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Cholesterol as a key player in
amyloid β-mediated toxicity in
Alzheimer’s disease

Vladimir Rudajev and Jiri Novotny*

Department of Physiology, Faculty of Science, Charles University, Prague, Czechia

Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of

the most devastating and widespread diseases worldwide, mainly affecting

the aging population. One of the key factors contributing to AD-related

neurotoxicity is the production and aggregation of amyloid β (Aβ). Many

studies have shown the ability of Aβ to bind to the cell membrane and disrupt

its structure, leading to cell death. Because amyloid damage affects different

parts of the brain differently, it seems likely that not only Aβ but also the nature

of the membrane interface with which the amyloid interacts, helps determine

the final neurotoxic effect. Because cholesterol is the dominant component

of the plasma membrane, it plays an important role in Aβ-induced toxicity.

Elevated cholesterol levels and their regulation by statins have been shown

to be important factors influencing the progression of neurodegeneration.

However, data from many studies have shown that cholesterol has both

neuroprotective and aggravating effects in relation to the development of

AD. In this review, we attempt to summarize recent findings on the role of

cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis

of AD and to consider it in the broader context of the lipid composition of

cell membranes.
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Introduction

The plasma membrane (PM) serves as the major
communication interface where the cell receives and processes
almost all signals from the environment. Homeostasis of
membrane lipids, including cholesterol, is critical for normal

brain function (Litvinov et al., 2018; Kao et al., 2020; McFarlane
and Kedziora-Kornatowska, 2020). In the human body,
cholesterol is mainly concentrated in brain tissue, where it
forms nearly half of lipid molecules and the brain contains
23% of the body’s total cholesterol (15 mg/g tissue), although
this organ accounts for only 2.1% of total body weight
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(Dietschy and Turley, 2004; Takamori et al., 2006; Das et al.,
2014; Egawa et al., 2016). About 70% of the cholesterol in the
brain is associated with myelin, 20% is present in glia, and
10% is present in neurons. Cholesterol is essential for neuronal
function. A deficiency of cholesterol in neurons can lead to
impaired signal transduction and synaptic degradation (Frank
et al., 2008; Egawa et al., 2016; Loera-Valencia et al., 2019).

Alzheimer’s disease (AD) is strongly associated with the
accumulation of neurofibrillary tangles of hyperphosphorylated
tau (p-tau) and the aggregation of amyloid β-42 (Aβ42) in the
brain, which can be observed many years before the disease
manifestation (Braak and Braak, 1997; Braak et al., 2011;
Tarawneh and Holtzman, 2012; Villemagne et al., 2013; Cho
et al., 2016). Both tau and amyloid pathology are associated with
neuroinflammation and neurodegeneration (Braak and Braak,
1997; Jack et al., 2010; Tonnies and Trushina, 2017; Vogels et al.,
2020). Moreover, lipid dyshomeostasis is an obvious feature
of all stages of AD (Panza et al., 2006; Chan et al., 2012;
Naudi et al., 2015; de Oliveira et al., 2017; Agarwal and Khan,
2020). Since lipids are the basic constituents of cell membranes,
changes in phospholipids, sphingolipids, cholesterol, and the
degree of unsaturation of fatty acids have a nonnegligible
impact on the action of amyloid peptides, blood-brain barrier
(BBB) disruption, mitochondrial dysfunction, oxidative stress,
inflammation, and neurodegeneration (Panza et al., 2006; Di
Paolo and Kim, 2011; Agrawal et al., 2020; Chew et al., 2020; Kao
et al., 2020).

Several genes implicated in the pathophysiology of AD are
involved in cholesterol metabolism, including apolipoprotein
E (ApoE), apolipoprotein J (clusterin), ATP-binding cassette
(ABC) transporters A and G, and SORL1 (receptor for
lipoprotein particles). Others, such as phosphatidylinositol-
binding clathrin assembly protein (PICALM), CD2-associated
protein (CD2AP), and bridging Integrator-1 (BIN1) are
associated with membrane trafficking, which is also more or less
cholesterol-dependent (Reitz, 2013; Kim et al., 2017; Pimenova
et al., 2018; Kunkle et al., 2019; Abe-Dohmae and Yokoyama,
2021; Dai et al., 2021). ApoE, which is responsible for the
majority of intercellular cholesterol transport in the brain, has
the greatest relevance to AD pathology. ApoE exists in three
variants, ApoE2, E3, and E4, with ApoE4 being the most risky
allele in the sporadic form of AD (Hayashi et al., 2002; Morrow
et al., 2002; Leoni et al., 2010; Youmans et al., 2012; Tai et al.,
2013; Oikawa et al., 2014; Wood et al., 2014; Chang et al., 2017;
Lin et al., 2018; Fernandez et al., 2019; Lanfranco et al., 2020;
Lee et al., 2021; de Leeuw et al., 2022). Cholesterol does not pass
through the BBB and nearly all brain cholesterol is synthesized
in the brain, particularly in astrocytes, as the neuronal synthetic
pathway is insufficient to meet the brain’s demand for this
lipid. Therefore, ApoE-mediated cholesterol transport is of
critical importance (Jurevics and Morell, 1995; Dietschy and
Turley, 2004; Takamori et al., 2006; Czuba et al., 2017;
Ferris et al., 2017).

On the other hand, when considering only cholesterol
itself, a meta-analysis of genome-wide significant single
nucleotide polymorphisms in AD patients confirmed
no association between cholesterol and AD (McFarlane
and Kedziora-Kornatowska, 2020; Nilsson et al., 2021).
However, other systematic reviews found a broad association
between many proteins involved in cholesterol transport
and metabolism and AD (Agarwal and Khan, 2020; Xin
et al., 2021). In this review, we would like to highlight
the significance and also the controversy of the role of
cholesterol in AD pathology related to amyloid β toxicity.
Because cholesterol affects several processes associated
with AD pathology including Aβ formation, transport, and
degradation, we would like to focus specifically on the effects
mediated by Aβ binding to cell membranes in relation to
cholesterol content.

The interplay between cholesterol
and AD

Amyloid β

Aβ peptides are produced from the transmembrane amyloid
precursor protein (APP). APP can be cleaved by α-secretase
in the PM via the non-amyloidogenic pathway. On the other
hand, mainly intracellular amyloidogenic processing by β-
and γ-secretase leads to Aβ40/42 products (Xiong et al.,
2008; Chow et al., 2010; Arbor et al., 2016). While Aβ40,
a peptide of 40 amino acids, accounts for the majority of
amyloid β in the brain, Aβ42, which is two hydrophobic
amino acids longer, is considered the major neurotoxic
amyloid peptide (Yip et al., 2002; Williams et al., 2010;
Bode et al., 2017).

The metastability of many cellular proteins allows them
to transform into more thermodynamically stable aggregates
under appropriate conditions (Honeycutt and Thirumalai,
1990; Baldwin et al., 2011). The membrane environment
may be a key factor in the formation of aberrant amyloid
conformations of proteins rich in β-sheets, including Aβ42
(Straub and Thirumalai, 2014). Amyloids can organize into
small annular oligomers, curvilinear protofibrils, and larger
aggregates that form diffuse or dense plaques composed of fibrils
of varying composition. Depending on the environment, they
show different toxicity under different conditions (Bucciantini
et al., 2014). Oligomeric Aβ is considered the most toxic
form of amyloid, causing membrane perturbation, calcium
dyshomeostasis, reactive oxygen species (ROS) production,
mitochondrial and endosomal-lysosomal dysfunction
(Williams et al., 2010; Narayan et al., 2014; Evangelisti
et al., 2016; Oku et al., 2017; Tonnies and Trushina, 2017;
Fernandez-Perez et al., 2018; Ciudad et al., 2020). Biological
surfaces can catalyze the aggregation and growth of amyloid
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structures in ways that differ from nucleation in solution.
In particular, cell membranes composed of miscellaneous
lipids, including neutral and anionic lipids, polyunsaturated,
monounsaturated, and saturated fatty acids, and cholesterol,
provide a highly variable platform that offers a specific polar
environment as well as a hydrophobic zone in which amyloid
peptides can interact and aggregate into different forms
with varying degrees of toxicity (Ding et al., 2012; Cecchi
and Stefani, 2013). The way amyloid acts on cells always
represent a complex interplay between Aβ and the specific
membrane composition with which the amyloid interacts.
Therefore, cytotoxicity must be considered as a novel feature
resulting from the interaction between amyloid peptide
and membrane (Bucciantini et al., 2014; Liu P. et al., 2015;
Evangelisti et al., 2016).

