort phase II KEYNOTE-059 trial (27).  
The largest cohort (Cohort 1), was composed of patients 
refractory to at least 2 lines of systemic therapy. In 
patients with GEC PD-L1 expression as defined by the 
Combined Positive Score (CPS) of at least 1, i.e., at least 
1 tumor cell and/or immune cell out of 100 viable tumor 
cells demonstrating PD-L1 immunohistochemical (IHC) 
staining, objective response rate (ORR) was 15.5%. Despite 
the modest proportion of patients garnering a response, 
accelerated approval was granted due to the durability of the 
responses observed manifested by the median duration of 
response being 16.3 months. Among 7 patients confirmed 
to have MSI-High (MSI-H) tumors, ORR was much 
higher (57.1%) versus an ORR 9.0% among 167 patients 
with non-MSI-H tumors, reinforcing TCGA molecular 
subclassifications correlating with immune checkpoint 
upregulation and propensity to respond to immune 
checkpoint inhibitors. The phase III ATTRACTION-2 
study of best supportive care with addition of nivolumab 
versus placebo provided further evidence that at least in 
the third-line setting, PD-1 inhibitors provide clinical 
meaningful benefit to a subset of patients with GEC (28). 
This was manifested by an ORR of 11.2% and of note 
the authors did not ascertain PD-L1 CPS as a predictive 
biomarker, but ascertained only tumor cell PD-L1 
expression. With this methodology GEC patients either 
with the presence or absence of PD-L1 expression still 
yielded survival benefit when assigned to nivolumab versus 

http://dx.doi.org/10.21037/tcr-20-2210


2588 Yoon et al. RT plus IO in GEC

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(5):2586-2595 | http://dx.doi.org/10.21037/tcr-20-2210

placebo. Given the study did still meet its prespecified 
endpoint of improving survival in a GEC patient population 
enrolled at multiple Asian centers, nivolumab garnered 
regulatory approval for third-line therapy in Japan 
independent of tumor biomarker status.

Subsequent randomized trials examining introduction 
of PD-1 inhibitors in earlier lines of therapy, such as the 
KEYNOTE-061 study, demonstrated the limitations 
with observing durable responses in only a minority of 
GEC patients in contrast to broader, albeit transient 
responses garnered from chemotherapy (29). The authors 
randomized 592 patients refractory to first line therapy 
to either receive pembrolizumab 200mg every 3 weeks 
for up to 2 years or standard doses of paclitaxel. The 
pembrolizumab arm had modestly improved median OS 
(9.1 vs. 8.3 months) but inferior median progression-free 
survival (PFS) (1.5 vs. 4.1 months). In subgroup analyses, 
the authors reported improved response rates in patients 
with increased PD-L1 CPS ≥10 (24.5% vs. 9.1%) and in 
MSI-H tumors irrespective of PD-L1 CPS score (46.7% 
vs. 16.7%). A similar pattern has also emerged from clinical 
trial data in esophageal squamous cell carcinomas (ESCC). 
From the randomized phase III ATTRACTION-3 trial, 
all patients enrolled were diagnosed with unresectable 
advanced ESCC and randomized to second line nivolumab 
or standard of care chemotherapy, and ORR was 19% 
versus 22%, respectively (30). Majority of patients (55%) 
receiving nivolumab demonstrated progressive disease 
as best response versus 32% in the patients assigned to 
chemotherapy. From the phase III KEYNOTE-181 trial 
that enrolled patients with both adenocarcinoma and ESCC 
histology, tumor PD-L1 CPS ≥10 status appeared to enrich 
for likelihood of benefit from pembrolizumab as ORR was 
21.5% in this subset versus only 6.1% when these patients 
were assigned to chemotherapy (31). However, tumors 
with a PD-L1 CPS ≥10 appear to only carry a prevalence 
of ~30% in patients with GEC. In summary, single agent 
immune checkpoint inhibitors have yielded meaningful 
clinical benefit in the treatment of metastatic GEC, albeit 
confined to a small proportion of all-comers with GEC 
regardless of adenocarcinoma or squamous cell carcinoma 
histology.