Cholesterol homeostasis affects brain
health

In the brain, cholesterol is necessary for synaptogenesis,
neuronal differentiation and plasticity, regeneration and
myelinization, and normal neuronal function and morphology
(Hussain et al., 2019). By inducing and stabilizing membrane
curvature, cholesterol facilitates fusion of synaptic vesicles
with the PM and is required for endocytosis, making
neurotransmitter release and recycling highly dependent
on cholesterol (Subtil et al., 1999; Egawa et al., 2016; Petrov
et al., 2016). Cholesterol confers stability to lipid rafts and
provides the basis for raft association of membrane receptors,
channels, and other proteins in both healthy cells and in
pathophysiological processes (Simons and Toomre, 2000;
Anderson and Jacobson, 2002; Hicks et al., 2012; Egawa
et al., 2016; Vona et al., 2021). Modifications of brain sterols,
including cholesterol and oxysterols, can lead to disruption
of ion homeostasis, alterations in neurotransmitter release,
and propagation of excitotoxicity (Ong et al., 2010; Djelti
et al., 2015). And, even if brain cholesterol levels do not
change, decreased oxidation and efflux from the brain may
follow decreased cholesterol biosynthesis, as observed in a
transcriptome study of the hippocampus and entorhinal cortex
of AD-affected individuals, but not in the visual cortex, which
is less affected by neurodegeneration (Varma et al., 2021).
Both tau and amyloid pathology are associated with cholesterol
homeostasis and regulation, at least in part independently
(van der Kant et al., 2020). Many data confirm the disruption
of cholesterol metabolism in AD, as the major oxidation
product of cholesterol, 24S-hydroxycholesterol, is elevated
in the cerebrospinal fluid of AD patients (Leoni et al., 2006;
Panza et al., 2006). On the other hand, the reduction of 24S-
hydroxycholestrol, especially later in the course of AD, was
observed (Heverin et al., 2004; Testa et al., 2016; Kao et al., 2020;
Varma et al., 2021).

Alterations in cholesterol content in the
brain

Cholesterol levels increase by 19%–34% in the gray matter
of the cerebral cortex in AD brains (Xiong et al., 2008; Lazar
et al., 2013). However, other studies have reported a decrease
in brain cholesterol content (Ledesma et al., 2003; Egawa et al.,
2016). The controversial data might be related to the different
cholesterol metabolism in different brain regions during aging
and during neuropathological processes. Also, the different
results linking cholesterol levels to AD often reflect the analysis
of different tissues (blood, brain), brain parts (cerebral cortex,
cerebellum, whole brain), cell populations (neurons, astrocytes),
or membrane compartments (plasma membrane, lipid rafts;
Martin et al., 2010; Ledesma et al., 2012). Moreover, it is not
only the decrease or increase in the lipid that matters but
also the magnitude of the change. While a slight decrease in
cholesterol levels can be protective, a loss of more than 30%
can lead to cell death (Martin et al., 2010). Although changes
in cholesterol content, metabolism, and transport have been
linked to AD (Kirsch et al., 2002; Runz et al., 2002; Burns et al.,
2006; Pincon et al., 2015; Loera-Valencia et al., 2019), it is still
controversial whether cholesterol plays a role in the onset of
neurodegeneration or whether its dyshomeostasis is simply a
consequence of preceding Aβ-promoted pathology. Moreover,
the significance of the change is questionable, as cholesterol loss
may represent a physiological process that helps neurons combat
stress (Martin et al., 2011).

Membrane structure and
cholesterol-dependent lipid rafts

Lipid rafts are small (10–200 nm), heterogeneous and highly
dynamic assemblies enriched in cholesterol and sphingolipids.
The high content of saturated hydrocarbon chains allows
raft lipids to form a liquid-ordered (Lo) phase characterized
by lower fluidity and tight intermolecular contacts within
the bilayer (Brown, 1998; Anderson and Jacobson, 2002;
Lingwood and Simons, 2010; Rushworth and Hooper, 2010).
Lipid rafts play a role in the processes of Aβ formation,
aggregation, and interactions with membranes that lead to
amyloid toxicity (Rushworth and Hooper, 2010; Hicks et al.,
2012; Arbor et al., 2016). Because cholesterol is one of the
key structural raft elements, its membrane concentration may
have a major impact on Aβ-related pathological processes.
Mature neurons have been shown to contain more lipid
rafts, making them more susceptible to amyloid-induced
damage and degeneration (Malchiodi-Albedi et al., 2010).
In contrast to glial cells, neurons are characterized by high
levels of complex gangliosides and sphingomyelin (SM),
which support the formation and maintenance of rafts.
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Therefore, differences between different cells and brain parts
may be an important factor in the propagation of Aβ-
induced cytotoxicity (Abramov et al., 2011; Grassi et al.,
2020).

Lipid rafts from the frontal and entorhinal cortex, but not
from the cerebellum, of AD patients are more liquid-ordered
than those of control subjects. This is not due to changes
in cholesterol or SM levels (which were reduced in these
rafts) but to a decrease in the unsaturation of fatty acids. The
higher viscosity of lipid rafts is associated with increased β-
secretase/APP interaction and higher Aβ production (Martín
et al., 2010; Fabelo et al., 2014; Diaz et al., 2015, 2018). It is
interesting to note that neurodegenerative diseases such as AD,
dementia with Loewy bodies, or Parkinson’s disease share some
changes in the composition of raft lipids but the individual
diseases differ considerably in terms of specific changes in some
lipids or fatty acids (Marin et al., 2017). Molander-Melin et al.
(2005) observed a decrease in the content of lipid rafts in the
temporal cortex of AD brains, indicating a change in overall
membrane composition and physical properties. Moreover,
lipid rafts from the frontal and temporal cortex were poor
in cholesterol but enriched in gangliosides GM1 and GM2
(Molander-Melin et al., 2005). Aβ was also observed to affect
tau phosphorylation in lipid rafts, with a link between Aβ and
raft-associated tau population via the cdk5 phosphorylation
pathway (Hernandez et al., 2009).

Cholesterol distribution in cellular
membranes

Cholesterol is concentrated in the PM of animal cells,
where it is mainly localized in lipid rafts rich in SM (Das
et al., 2014; Litvinov et al., 2018). In the endoplasmic reticulum
(ER), cholesterol content reaches only about 1% and increases
markedly during the secretory pathway (Maxfield and Wustner,
2002). The different cholesterol content in cell membranes
is reflected in the different amounts of lipid rafts in which
cholesterol is concentrated. The concentrations of “free” non-raft
cholesterol are approximately the same in the ER and PM
(Litvinov et al., 2018), but the amount of cholesterol in the ER
exhibits greater variation than in the PM (Petrov et al., 2016).

In young mice, asymmetric cholesterol distribution within
the bilayer has been observed, with most cholesterol associated
with the inner leaflet of the synaptosomal plasma membrane
(SPM), which is more rigid than the exofacial leaflet (Igbavboa
et al., 1996). Changes in the distribution can occur without
changes in the total amount of cholesterol in the brain.
Interestingly, there is a shift of cholesterol from the cytofacial
to the exofacial leaflet during aging or ethanol treatment (Wood
et al., 1984, 1990, 2002; Viani et al., 1991; Igbavboa et al., 1996;
Eckert et al., 2001; Kirsch et al., 2002). These results are in
contrast to those of Molander-Melin et al. (2005), who observed

decreased cholesterol and raft content during AD. However,
aging need not correspond exactly to AD development, and
synaptosomal membranes are not readily comparable to rafts
isolated from the cerebral cortex in the Molander-Melin study.

Increased cholesterol in the outer layer of the membrane
may be related to altered interactions of the cell with Aβ and
other ligands that require cholesterol or less fluid membrane
of lipid rafts. This has implications for signaling, ion transport,
or endocytosis/exocytosis, all of which are impaired at AD
(Wood et al., 2002, 2014). Because ApoE4 is less effective than
ApoE2/3 in cholesterol export from the exofacial leaflet of
the neuronal plasma membrane, the ApoE4 phenotype may
lead to an increase in the cholesterol pool associated with the
outer membrane layer. Then, the altered cholesterol content in
the PM may affect Aβ binding and its toxic effects (Hayashi
et al., 2002). Moreover, the presence of ApoE2 was found
to be associated with lower cholesterol content in synaptic
membrane microdomains, which may be related to lower
amyloidogenic APP processing and lower levels of cholesterol-
and GM1-dependent Aβ aggregation (Oikawa et al., 2014). It
was concluded that the neuronal membranes of older individuals
or carriers of the ApoE4 allele may be more susceptible to Aβ-
mediated perturbations than those of younger individuals or
carriers of the ApoE2 or ApoE3 alleles (Wood et al., 2014).

Hypercholesterolemia as a risk factor for
AD

Brain cholesterol levels are not directly influenced by
higher plasma cholesterol levels because cholesterol cannot pass
through the BBB. However, diet-induced hypercholesterolemia
is associated with increased Aβ production and AD pathology
(Ghribi et al., 2006; Oksman et al., 2006; Jaya Prasanthi
et al., 2008; Wieckowska-Gacek et al., 2021). Thus, indirect
mechanisms following atherosclerosis or cerebrovascular
damage may play a role in cholesterol-related AD pathology
(Hooijmans et al., 2007; Anstey et al., 2017). High plasma
cholesterol, especially in midlife, perturbs cholesterol
homeostasis and is considered a risk factor for AD (Kivipelto
et al., 2001; Yaffe et al., 2002; Solomon et al., 2009; Ricciarelli
et al., 2012; Tarawneh and Holtzman, 2012; Schilling et al., 2017;
Wang et al., 2020).

In a transgenic mouse model of AD (TgAPPsw), a
high-cholesterol diet for 7–10 months resulted in increased
deposition of Aβ plaques in the brain (Shie et al., 2002).
Hypercholesterolemia induced by a high-cholesterol diet
increased Aβ content in the temporal cortex of rabbits,
where ApoE levels were also increased, indicating a link
between plasma and brain cholesterol pools (Wu et al., 2003).
Administration of a high-cholesterol diet to rats resulted in
decreased cognitive performance, increased neuroinflammatory
markers, p-tau, altered hippocampal morphology, including
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atrophy, and increased microglial cell activation (Ledreux et al.,
2016; Jin et al., 2018). Similar results were obtained in the
hypercholesterolemic AD model of transgenic mice (Umeda
et al., 2012). The high-fat diet with cholesterol did not increase
brain cholesterol levels, but the increase of Aβ deposition in
plaques was observed in the brains of APP23 model mice
(Fitz et al., 2010). Thus, disruption of cholesterol homeostasis
can lead to serious health problems and a higher risk of
AD, especially if cholesterol levels fluctuate over the years
(Chung et al., 2019).

Neurofibrillar tangle-bearing neurons have been shown
to contain more intracellular free cholesterol than adjacent
tangle-free neurons in human AD brains (Distl et al., 2001).
Extracellular colocalization of cholesterol, fibrillar amyloid
plaques, and ApoE was demonstrated by Burns et al. (2003).
In a transmission electron microscopy study, the interaction
of cholesterol with the 17–21 hydrophobic cholesterol-
binding motif of Aβ fibrils was observed (Harris, 2008). In
hypercholesterolemic AD model APP/PS1/SREBP-2 transgenic
mice, the amount and toxic effects of Aβ42 including tau
pathology, oxidative damage, and neuroinflammation,
were increased compared with APP/PS1 mice with normal
cholesterol levels (Barbero-Camps et al., 2013). Increasing
plasma membrane cholesterol levels by 30% in cultured neurons
led to AD pathology, including enlargement of early endosomes
and increased Aβ42 production (Marquer et al., 2014). On the
other hand, lowering cholesterol content by hydroxypropyl-
β-cyclodextrin had a neuroprotective effect in Tg19959 mice
(Yao et al., 2012). The experiments on cultured hippocampal
neurons indicated that mature neurons were more susceptible
to Aβ-induced calpain cleavage of tau, disruption of calcium
homeostasis, and cell death than the young cells. Neuron
maturation was accompanied by a developmental increase in
membrane cholesterol levels. When cholesterol levels were
lowered in mature neurons, the toxic effect of amyloid was
reduced. Conversely, an increase in membrane cholesterol in
young cells enhanced their susceptibility to Aβ insult (Nicholson
and Ferreira, 2009).

Impairment of mitochondria and altered mitophagy are
among the features of AD (Kerr et al., 2017; Fang et al., 2019;
Tran and Reddy, 2021). Intraneuronal cholesterol accumulation
can disrupt autophagy, reduce mitophagy, induce mitochondrial
oxidative stress, and inhibit lysosomal degradation of Aβ, leading
to AD progression (Roca-Agujetas et al., 2021). Mitochondrial
cholesterol accumulation also impairs antioxidant glutathione
(GSH) import into mitochondria, leading to increased
mitochondrial oxidative stress and enhanced Aβ neurotoxicity
in the APP/PS1 transgenic mouse model of AD (Fernandez
et al., 2009). High brain cholesterol impaired the fusion of
autophagosomes with the endosomal-lysosomal compartment,
leading to impaired tau and Aβ degradation (Barbero-Camps
et al., 2018). In vitro studies showed that elevated cellular
cholesterol disrupted endosomal and lysosomal Aβ degradation

and resulted in amyloid accumulation in Neuro2a cells
(Takeuchi et al., 2019).

Statins lower cholesterol levels by inhibiting the key
regulatory enzyme in cholesterol synthesis, 3-hydroxy-3-
methylglutaryl-CoA reductase (Fassbender et al., 2001; Kirsch
et al., 2003). Although some results do not confirm the beneficial
effects of statins in terms of AD development (Ott et al., 2015; de
Oliveira et al., 2017; Schultz et al., 2018; Williams et al., 2020),
numerous data suggest improvement in cognitive and memory
functions and reduction in the risk of developing dementia (Jick
et al., 2000; Wolozin et al., 2000; Yaffe et al., 2002; Green et al.,
2006; Carlsson et al., 2008; Kurinami et al., 2008; Haag et al.,
2009; Lin et al., 2015; Xuan et al., 2020). However, statins exhibit
many pleiotropic effects that are not always related to lowering
cholesterol (Pedrini et al., 2005; Ostrowski et al., 2007; Won et al.,
2008; Cheng S. W. et al., 2013; Daneschvar et al., 2015; Sun et al.,
2015; Jeong et al., 2021).

Altered cholesterol levels may modulate
Aβ action

Some studies do not support the assumption that AD is
associated with hypercholesterolemia. The results show that
brain cholesterol levels vary widely among AD patients, and they
do not support the idea that total brain cholesterol abundance is
a causative factor in AD (Mielke et al., 2005; Panza et al., 2006;
Wood et al., 2014). A recent study by Bennett et al. (2020) found
no association between total cholesterol, LDL cholesterol, HDL
cholesterol, and triglycerides in midlife and amyloid pathology
later in life. However, low serum cholesterol concentration
has been associated with impaired cognitive performance and
preceded the onset of AD (Elias et al., 2005; Stewart et al., 2007).

Aging has been found to lead to decreased cholesterol
synthesis in astrocytes, which may contribute to the synaptic
and neuronal degeneration associated with senescence (Boisvert
et al., 2018). In addition, oligomeric Aβ inhibits cholesterol
synthesis, as observed in mouse cerebrocortical cells (Mohamed
et al., 2018). GT1–7 hypothalamic cells were manipulated to
decrease cholesterol production, which resulted in increased
apoptosis in the presence of Aβ (Fukui et al., 2015). In
membranes isolated from AD brains, a negative correlation
was observed between cholesterol content and susceptibility to
the disruptive effects of Aβ (Eckert et al., 2000). This suggests
a protective effect of cholesterol in Aβ exposed cells, which
was confirmed by the study performed on mouse neuronal
membranes (Kirsch et al., 2002).

Cholesterol-dependent Aβ production

Lipid rafts provide an optimal environment for Aβ

production (Wahrle et al., 2002; Silva et al., 2013).
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Amyloidogenic cleavage of APP is mediated by β- and γ-
secretase and results in the deleterious Aβ40–42 products
prone to aggregation (Fraering et al., 2004; Xiong et al.,
2008; Chow et al., 2010; Arbor et al., 2016). Both β- and
γ-secretases show higher activity in cholesterol-rich lipid rafts.
Hence, higher cholesterol content ensures optimal conditions
for their activity and likely leads to stabilization of β- or
γ-secretases, enhancing their enzymatic activity and reducing
their degradation (Wahrle et al., 2002; Cordy et al., 2003;
Fraering et al., 2004; Kalvodova et al., 2005; Osenkowski
et al., 2008; Xiong et al., 2008; Beel et al., 2010; Sathya et al.,
2017). Under non-pathological conditions, non-amyloidogenic
α-secretase cleavage predominates and is localized in the more
fluid non-raft cholesterol-poor membrane (Kojro et al., 2001;
Beel et al., 2010; Chew et al., 2020). It has been shown that
α-secretase activity is inhibited by cholesterol (Bodovitz and
Klein, 1996).