Current role of RT in non-metastatic GEC

In localized GECs, surgical resection remains central 
as a treatment modality and is potentially curative. 
However, surgical management alone is associated with 

high recurrence rates. A multidisciplinary approach of 
incorporating chemotherapy, radiation, and surgery have 
shown improvement in outcomes over the years in GECs 
(32-34). Traditionally, it has been thought that ionizing 
radiation on local tumor cells leads to direct or indirect 
DNA damage which triggers a series of molecular events 
associated with cell death (35). Prior studies demonstrating 
the therapeutic benefit of a single agent or combination 
chemotherapy in patients with esophageal cancer led 
to question if the combination of chemotherapy plus 
radiation is superior to RT alone in non-metastatic GECs 
(36-40). In one of the early seminal trials, Herskovic  
et al. randomly assigned patients (n=121) with locally 
advanced but non-metastatic squamous-cell carcinoma 
or adenocarcinoma of the esophagus to combined 
fluorouracil and cisplatin plus 5,000 cGy of radiation or 
6,400 cGy of RT alone (41). The authors found improved 
median survival (12.5 vs. 8.9 months) in favor of the 
chemoradiation arm. Higher rates of survival were also 
noted in the chemoradiation arm than radiation alone 
arm at 12 months (33% vs. 10%) and 24 months (50% vs. 
38%, P<0.001). Although there were limitations to how 
the recurrences were detected, the authors observed fewer 
local and distant recurrences in the chemoradiation arm 
compared to the radiation alone arm. The evidence for the 
efficacy of chemoradiation was further strengthened when 
a French study demonstrated non-inferiority of definitive 
chemoradiation versus chemoradiation followed by surgery 
in locally advanced esophageal predominantly squamous 
cell carcinomas (42).

Given the high relapse rate after the resection of 
cancer, adjuvant and neoadjuvant approaches have been 
investigated to improve outcomes. The Southwestern 
Oncology Group/Intergroup (SWOG/INT) 0116 trial 
demonstrated efficacy of adding adjuvant chemoradiation 
in surgically resected gastric and gastroesophageal junction 
(GEJ) adenocarcinomas (43). The RT portion of adjuvant 
chemoradiation consisted of 45 Gy given as 1.8 Gy daily 
for 5 days per week for 5 weeks. The authors observed an 
improved median overall survival (OS) of 36 months in 
the chemoradiation arm compared to 27 months in the 
surgery only arm (HR 1.35; 95% CI: 1.09–1.66; P=0.005). 
Neoadjuvant chemoradiation is also an established 
approach in non-metastatic esophageal and GEJ cancers 
as highlighted in multiple trials including the Cancer 
and Leukemia Group B (CALGB) 9781 trial and the 
CROSS study (Chemo Radiotherapy for Oesophageal 
cancer followed by Surgery Study). The CALGB 9781 
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trial demonstrated the efficacy of cisplatin and 5-FU based 
concurrent chemoradiation followed by surgery was superior 
to surgery alone (44). The rate of complete pathologic 
response was also found to be 40% with employment of 
neoadjuvant chemoradiation. However, the trial was limited 
by a lack of a large sample size (56 patients instead of 500 
patients which the authors initially intended to accrue). 
The CROSS study was a much larger phase III trial that 
validated the efficacy of neoadjuvant chemoradiation. The 
authors randomized 366 patients with locally advanced 
esophageal or GEJ cancers (clinical stage T1N1M0 or T2-
3N0-1M0, according to the 6th edition of the TNM staging 
system) (45). The authors compared chemoradiation  
(41.4 Gy concurrent with weekly carboplatin/paclitaxel) 
followed by surgery to surgical resection alone. The 
neoadjuvant chemoradiation arm improved local control 
of the disease exemplified by a significant improvement in 
negative margin resection rates (92% vs. 67% P<0.001). 
Notably, in patients with squamous cell histology, the 
pathologic complete response rate was 49% (18 of 37 
patients) compared with 23% (28 of 121 patients) in 
patients with adenocarcinoma histology. Traditionally, lack 
of complete pathologic responses to chemoradiation has 
been ascribed to tumor cell intrinsic mechanisms, though 
in the following sections we review data where modulation 
of the tumor immune microenvironment may play a role in 
GECs. Such datasets pave the way for combining immune 
checkpoint blockade and RT improving outcomes in this 
disease.

The rationale for combining radiation and 
immune checkpoint blockade in GEC 

Growing evidence from preclinical models and clinical 
datasets has shown that RT can exert systemic anti-tumor 
effects through the innate and adaptive immune system. 
RT can provide immunogenic activity through a variety of 
mechanisms. These include activating immunogenic cell 
death (46), producing neoantigens, antigen processing and 
cross-presentation (47), decreasing the immunosuppressive 
tumor microenvironment (48,49), overcoming T-cell 
exclusion from the tumor microenvironment (50) and 
increasing tumor recognition by the immune system (47). 
The idea of RT induced systemic immune responses 
to cancers was described by Mole in 1953, deemed the 
abscopal effect (6). In essence, tumor irradiation at the 
primary site can cause immune-mediated tumor reduction 
at the distant sites.