In contrast to secretases, APP shows a more dynamic
cellular localization. APP has been found to be localized in
the PM, endocytic compartment, ER, and Golgi apparatus
(GA). Moreover, specific APP distribution in sub-compartments
such as mitochondria-associated ER, trans-GA, or lipid rafts is
strongly associated with differential APP processing (Lee et al.,
1998; Kawarabayashi et al., 2004; Fabiani and Antollini, 2019).
For amyloidogenic cleavage, the APP must be colocalized in
a cholesterol-dependent manner with β- and γ-secretases in
the intracellular lipid raft membrane (Ehehalt et al., 2003; von
Arnim et al., 2008; Area-Gomez et al., 2009; Cossec et al.,
2010; Panahi et al., 2016; Chung et al., 2018; DelBove et al.,
2019). Since cholesterol interacts directly with APP and secretase
actions also depend on cholesterol, the cleavage of APP and the
resulting amyloid production are strongly linked to the amount
of cholesterol and its membrane distribution (Marquer et al.,
2011; Barrett et al., 2012; Decock et al., 2015; Kim et al., 2016;
Sun et al., 2017; Audagnotto et al., 2018; Agrawal et al., 2020;
Montesinos et al., 2020; Pantelopulos et al., 2020; Nierzwicki
et al., 2021).

Thus, cholesterol content controls the amyloidogenicity
of APP processing, but on the other hand, Aβ reduces
both cholesterol production and uptake from the surrounding
environment through a negative feedback loop (Beel et al.,
2010). Moreover, APP may serve as a cholesterol-sensitive
and regulatory element (Pierrot et al., 2013). In addition
to the production machinery, enzymes involved in Aβ

degradation (insulin-degrading enzyme, neprilysin, endothelin-
converting enzymes, plasmin) have also been shown to
localize to cholesterol-rich lipid rafts. Hence, cholesterol
plays an important role not only in amyloidogenic APP
processing but also in more complicated regulatory pathways
(Sun et al., 2015). In the following sections, we would
like to focus specifically on Aβ-mediated effects related to
the cholesterol pool localized in the plasma membrane of
brain cells.

Amyloid β toxicity related to
membrane cholesterol

Membranes as nucleation platforms for
Aβ aggregation

As mentioned above, amyloid peptides adopt different
spatial arrangements depending on their surroundings. After
interaction with a membrane, Aβ can damage the bilayer
through a “carpeting effect” in which the amyloid disrupts
membrane integrity by covering its surface, it can exert
detergent-like effects, or amyloid peptides can self-organize into
transmembrane ion channels (Figure 1; Williams and Serpell,
2011; Cecchi and Stefani, 2013; Press-Sandler and Miller, 2018;
Sciacca et al., 2018). Due to the presence of different nucleation
centers, the nature of the lipid membrane determines the state
of the peptide, which is closely linked to the processes of Aβ

assembly and toxicity (Ding et al., 2012; Cecchi and Stefani,
2013; Pannuzzo, 2016; Bera et al., 2019; Qu et al., 2019).

Even pathophysiological amyloid concentrations in the brain
are too low to readily initiate self-aggregation (Hu et al.,
2009; Arbor et al., 2016). Therefore, hetero nucleation using
non-amyloid organizing centers must be at the beginning of
the aggregation process. The polar and charged N-terminal
region of Aβ binds to polar heads of membrane lipids, whereas
the hydrophobic C-terminal region is responsible for nonpolar
interactions with the hydrophobic zone containing cholesterol.
Although both parts are distinct, they can interact cooperatively,
especially in a hydrophilic/hydrophobic membrane environment
(Srivastava et al., 2019). Since the molecular arrangement of Aβ

strongly depends on the oligomerization process, the particular
structure of the nucleation centers, their membrane density
and distribution, and disease- or age-dependent alterations play
a crucial role in AD (Matsuzaki, 2014; Amaro et al., 2016;
Matsubara et al., 2017; Azouz et al., 2019; Srivastava et al., 2019).

In the Tg2576 transgenic mouse model of AD and in the
brains of AD patients, Aβ was highly concentrated in lipid rafts
along with ApoE and p-tau, suggesting that lipid rafts serve as
sites where external Aβ communicates with internal elements
involved in the pathology of AD (Kawarabayashi et al., 2004).
Brain membranes from naked mole rats rich in cholesterol
and lipid rafts were found to be more susceptible to Aβ-
mediated perturbations, but these long-lived animals showed
increased resistance to oxidative stress, which could also be
attributed to their highly organized and polyunsaturated fatty
acid (PUFA)-poor membranes (Frankel et al., 2020). When
Aβ42 is bound to rafts, it can be endocytosed but does not
reach lysosomes and accumulates intracellularly in neurons.
In contrast, lowering cholesterol levels with squalestatin was
connected with a decreased association of Aβ42 with rafts and
increased lysosomal degradation of amyloid peptide (Simmons
et al., 2014). An atomic force microscopy (AFM) study of the
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FIGURE 1

Amyloid β-membrane interactions. Amyloid β interacts with the plasma membrane in different ways, leading to disruption of cell homeostasis. Aβ

exists in a disordered state (in the center) or can change its conformation to an α-helical or β-sheet containing form after contact with membrane
lipids (especially cholesterol-rich lipid rafts), Aβ binds to the surface of the bilayer and destabilizes the membrane by a carpeting effect (1), or it may
act as a detergent (2). In addition, the membrane may serve as a platform for aggregation of Aβ in its most harmful β-sheet-rich conformation (3).
Under certain conditions, with or without the help of cholesterol, Aβ self-organizes into an α-helical (4) or β-barrel (5) transmembrane pore that
is often selective for calcium ions. Changing cholesterol content and leaflet distribution may cause Aβ to transition from the surface-bound to
the transmembrane form and vice-versa (not shown). Red—amyloid β, yellow—membrane lipids, purple—cholesterol. The scheme was prepared
according to Eckert et al. (2001), Yip et al. (2002), D’Errico et al. (2008), Abramov et al. (2011), Zhao et al. (2011), Drolle et al. (2012), Yu and Zheng
(2012), Fantini et al. (2014), Seghezza et al. (2014), Brown and Bevan (2016), Press-Sandler and Miller (2018), Staneva et al. (2018), Fabiani and
Antollini (2019), Qu et al. (2019), and Banerjee et al. (2021).

Lo/Ld (liquid-disordered) membrane model observed specific
targeting of Aβ to the disordered phase, but specifically to the
boundaries between Ld and Lo. These boundaries represent sites
of higher hydrophobic mismatch and lower stability that may
help Aβ mediate its neurotoxic defects (Azouz et al., 2019).

Amyloid β-cholesterol interactions

The interaction of Aβ with cholesterol in the PM and
lipid rafts plays a role in Aβ seeding, aggregation, and toxicity
(Mizuno et al., 1999; Yanagisawa, 2005; Schneider et al.,
2006; Qiu et al., 2009). The binding of Aβ to cholesterol
has been observed in senile plaques in the brain, where
cholesterol accumulated along with ApoE (Panchal et al., 2010).
Molecular dynamics (MD) simulations led to the conclusion
that cholesterol facilitates Aβ membrane binding by making the

interaction more energetically favorable. Cholesterol increases
surface hydrophobicity, promotes more ordered lipid packing,
and reduces lipid mobility. Then, Aβ binds preferentially to the
cholesterol-rich regions of the artificial lipid bilayers (Yu and
Zheng, 2012).

Studies on model membranes have shown that Aβ interacts
only with lipid layers containing cholesterol (Avdulov et al.,
1997; Henry et al., 2018). Small, but not large aggregates of
Aβ(25–35) interacted with a model lipid monolayer composed
of SM, 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), and
cholesterol (Cuco et al., 2016). The interaction was enhanced
under acidic conditions, which corresponds to endosomal
environment in which Aβ cytotoxic effects are expected to
occur after Aβ endocytosis (Hu et al., 2009; Cuco et al.,
2016). Depletion of cholesterol from the endosomal/lysosomal
compartment reduced Aβ toxicity and Aβ aggregation in
lysosomes of wild-type mice and AD model TgCRND8 mice
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(Yang et al., 2017). Lowering cholesterol level by 30% reduced
Aβ cytotoxicity and increasing cholesterol content by 30%
increased Aβ cytotoxicity in neuron-like PC12 cells. Association
of amyloid with cholesterol and GM1-rich raft membranes was
associated with Aβ aggregation, shift to a β-sheet-containing
form, and toxicity (Lin et al., 2008; Matsuzaki, 2011; Mori et al.,
2012).

It appears that cholesterol can promote or inhibit Aβ

aggregation at the membrane, affect the secondary structure of
amyloid and its ability to penetrate the bilayer (Williams and
Serpell, 2011; Yu and Zheng, 2012). Many factors influence the
outcome of the interaction: the molar ratio of lipid/cholesterol
in the cell membrane, the presence of anionic lipids, SM, and
gangliosides (especially GM1), lipid membrane ordering and
fluidity, the amyloid species, the extent of Aβ oligomerization,
the pH, the presence of other proteins or amyloid membrane
receptors (Yu and Zheng, 2012; Meleleo et al., 2013; Dies et al.,
2014; Amaro et al., 2016; West et al., 2017; Owen et al., 2018;
Carrotta et al., 2021; Smeralda et al., 2021; Wiatrak et al.,
2021). Moreover, physical parameters such as macromolecular
crowding or vesicle size and membrane curvature play a role
in Aβ–membrane interaction (Hirai et al., 2018; Terakawa
et al., 2018). Also, phosphorylation of Aβ42 affects amyloid
aggregation, interaction with the cholesterol-containing lipid
bilayer, and toxicity of the peptide (Jamasbi et al., 2017). It must
be emphasized that Aβ40 and Aβ42 differ significantly in their
interaction with membranes. Aβ42 exhibits a higher ability to
bind the bilayer or form Ca2+-selective transmembrane pores
and shows more complex behavior than Aβ40 (Yip et al., 2001;
Williams et al., 2010; Phan et al., 2013; Bode et al., 2017; Carrotta
et al., 2021).

Cholesterol supports the formation of
transmembrane Aβ pores

Amyloid β peptides have been shown to oligomerize
into ion-permeable transmembrane pores of varying structure,
composition, and permeability. Aβ42 oligomers are known to
adopt a β-sheet-rich structure in the presence of membrane
lipids and self-organize into transmembrane channels permeable
to calcium ions, which can cause cell death (Prangkio et al., 2012;
Arbor et al., 2016; Serra-Batiste et al., 2016; Lee et al., 2017; Julien
et al., 2018; Ciudad et al., 2020; Ruiz-Arias et al., 2020; Venko
et al., 2021).

Mass spectrometry and circular dichroism measurements
showed that cholesterol supported the incorporation of Aβ into
lipid vesicles. In contrast to the above results, Aβ incorporation
resulted in increased α-helicity of the Aβ peptide. However,
under cholesterol-depleted conditions, most of Aβ40 on the
vesicle surface remained in a β-sheet-rich, aggregation-prone
conformation (Ji et al., 2002). Cholesterol also induced α-helical
Aβ topology in transmembrane annular octameric channels, as

shown in MD simulations and SH-SY5Y cell culture studies (Di
Scala et al., 2014, 2016). In Aβ, the linear sequence of amino acids
22–35 is a functional cholesterol-binding domain that is unusual
in that it does not contain the aromatic residues common in
other cholesterol-binding protein domains. The Aβ–cholesterol
interaction may promote Aβ incorporation and the formation of
α-helical amyloid pores in cholesterol-rich lipid rafts (Di Scala
et al., 2013).

In another study, Aβ40 aggregated on a bilayer surface
containing SM but could insert into the artificial membrane
only in the presence of cholesterol (Devanathan et al., 2006).
Also, Aβ–monolayer interaction experiments and an MD-based
study showed that the oligomerization process of Aβ42 and
Aβ25–35 peptides in calcium-permeable pores was cholesterol-
dependent. Bexarotene blocked the formation of Aβ-channels
by preventing the binding between cholesterol and amyloid
peptides (Fantini et al., 2014). Astrocytes were found to
contain a higher amount of cholesterol in their PM than
neurons, which was associated with a higher extent of Aβ

incorporation into membranes and increased calcium influx
into cells (Abramov et al., 2011; Angelova and Abramov,
2017). Cholesterol affects Aβ conformation and aggregation
through both direct interaction and modulation of membrane
structure, as described in the study of calcium-permissive
amyloid membrane pore formation (Kandel et al., 2019).

Cholesterol impedes Aβ incorporation
into the bilayer but promotes Aβ binding
at the membrane surface

The presence of cholesterol has been demonstrated to inhibit
Aβ association with the membrane and stabilize membranes (Yip
et al., 2001; Phan et al., 2013). In the MD model, cholesterol
blocks amyloid pore formation by binding to Aβ42 (Zhao
et al., 2011). Cholesterol may have a protective effect on Aβ

action, as higher cholesterol levels have been associated with
increased membrane ordering and rigidity, which is connected
with a reduced ability of amyloid to enter the bilayer and alter
membrane properties (Eckert et al., 2001; Seghezza et al., 2014;
Staneva et al., 2018; Fabiani and Antollini, 2019).

Besides affecting the incorporation into the bilayer,
cholesterol may also determine the binding of amyloid to the
membrane surface. Increased cholesterol resulted in increased
binding of Aβ42 to the membrane surface in planar bilayers
composed of different brain lipids, which was not associated
with bilayer disruption (Yip et al., 2002). Cholesterol-containing
lipid membranes promoted Aβ42 aggregation up to 20-fold
through a surface-catalyzed nucleation process (Habchi et al.,
2018).

MD simulations of Aβ42 tetramer binding to pure
POPC or cholesterol-rich raft model membranes showed that
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cholesterol modulates Aβ fibril formation by reducing the
extent of Aβ42 tetramer insertion into the bilayer and inducing
intermolecular rearrangement of amyloid oligomers (Brown
and Bevan, 2016). AFM visualization and MD simulations
demonstrated that cholesterol in the lipid bilayer significantly
increased Aβ42 surface aggregation, but not membrane
penetration, at monomer concentrations as low as nM. These
results suggest the importance of membrane lipids for the
local concentration, clustering, and conformation change of
Aβ into a β-structure-rich form of amyloid peptides (Drolle
et al., 2012; Qu et al., 2019; Banerjee et al., 2021). It is
speculated that the AD-associated elevation of cholesterol levels
in the PM may increase the likelihood of membrane-dependent
Aβ42 aggregation (Banerjee et al., 2021).

Aβ(25–35) was able to intercalate into the lipid bilayer only
in the absence of cholesterol. When cholesterol was added,
the monomers of the amyloid peptide were excluded from the
bilayer (Dante et al., 2006). Electron paramagnetic resonance
(EPR) spectroscopy analysis revealed a dual effect of cholesterol
on the Aβ(25–35)-membrane interaction. Low cholesterol
content favors penetration of the Aβ(25–35) peptide into the
membrane, resulting in membrane stiffening and redistribution
of cholesterol into the outer leaflet of the membrane. However,
when cholesterol was enriched or redistributed into the outer
leaflet, the rigid lipid raft-like membrane prevented the amyloid
peptide from entering the bilayer (D’Errico et al., 2008).
This result is consistent with the fact that raft composition,
cholesterol amount, and distribution change during aging or
neurodegeneration, as mentioned previously (Wood et al., 1984,
1990, 2002; Igbavboa et al., 1996; Eckert et al., 2001; Diaz et al.,
2018).

Protective role of cholesterol in
Aβ-induced toxicity

As indicated above, cholesterol can protect cells from
Aβ-induced membrane perturbations and cytotoxic effects
(Figure 2). Increasing cholesterol levels in lysosomes led to
decreased ROS production, decreased Aβ accumulation in the
lysosomal compartment, and increased membrane stability (Oku
et al., 2017). An atomistic MD simulation revealed a protective
role of cholesterol in preventing membrane surface-induced
amyloid-β sheet formation and Aβ42-induced bilayer disruption
(Qiu et al., 2011). Enrichment of PC12 cells with cholesterol
made the cells resistant to the calcium-mediated cytotoxic effect
of Aβ, whereas reduction of membrane cholesterol enhanced
the harmful effect of amyloid (Arispe and Doh, 2002). Similar
results were obtained in experiments with fibroblasts isolated
from familiar AD patients, rat brain cortical neurons, and
SH-SY5Y neuroblastoma cells. There, increasing cholesterol
levels decreased Aβ assembly into membrane-perturbating
Ca2+-selective channels (Evangelisti et al., 2014). Using EPR

and circular dichroism spectroscopy Curtain et al. found that
membrane cholesterol reduced the ability of Aβ to enter the lipid
bilayer and organize itself into α-helical transmembrane pores.
However, Aβ that could not insert into the bilayer formed β-
sheet structures on the membrane surface (Curtain et al., 2003).
Based on results in cultured hippocampal neurons, Fernandez-
Perez et al. (2018) proposed a model in which cholesterol plays
a neuroprotective role. An increase in membrane cholesterol
content prevents Aβ from incorporating into the bilayer and
disrupting cellular homeostasis, while the peptide remains
aggregated on the cell surface in large, nontoxic clusters. On
the other hand, the amyloid peptide formed toxic membrane
pores after cellular cholesterol levels were lowered by methyl-β-
cyclodextrin (Fernandez-Perez et al., 2018).

Model membranes composed of POPC yielded a similar
result: cholesterol decreased Aβ nucleation but promoted
fibrilization on existing Aβ clusters. Moreover, a decrease
in cholesterol level enhanced the association of Aβ42 with
T-cell membranes. Increasing cholesterol levels in model
membranes suppressed Aβ42-Ld interaction but enhanced
Aβ42-Lo association, albeit to a lesser extent than Aβ42-Ld
under lower cholesterol concentration conditions (Phan et al.,
2014, 2018).