However, in terms of the abscopal effect of RT not being 
more robust, preclinical studies have partly attributed this 
to upregulation of the PD-1 pathway. This was exhibited 
in a mouse model of primary melanoma where the authors 
compared abscopal reduction in tumor burden in secondary 
non-irradiated tumors in PD-1 knockout mice compared 
to PD-1 wildtype (WT) mice where the targeted tumor 
was treated with 15 Gy of stereotactic ablative radiotherapy 
(SABR) (51). The tumor volume reduction in non-irradiated 
secondary sites was much greater in PD-1-knockout mice 
compared to WT mice. The addition of a PD-1 inhibitor to 
SABR also enhanced anti-tumor activity and abscopal effects 
on distal non-irradiated tumors in PD-1-WT mice when 
compared with mice that were treated with SABR alone. 
Furthermore, higher concentrations of PD-1+, CD11a, 
and CD8+ T-cells were seen in irradiated tumors compared 
to non-irradiated secondary tumors. The authors noted 
that immune cells that arose from irradiated tumor cells 
appeared to be generated against antigens from the specific 
tumor phenotype. This finding was reaffirmed in another 
study in which RT increased T-cell receptor clonality and 
diversity in irradiated tumors compared to controls (51). 
Interestingly, the combination of PD-1 inhibition and RT 
increased TCR diversity in both irradiated and secondary 
tumor sites (51).

However,  the optimal radiotherapy dosing and 
fractionation scheme needed to generate the desired 
immunogenicity remains to be fully elucidated. Some pre-
clinical investigations showed that immunogenic anti-tumor 
activity was dose dependent (18). Other studies have shown 
that increasing radiation doses (fractions above 7.5 Gy  
but not 5 Gy) was associated with immunogenic anti-tumor 
activity with elevations in IFN-gamma but not Tregs. 
Doses of greater or equal to 15 Gy were not associated with 
improved anti-tumor activity (52). In another pre-clinical 
study, a single dose and two multiple-dose fractionation 
regimens (20 Gy ×1, 8 Gy ×3, or 6 Gy ×5) combined with 
CTLA-4 inhibitors were compared (53). The authors found 
that although all approaches decreased primary tumor 
burden, the fractionated regimens were able to achieve 
greater abscopal effect in the non-irradiated secondary 
sites. They also found that a multiple fraction approach of 
8 Gy ×3, combined with CTLA-4 inhibition generated a 
greater abscopal effect than a single fraction approach of 
20 Gy ×1. Currently, there has yet to be reported a clinical 
trial randomizing patients to differing radiation dose-
fractionation regimens in evaluating their ability to generate 
an abscopal effect (54).
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Focusing on GEC, PD-L1 among other immune 
checkpoint biomarkers have been observed to be 
upregulated after chemoradiotherapy in GECs, pointing to 
creation of an immunosuppressive tumor microenvironment 
induced by this modality. In a case series of 31 patients with 
resected esophageal adenocarcinoma after neoadjuvant 
chemoradiotherapy, increased IHC positivity of immune 
checkpoints including PD-L1 were observed in the post-
neoadjuvant therapy versus baseline tumor samples (PD-
L1, 45.16% vs. 77.42%, P=0.01, OR=6.5; CTLA-4, 61.29% 
vs. 80.65%, P=0.752, OR=1.5) (55). CD8+ T cells were 
also found to be increased after neoadjuvant therapy with 
a mean increase of 5.5 CD8+ T cells per 100 tumor cells 
(P=0.02), indicative of a pro-inflammatory state. A higher 
concentration of TILs was also found in the invasive front 
of the tumor stroma. Furthermore, higher gene expression 
of IFN-gamma and other markers for immune checkpoints 
(TIM3, GITR, IDO1, LAG3, OX40, and KIR) were found 
in post-treatment tumors with the exception of CD137. The 
authors inferred that there is significant heterogeneity of 
immunosuppressive mechanisms, and future studies should 
address the combination of different checkpoint inhibitors 
along with PD-1/PD-L1. After stratification by post-
neoadjuvant PD-L1 status, there were significant differences 
in relative quantification values (measure of changes in 
mRNA levels at steady state, RQ) for PD-L1+ compared 
to PD-L1- patients for immune checkpoints including 
GITR, TIM3, and OX40. Although mean RQ values were 
not significantly different for other checkpoints, the PD-
L1+ group had higher mean RQ values than the PD-L1- 
group for all immune checkpoint genes. The authors also 
pursued mechanistic studies in a rat model of esophageal 
adenocarcinoma where they were able to vary the dose of 
RT delivered to tumors. They did observe that a higher 
dose of 16 vs. 13 Gy induced a higher fold-change in PD-
L1 expression when tumors were analyzed at 1 week (3.30 
vs. 1.23), 3 weeks (1.65 vs. 1.23), and 5 weeks (3.92 vs. 1.44) 
after RT, though these differences did not meet statistical 
significance. The temporal increase in tumor PD-L1  
expression also appeared to be dynamic, as resampling of 
esophageal tumors in this rat model at 9 weeks after RT 
exposure demonstrated return of PD-L1 expression to 
baseline levels.