Another mechanism of the protective effect of membrane
sterols may lie in the variability of ion selectivity of Aβ42-
formed pores. The channels formed in the presence of oxidized
cholesterol were anion-selective. Thus, oxysterols may serve as a
protective mechanism against calcium-permeable pores formed
by Aβ in model membranes and physiological membranes of
cellular origin (Meleleo et al., 2013; Bode et al., 2017). The
formation of Aβ40 channel assisted by oxysterols may also
provide a protective mechanism against Aβfibrilization at the
membrane surface (Micelli et al., 2004). Another mechanism has
been proposed for metal ion-mediated amyloid toxicity. Hg2+

(and Pb2+) ions bind Aβ, which promotes β-structure formation
and peptide aggregation. At the same time, the metals inhibit
the interaction of Aβ with cholesterol, which otherwise traps the
amyloid peptide in a nontoxic form in the membrane (Meleleo
et al., 2019).

Amyloid β affects membrane ordering
and fluidity

The incorporation of amyloid aggregates resulted in
membrane thinning and was accompanied by a 0.2 nm outward
shift of the sterols and functional alterations in membrane
lipid order (Ashley et al., 2006). In model systems, a strong
association of Aβ42 with negative membrane lipids, including
phospholipids, leads to membrane thinning related to Aβ

aggregation and toxicity (Dong et al., 2017). Aβ(25–35) added
to model membranes rich in anionic lipids displaced cholesterol
molecules from the bilayer (Dies et al., 2014). A study performed
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FIGURE 2

Mechanisms of cholesterol-mediated protection against amyloid β toxicity. (A) Left: under cholesterol-deficient conditions, amyloid β (Aβ)
penetrates the membrane and aggregates in calcium-selective pores, leading to calcium dyshomeostasis and cytotoxicity. Right: cholesterol-
induced rigidization of the membrane prevents amyloid peptide from entering the bilayer. (B) Another mechanism designates cholesterol as a lipid
that reduces the ability of Aβ to bind the membrane. (C) A cholesterol-rich membrane (which may also contain oxysterols) retains Aβ peptides in a
transmembrane (TM), non-toxic form. At low cholesterol levels, Aβ can self-organize into toxic aggregates at the membrane surface. (D) Aβ forms
calcium-selective TM channels when the bilayer has low cholesterol content, whereas high cholesterol concentration induces the formation of
non-toxic, anion-selective pores. Red—amyloid β, yellow—membrane lipids, purple—cholesterol, pink—oxysterol, blue—calcium influx into the
cytosol. The scheme was prepared according to Arispe and Doh (2002), Curtain et al. (2003), Micelli et al. (2004), Qiu et al. (2009), Qiu et al.
(2011), Meleleo et al. (2013), Evangelisti et al. (2014), Phan et al. (2014, 2018), Bode et al. (2017), Fernandez-Perez et al. (2018), and Meleleo et al.
(2019).

on living cells showed that Aβ40 interacts with GM1 and
decreases bilayer fluidity, whereupon β-secretase accelerates
proteolytic cleavage of APP. This leads to a positive feedback
loop in which Aβ stimulates its own production (Peters et al.,
2009). In an MD-based study, polar Aβ residues, including Arg5,
intercalated into the layer of polar lipid groups that stiffen the
membrane. However, cholesterol and GM1 attenuated the extent
of the perturbation and reduced the effect of Aβ42 on the model
membrane (Brown and Bevan, 2017).

Cerebellar membranes were found to be more fluid
and contain less cholesterol than cortex and hippocampus
membranes, which were more susceptible to Aβ-induced
destabilization. There, Aβ40 had a fluidization effect that
was more pronounced in cholesterol-rich hippocampal and
cerebral membranes (Chochina et al., 2001). Anionic artificial
membranes containing 30%–40% cholesterol bound Aβ42,
but this interaction was followed by increased cholesterol
solubilization and decreased cholesterol plaque formation
(Barrett et al., 2015). In model bilayers, Aβ bound to the
rigid gel phase in the absence of relevant cholesterol content,
whereas increasing cholesterol concentration to physiological
levels resulted in decreased Aβ-membrane interaction and

reduced membrane thinning and disturbances induced by
amyloid (Choucair et al., 2007; Seghezza et al., 2014). Another
study showed that after cholesterol depletion, the more fluid
membranes were more sensitive to Aβ42-induced stabilization
of lipid head interaction, resulting in membrane rigidization (Yip
et al., 2002). Large unilamellar vesicles containing cholesterol
and GM1 were stiffened by interaction with Aβ, which may
have consequences for signal transduction and other processes
that depend on the lipid raft environment (Hirai et al., 2013).
In an MD simulation experiment, Aβ42 caused membrane
perturbation through a carpeting effect connected with the
formation of a more rigid, gel-like lipid phase; however, this
effect was attenuated in the presence of cholesterol (Brown and
Bevan, 2017).

Aβ bound to the non-raft Ld phase of model lipid bilayers,
where Aβ, when GM1 was present, caused thickening and
rigidization of the membrane. But when GM1 was absent in
the Ld phase, a decrease in packing and thickness was observed
(Staneva et al., 2018). These data show a strong dependence
of amyloid-mediated effects on membrane composition, which
must always be taken into account. Moreover, in SH-SY5Y
neuroblastoma cells, Aβ42 induced thinning of rafts that altered
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their physicochemical properties and membrane perturbations
only in more fluid, cholesterol-depleted membranes, indicating
a protective effect of cholesterol against Aβ42 toxicity (Cecchi
et al., 2009).

Controversy about cholesterol-mediated
protection against Aβ adverse effects

There are many data suggesting a protective role of
cholesterol, but close attention must be paid to the precise
arrangement of the experiments. In most studies, only
Aβ monomers, truncated amyloid peptides, and artificial
membranes lacking many important components, e.g., SM,
gangliosides, or proteins, were analyzed (Avdulov et al., 1997;
Dante et al., 2006; D’Errico et al., 2008; Qiu et al., 2011; Dies
et al., 2014; Fantini et al., 2014; Brown and Bevan, 2016, 2017;
Cuco et al., 2016). Moreover, the model membrane usually
represents a nonphysiological phase arrangement, including
gel-like anionic lipid bilayers (Dies et al., 2014). Since Aβ(25–35)
contains only 11 amino acids, the preference for the thinner
Ld membrane and the toxic effect exerted by the formation
of β-sheet-rich ion channels only in this bilayer could be
a consequence of the insufficient length of the peptide for
spanning thicker membrane containing cholesterol (Lin and
Kagan, 2002; Dante et al., 2006). In a study by Arispe and Doh
(2002), Aβ toxicity was measured as a change in Ca2+ balance
associated with the formation of transmembrane ion channels
from the amyloid peptide. Nevertheless, when cholesterol was
increased, Aβ was excluded from the membrane interior.
Then, Aβ could remain on the surface of the bilayer in the
toxic β-sheet-rich conformation, contradicting the protective
role of cholesterol in Aβ-induced neurodegeneration when
measured only as a level of calcium dyshomeostasis (Arispe
and Doh, 2002; Curtain et al., 2003). In this context, it is
important to emphasize that Aβ mediates its neurotoxicity in
both transmembrane and surface-bound form. This suggests
a high degree of complexity in the effects mediated by the
cholesterol-Aβ interaction. This was demonstrated in a study by
Liu R. Q. et al. (2015), in which cholesterol depletion in human
SK-N-SH neuroblastoma cells led to decreased Aβ membrane
incorporation and Ca2+-permeable channel formation, but
also decreased Aβ degradation, increased Aβ aggregation and
adsorption to the membrane, which was associated with higher
amyloid toxicity (Liu R. Q. et al., 2015).

Cholesterol distribution in the membrane
bilayer affects Aβ behavior

A model shows that depletion of cholesterol from the
exofacial leaflet and increased cholesterol content in the
cytofacial leaflet thermodynamically favor membrane retention

of a fully embedded Aβ peptide with an α-helical conformation.
However, when cholesterol concentration decreases in the
cytofacial leaflet and increases in the exofacial layer, which
is typical of aging or AD and ApoE4-knock-in mouse
synaptosomes (Wood et al., 1984, 1990, 2002; Igbavboa et al.,
1996; Hayashi et al., 2002; Yanagisawa, 2005), the peptide loses
the α-helicity and extrudes its reactive N-terminus into the
extracellular space, which can lead to deleterious aggregation.
Moreover, at very low membrane cholesterol, all Aβ is excluded
from the bilayer and concentrates on the membrane surface
(Liguori et al., 2013). MD simulations have shown that
asymmetric cholesterol distribution in the Ld phase is associated
with aggregation of Aβ monomers into membrane-spanning
oligomers and bending of the bilayer, leading to vesiculation. In
contrast, increased Lo phase rigidity causes Aβ to move toward
the membrane-water interface (Pannuzzo, 2016).

AFM measurements revealed complex effects of cholesterol
content on Aβ ion channel formation. Aβ42 is organized into
ion channel structures in an artificial lipid bilayer with 15%
cholesterol but not with 50% cholesterol or without cholesterol
(Gao et al., 2020). This suggests a strong dependence of
amyloid toxicity on cholesterol content, but the presence of
other amyloid-binding partners, including membrane lipids and
proteins must also be considered.

The involvement of other lipids

Alterations in membrane lipids in AD

Cellular and especially neuronal membranes are complex
structures, whose composition defines their function that is
significantly affected by Aβ action. Although it is difficult to
find the key factors responsible for amyloid-induced neuronal
damage, it is certain that lipid ordering and membrane viscosity
play important roles in both the amyloidogenic processing of
APP and the toxic effects of Aβ (Cordy et al., 2003; Kalvodova
et al., 2005; Osenkowski et al., 2008; Martín et al., 2010; Hicks
et al., 2012; Fernandez-Perez et al., 2018; Srivastava et al., 2019).
In this regard, fatty acids, sphingolipids, and cholesterol are
the main players that, in addition to their general effect on
membrane fluidity, show the ability to interact specifically with
Aβ and contribute to the resulting action of this malignant
peptide. In addition to cholesterol and sphingolipids, other
lipids also play a role in AD pathogenesis, e.g., alterations in
brain fatty acids including PUFAs, plasmalogens, sulfolipids,
or phosphoinositides have been found (Farooqui et al., 1997;
Martín et al., 2010; Fabelo et al., 2012, 2014; Cheng H. et al.,
2013; Naudi et al., 2015; Marin et al., 2017; Emre et al., 2021).
In particular, the highly polyunsaturated docosahexaenoic acid
shows a protective effect against AD in model systems, not
only because of its ability to affect membrane fluidity but also
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by serving as a substrate for the formation of pro-survival and
anti-inflammatory products (Hashimoto et al., 2011; Yang et al.,
2011; Janickova et al., 2015; Belkouch et al., 2016; Zhang et al.,
2018; Huang et al., 2019). However, it is not clear whether
changes in the fatty acid and lipid composition of neuronal
membranes are the cause or corollary of AD-associated brain
deterioration.

Cholesterol and GM1 cooperate in
mediating Aβ neurotoxicity

Although cholesterol plays an important role, gangliosides,
the sialic acid-containing sphingolipids, may serve as the
fundamental Aβ-membrane interaction platform on which the
monomeric form of Aβ self-aggregates into Aβ oligomers (Kim
et al., 2006; Mao et al., 2010; Matsubara et al., 2017; Ahyayauch
et al., 2020; Fantini et al., 2020; Rudajev and Novotny, 2020). In
AD brains, GM1 and cholesterol have been shown to accumulate
in nerve terminals where Aβ is concentrated (Gylys et al., 2007).
Yanagisawa et al. observed the binding of Aβ to GM1 clusters
that were dependent on cholesterol-induced GM1 aggregation.
The authors concluded that microdomains rich in GM1 and
cholesterol may be the site where Aβ accumulates and exerts
its neurotoxic effects (Yanagisawa, 2005; Matsubara et al.,
2017). Toxic, β-sheet-rich amyloid fibrils formed only when
Aβ interacted with GM1- and cholesterol-rich membranes, but
not in solution, or when the membrane lacked cholesterol and
cholesterol-dependent lipid rafts (Okada et al., 2008; Matsuzaki,
2014; Ahyayauch et al., 2020).

Both Aβ40 and Aβ42 bound to cholesterol-dependent
GM1 clusters and underwent a conformational transition
from an α-helix-rich structure to a β-sheet-rich amyloidogenic
conformation, but it was 10-fold more significant for Aβ42 than
for Aβ40 (Matsuzaki, 2011; Matsubara et al., 2018). During
early AD pathology, blockage of the endocytic pathway leads
to cholesterol-mediated GM1 accumulation in early endosomes,
where it serves as a platform for amyloid binding (Yuyama and
Yanagisawa, 2009).

If aging is associated with increased cholesterol levels in
synaptosomal membranes (Igbavboa et al., 1996) and more
rigid lipid rafts (Martín et al., 2010; Fabelo et al., 2014;
Diaz et al., 2015, 2018), age-related increased GM1 clustering
could be a risk factor for the development of AD (Matsuzaki,
2014). Intense interactions between Aβ42 and cholesterol-
containing GM1 clusters were key to accelerating Aβ fibrilization
in exosome-like vesicles (Dai et al., 2020). Depletion of
cholesterol and gangliosides significantly reduced Aβ-induced
toxicity in both PC12 and SH-SY5Y cell lines (Wang et al.,
2001). Isothermal titration calorimetry and Langmuir balance
showed pronounced binding of Aβ42 monomers and oligomers
and their incorporation into artificial model membranes
composed of phospholipids, SM, cholesterol, and various types

of gangliosides, including GM1. This interaction was followed
by GM1- and cholesterol-dependent membrane destruction
(Nicastro et al., 2016; Ahyayauch et al., 2021). Raman
spectroscopy of GM1/SM/cholesterol-supported planar lipid
bilayers tracked the binding of Aβ40 to the GM1-containing
membrane, leading to membrane disruption. The N-terminus
of Aβ40 remained in the vicinity of the polar lipid head
groups, whereas the C-terminal fragment was inserted into
the bilayer. During a 24-h incubation, the Aβ40 aggregated
and changed its conformation from a random coil through
an α-helix to a β-sheet structure (Hu et al., 2015). Increasing
GM1 and cholesterol content in lipid bilayers facilitated Aβ

binding to membranes. After binding to cholesterol-dependent
GM1 clusters, Aβ underwent a conformational change from
helix-rich to β-sheet-rich structures (Kakio et al., 2001). Hence,
elevated cholesterol levels during aging could be a risk factor
for Aβ toxicity in AD because amyloid concentration on lipid
and protein platforms leads to peptide aggregation into the most
toxic β-sheet-rich forms (Matsuzaki and Horikiri, 1999; Kakio
et al., 2001, 2002; Rudajev and Novotny, 2020).

Amyloid peptides contain binding sites for both cholesterol
and GM1. The Aβ-membrane interaction begins with the
formation of electrostatic interactions of the basic amyloid
residues with the negative charge of sialic acid on gangliosides,
whereupon the peptide inserts into the hydrophobic zone
of the bilayer with the help of cholesterol molecules.
Then, Ca2+-permeable pore formation may occur (Lin
et al., 2008; Di Scala et al., 2016; Venko et al., 2021). In
another study, Aβ monomers bound to raft-like dipalmitoyl-
PC:Chol:GM1 membranes and were incorporated into the
bilayer only when both GM1 and cholesterol were present.
In cholesterol-free DPPC:GM1 membranes, nascent Aβ binds
to surface portions of gangliosides but does not penetrate
the membrane (Rondelli et al., 2020). The concentration of
GM1 and cholesterol in lipid rafts significantly increase the
local density of amyloid-binding receptors, which can affect the
secondary, tertiary, and quaternary conformation of amyloid
(Fantini and Yahi, 2010). MD-based modeling has demonstrated
that cholesterol can change the orientation of the polar heads
of glycosphingolipids (GSL), which has a major impact on the
Aβ-lipid interaction (Figure 3). The OH group of cholesterol
forms an H-bond with galactose, which stabilizes the polar
group of a GSL in a position parallel to the bilayer. If the polar
group of a GSL is not stabilized in this parallel orientation, its
ability to interact with Aβ is significantly reduced (Yahi et al.,
2010).

The role of membrane lipid composition
in Aβ binding and toxicity

Fluorescence correlation spectroscopy and MD studies
showed a strong dependence of Aβ40 aggregation on SM and
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FIGURE 3

Cholesterol-dependent GM1 clustering and Aβ-membrane
binding. Ganglioside GM1 was found to form membrane clusters
in a cholesterol-dependent manner. Aggregated GM1 exists in
a different spatial configuration that favors Aβ binding. With its
-OH group, cholesterol forms a hydrogen bond with a sugar
moiety of the polar group of the ganglioside, which positions it
parallel to the membrane. When not bound to cholesterol, the
polar head of the lipid is less able to interact with the amyloid
peptide (dashed arrow). Red—amyloid β, yellow—membrane
lipids, purple—cholesterol, blue—sugars in GM1 polar head,
green—sialic acid. The scheme was prepared according to Yahi
et al. (2010) and Matsuzaki (2014).