An additional case series of 28 patients with gastric 
cardia and GE junction cancers treated with neoadjuvant 
chemoradiation followed by surgery were analyzed for tumor 
PD-1 and PD-L1 expression in pre-treatment and post-
treatment samples (56). Similar to the study by Kelly et al.,  

the authors also observed following chemoradiotherapy 
an increase in PD-1 and PD-L1 expression levels among 
32% and 54% of this patient cohort, respectively. They 
also observed poorer survival in patients with higher 
post-treatment tumor PD-1 expression versus those with 
lower post-treatment PD-1 expression (median survival 
23.1 versus 74.1 months, P=0.039). This data adds to 
growing observations that GECs mediate resistance 
to chemoradiation through upregulation of immune 
checkpoints in the tumor microenvironment. A preclinical 
mouse model of ESCC also demonstrated the greatest 
synergy against tumor growth when anti-PD-1 therapy 
was combined with chemoradiation versus just anti-PD-1 
therapy alone, chemotherapy alone, or anti-PD-1 therapy 
plus chemotherapy (57). Interestingly, in this mouse model 
contralaterally injected tumors not directly targeted by the 
RT demonstrated increased CD8+ TILs and a decreased 
T cell exhausted phenotype when anti-PD-1 therapy was 
included, suggesting an abscopal response.

Ongoing trials investigating synergy of RT with 
immunotherapy for GE cancers

Based on promising potential from preclinical trials, 
numerous of clinical trials are underway to study the effect 
of RT combined with immune checkpoint inhibition in 
patients with GEC. Encouraging preliminary results from a 
phase I trial of neoadjuvant nivolumab plus chemoradiation 
in stage II/III esophageal/GEJ cancer has been published in 
abstract form (58). Therapy appeared tolerable with 14/16 
patients able to receive all 5 intended doses of neoadjuvant 
nivolumab (14-day cycles, 2 doses prior to chemoradiation 
and 3 doses concurrent with chemoradiation). A complete 
pathologic response rate of 31% (5/16) was observed, with 
15/16 patients who underwent surgery not demonstrating 
disease recurrence at initial reporting. Building upon 
the reports of PD-1/PD-L1 immune checkpoints being 
upregulated after chemoradiation in GEC, the randomized 
phase III Checkmate-577 trial is examining whether 
adding adjuvant nivolumab versus placebo for patients 
without pathologic complete responses after neoadjuvant 
chemoradiation and surgery will improve long term overall 
and disease-free survival outcomes. This trial has completed 
accrual, and study results are eagerly awaited at the time 
of this review’s publication, given positive results will 
change the paradigm for the use of PD-1 inhibitors in non-
metastatic GEC. Additional trials are underway to elucidate 
the efficacy of combining immunotherapy approaches and 
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Table 1 Ongoing clinical trials evaluating combinational immunotherapy and RT approaches in GEC

Clinical trial 
number

Target Agents Phase Treatment Condition Primary end points

NCT 02642809 PD-1 Pembrolizumab 1 Pembrolizumab + 
brachytherapy

Metastatic esophageal 
cancer

Tolerability, treatment 
related adverse events

NCT 02844075 PD-1 Pembrolizumab 2 Neoadjuvant pembrolizumab 
+ paclitaxel + carboplatin + 
RT + surgery

Esophageal squamous cell 
carcinoma

Complete pathologic 
response rate

NCT 03064490 PD-1 Pembrolizumab 2 Weekly neoadjuvant 
pembrolizumab + 
carboplatin/paclitaxel + RT + 
surgery

Locally advanced 
esophageal and gastric 
cancer

Complete pathology 
response rate

NCT 02830594 PD-1 Pembrolizumab 2 RT + pembrolizumab Esophageal squamous cell 
carcinoma, esophageal 
adenocarcinoma, 
gastroesophageal 
junction, and gastric 
adenocarcinoma