GM1 concentration but not on cholesterol content (Amaro
et al., 2016). SM has been proposed as a factor inducing
the formation of surface-localized, β-sheet-rich toxic amyloid
aggregates by reducing bilayer fluidity, as Aβ does not readily
enter into the rigid bilayer formed by SM (Owen et al., 2018).
Amaro et al. (2016) suggested that the Ld phase represents
the physiological state in which Lo phase is absent. However,
this is in stark contrast to a variety of other studies as well
as the fact that cellular membranes are a mixture of lipids
and proteins that stabilize Lo membrane domains (Anderson
and Jacobson, 2002; Molander-Melin et al., 2005; Lingwood
and Simons, 2010; Martín et al., 2010; Rushworth and Hooper,
2010; Hicks et al., 2012; Fabelo et al., 2014; Diaz et al., 2015;
Arbor et al., 2016). Moreover, there is a difference in the
interaction of Aβ40 and Aβ42 with membranes, as Aβ42, but not
Aβ40, bound to Ld-phase liposomes formed from 1-palmitoyl-
2-oleoylphosphatidylserine, POPC, and 15% cholesterol. The
addition of SM led to the formation of Lo phase and increased
Aβ40- but decreased Aβ42-membrane association (Carrotta
et al., 2021). Fluorescence colocalization experiments on lipid
vesicles revealed that Aβ42 was preferentially bound to and
incorporated into the Ld phase. However, when GM1 was
present, ganglioside reduced Aβ42 penetration by sequestering
it to the polar head surface (Staneva et al., 2018).

In the AFM study, no interaction between Aβ42 and
cholesterol itself was detected, but the simultaneous presence
of ganglioside GM1 and cholesterol promoted oligomeric
Aβ42 membrane binding and rapid destruction of the bilayer by
a detergent effect. Thus, the formation of cholesterol-dependent
GM1 clusters and the acceleration of GM1-Aβ42 cluster

assembly may represent a mechanism of cholesterol-induced
amyloid toxicity (Williams and Serpell, 2011; Ewald et al., 2019).

In addition, the presence of GM1 or other factors may
drastically affect the resulting arrangement. According to many
studies (Arispe and Doh, 2002; Curtain et al., 2003; Qiu et al.,
2011; Evangelisti et al., 2014; Fernandez-Perez et al., 2018),
cholesterol can play a protective role, but in combination with
GM1, it becomes a toxicity-promoting agent (Matsuzaki and
Horikiri, 1999; Kakio et al., 2001, 2002; Yanagisawa, 2005;
Nicastro et al., 2016; Matsubara et al., 2018). Similarly, GM1 is
known to be a neuroprotective molecule (Svennerholm, 1994;
Svennerholm et al., 2002; Sokolova et al., 2007) but cholesterol-
induced GM1 aggregation is responsible for its negative effect in
AD-related neurodegeneration (Matsuzaki and Horikiri, 1999;
Kakio et al., 2001, 2002; Yanagisawa, 2005; Bucciantini et al.,
2014; Nicastro et al., 2016; Matsubara et al., 2018). Moreover,
since amyloid peptides can bind to membranes with an artificial
composition including simple phospholipids and without SM,
GM1, or cholesterol (Dante et al., 2006; Brown and Bevan, 2016,
2017; Pannuzzo, 2016; Jamasbi et al., 2017; Karimi et al., 2019),
it is very complicated to establish a realistic description of Aβ

effects on physiological neuronal membranes.

Conclusion

Cholesterol is one of the most ubiquitous lipid molecules in
neurons, making it a potent modulator of cellular processes. This
unique molecule accounts for up to 30% of the lipid molecules in
the plasma membrane. It is therefore not surprising that most
of the proteins and processes that take place in the PM are
more or less dependent on cholesterol. This effect is underlined
by the fact that cholesterol is responsible for the formation of
lipid rafts, where many vital functions of the cell are localized
and regulated. On the other hand, in Alzheimer’s disease, Aβ

peptides are produced primarily as soluble molecules, and their
association with cholesterol may represent a highly pathological
event.

In the context of AD, cholesterol plays many roles.
Cholesterol may be one of the protective mechanisms that
strongly influence Aβ-membrane interaction and Aβ-induced
bilayer disruption. Similarly, cholesterol may enhance the toxic
effect of amyloid, as shown in many studies. The deleterious
effect of cholesterol is associated with the localization of
amyloidogenic APP processing in cholesterol-rich lipid rafts.
Therefore, the precise cholesterol distribution within cell
membranes, including various organelles or lipid rafts, may have
implications for AD-related amyloid pathology. The distribution
of cholesterol depends not only on its synthesis but also on
intercellular and intracellular transport mediated by ApoE,
ABC-transporters, receptors for lipoproteins, and cholesterol-
modifying enzymes such as acyl-coenzyme A: cholesterol
acyltransferases (ACATs) or cholesterol oxidases.
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Since some authors have not confirmed the necessity of
cholesterol for Aβ-membrane interaction (Kim et al., 2006;
Amaro et al., 2016; Karimi et al., 2019), this suggests a strong
dependence of the amyloid effect on the specific membrane
composition. Because studies on the consequences of Aβ-
cholesterol interaction provide conflicting results, one of the
possible explanations could be that different amyloid forms, e.g.,
monomers, small oligomers, or larger aggregates of globular
or fibrillar shape may behave differently. In several studies,
cholesterol has been found to promote or hinder Aβ-membrane
incorporation, which is often associated with the formation
of calcium-permeable pores (Fabiani and Antollini, 2019). On
the other hand, cholesterol-assisted incorporation of amyloid
monomer into the membrane may reduce amyloid toxicity
mediated by Aβ aggregation at the membrane surface (Qiu et al.,
2009). Furthermore, as mentioned above, there are differences
between Aβ40 and Aβ42 in their ability to bind to the membrane
and cause cytotoxicity. Albeit also toxic, the truncated version
Aβ(25–35) is often used, but it is very likely that this amyloid
form exhibits different behavior than native amyloid peptides.

The specific lipid environment has a dramatic effect on the
cholesterol-dependent binding and conformation of amyloid.
This fact is extremely important when considering the results
of MD studies or model membranes that use nonphysiological
and artificial lipid ratios and often omit many lipids completely,
including the highly variable sphingolipids. Therefore, MD
simulations, studies on model membranes, and various in vitro
and in vivo experiments may yield conflicting results (Avdulov
et al., 1997; Qiu et al., 2011; Yu and Zheng, 2012; Dies et al.,
2014; Fantini et al., 2014; Liu R. Q. et al., 2015; Amaro et al.,
2016; Nicastro et al., 2016; Pannuzzo, 2016; Brown and Bevan,
2017; Henry et al., 2018; Staneva et al., 2018; Azouz et al.,
2019; Ahyayauch et al., 2021). In addition to the specific lipid
composition, membrane proteins also serve as Aβ receptors
and their function is usually cholesterol-dependent, directly
or indirectly through their association with membrane lipid
rafts (Chen et al., 2017; Wiatrak et al., 2021). Nevertheless,
the proteins are largely excluded from studies on amyloid-lipid
membrane interactions, even though they essential contribute
significantly to lipid raft formation by sequestering cholesterol
with their cholesterol-binding domains (Lingwood and Simons,
2010; Grouleff et al., 2015; Fantini et al., 2016).

Although the role of cholesterol in AD pathology can
hardly be disputed, the exact conclusion has yet to be drawn.
The above-mentioned results of multiple studies indicate a
strong dependence of the effect mediated by the cholesterol-
Aβ interaction on all the players influencing cellular cholesterol
levels and distribution, the lipid composition in the Aβ

neighborhood, and the overall cellular context as well as the
spatial arrangement of the amyloid itself. Even small changes
in any of these parameters, including increases or decreases
in the concentration of amyloid and cholesterol, gangliosides,
sphingomyelin, or PUFA that occur during aging, can lead to

shifts in the balance of Aβ production, degradation, export,
oligomerization, and membrane binding. It must be reiterated
that Aβ is an inherently unstable molecule whose conformation
is highly dependent on the environment. It is therefore not
surprising that any change in physiological conditions can lead
to increased amyloid aggregation in the most toxic species and
the development of AD.

In future studies, detailed and sophisticated analyses of
complexes containing Aβ and specific membrane environments
are in great demand. On the other hand, it is very complicated
to perform such studies on human brains because they are
not accessible for molecular analyses until after the death of
the patient, when brain structure and function are altered to
an extent that does not correspond to the earlier stages of the
disease. Because of the somewhat different lipid composition
in their brains, animal models can only provide us with
partial information. Therefore, neural stem cells and brain
organoids can help us uncover the mechanisms responsible for
Aβ aggregating into the toxic forms upon contact with cell
membranes and give us answers to the question of why the
disease begins to develop in certain parts of the brain under
certain circumstances.
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