Biomarkers and 
outcome

NCT02743494 PD-1 Nivolumab 3 Nivolumab vs. placebo. prior 
to randomization, patients to 
have completed preoperative 
CRT + surgery

Esophageal/
gastroesophageal junction 
cancer

Disease-free survival

NCT 03278626 PD-1 Nivolumab 1/2 Nivolumab + paclitaxel + 
carboplatin + RT

Locally advanced 
esophageal squamous cell 
carcinoma

Unacceptable 
toxicity grade 3, 4, 
hematologic toxicity

NCT 03544736 PD-1 Nivolumab 1/2 Nivolumab + RT; nivolumab 
+ paclitaxel, carboplatin + 
RT; nivolumab + paclitaxel, 
carboplatin + surgery

Esophageal cancer Incidence of treatment-
emergent adverse 
events, safety and 
tolerability

NCT 03437200 PD-1/
CTLA-4

Nivolumab + 
ipilimumab

2 RT + oxaliplatin, leucovorin, 
fluorouracil + nivolumab + 
ipilimumab

Inoperable esophageal 
cancer

12-month progression 
free survival

NCT03776487 PD-1/
CTLA-4

Nivolumab + 
ipilimumab

1/2 Fluorouracil, oxaliplatin + 
intensity modulated radiation 
therapy (IMRT) + nivolumab, 
ipilimumab + surgery

Gastric adenocarcinoma Safety, toxicity profile, 
disease free survival

NCT 03044613 PD-1/
LAG-3

Nivolumab + 
relatlimab

1 Nivolumab + carboplatin, 
paclitaxel + RT; nivolumab 
+ relatlimab + carboplatin + 
paclitaxel + RT

Stage II/III gastric cancer, 
esophageal cancer, 
gastroesophageal cancer

Treatment-related 
adverse events

NCT 03278626 PD-1 Nivolumab 1 Nivolumab + carboplatin, 
paclitaxel + RT

Esophageal squamous cell 
carcinoma

Unacceptable toxicity 
grade 3, 4

NCT 03490292 PD-L1 Avelumab 1/2 Avelumab + carboplatin, 
paclitaxel + RT

Reselectable esophageal 
carcinoma

Dose limiting 
measures, pathologic 
response rate, 
pathological complete 
response rate

NCT 02520453 PD-L1 Durvalumab 2 Neoadjuvant concurrent CRT 
+ surgery + duvalumab

Esophageal squamous cell 
carcinoma

Disease free survival

Table 1 (continued)
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differing doses, delivery techniques, and duration of RT 
(Table 1).

Conclusions

Growing pre-clinical and clinical evidence continues to 
support radiation and immunotherapy as an important 
part of available treatment modalities for GECs. The 
combination of these two modalities has shown significant 
potential in various types of locally advanced or metastatic 
malignancies including GECs. RT remains promising for its 
potential in generating the abscopal effect. However, there 
remains no clear consensus in optimal dosing, timing and 
fractionation strategy to induce the abscopal effect. Also, 
the underlying mechanisms of anti-tumor activity generated 
by RT are complex and heterogenous. Combining RT 
with immune checkpoint inhibition will likely be necessary 
with the emerging data in GEC of an immunosuppressive 
tumor microenvironment resulting from RT. Optimizing 
RT fraction number, dosing, timing, duration and co-
administration of appropriate immune checkpoint inhibitors 
while minimizing adverse events will be a challenge. 
The insights highlighted in this review suggest that the 
combination of radiation and immunotherapy will be a 
viable treatment option for GECs.
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Table 1 (continued)

Clinical trial 
number

Target Agents Phase Treatment Condition Primary end points

NCT 03377400 PD-L1 Durvalumab/
tremelimumab

2 Fluorouracil, cisplatin + RT + 
durvalumab/tremelimumab

Esophageal squamous cell 
carcinoma

Disease free survival

NCT 03087864 PD-L1 Atezolizumab 2 Atezolizumab + carboplatin, 
paclitaxel + RT

Esophageal carcinoma Feasibility

NCT04221893 Not 
applicable

2 Radiation Therapy for 
patients who are already 
being treated with 
immunotherapy

Metastatic gastrointestinal 
cancers

Overall response rate

NCT03165994 CD40 APX005M 2 APX005M + paclitaxel + 
carboplatin + RT + surgery

Esophageal cancer, 
gastroesophageal cancer

Safety, feasibility 
pathologic complete 
response rate

RT, radiation therapy; GEC, gastroesophageal cancer; PD-1, programmed death 1; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic 
T-lymphocyte-associated protein 4.
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