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Abstract

Background

Targeting interventions to areas that have recently experienced cases of disease is one

strategy to contain outbreaks of infectious disease. Such case-area targeted interventions

(CATI) have become an increasingly popular approach for dengue control but there is little

evidence to suggest how precisely targeted or how recent cases need to be, to mount an

effective response. The growing interest in the development of prophylactic and therapeutic

drugs for dengue has also given new relevance for CATI strategies to interrupt transmission

or deliver early treatment.

Methods/Principal findings

Here we develop a patch-based mathematical model of spatial dengue spread and fit it to

spatiotemporal datasets from Singapore. Simulations from this model suggest CATI strate-

gies could be effective, particularly if used in lower density areas. To maximise effective-

ness, increasing the size of the radius around an index case should be prioritised even if it

results in delays in the intervention being applied. This is partially because large intervention

radii ensure individuals receive multiple and regular rounds of drug dosing or vector control,

and thus boost overall coverage. Given equivalent efficacy, CATIs using prophylactic drugs

are predicted to be more effective than adult mosquito-killing vector control methods and

may even offer the possibility of interrupting individual chains of transmission if rapidly

deployed. CATI strategies quickly lose their effectiveness if baseline transmission increases

or case detection rates fall.
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Conclusions/Significance

These results suggest CATI strategies can play an important role in dengue control but are

likely to be most relevant for low transmission areas where high coverage of other non-reac-

tive interventions already exists. Controlled field trials are needed to assess the field efficacy

and practical constraints of large operational CATI strategies.

Author summary

In resource limited settings there is a pressing need for more efficient, more targeted ways

of controlling transmission and preventing outbreaks. One option is to use case-area tar-

geted interventions (CATI) that are focussed on areas that have recently reported disease

cases. The effectiveness of such CATI strategies is highly dependent on how the disease

spreads. Despite CATI strategies being widely used to control the vector-transmitted dis-

ease dengue, little evidence underpins its effectiveness.
In this analysis we formulate a mathematical model designed to test the effectiveness of

CATI strategies for dengue control in Singapore- a best case test scenario for the

approach. Simulation from this model suggested CATI are likely to be effective for den-

gue, but need to have large (250m+) radii around index cases and may not be suitable in

higher transmission areas.
These results, when combined with limited field evidence of efficacy, suggest that

CATI strategies are unlikely to be universally applicable dengue control tools. Only once

high coverage with other (non-reactive) interventions has been achieved and comprehen-

sive rapid disease surveillance has been established are CATI strategies likely to become

efficient methods of disease control.

Introduction

Dengue is a viral disease vectored by the Aedes aegypti mosquito that causes an estimated 100–

400 million infections per year worldwide [1, 2]. While most dengue virus (DENV) infections

only result in mild disease, the ubiquity of infection causes significant morbidity and fre-

quently overwhelms healthcare facilities. The arboviruses of chikungunya and Zika which are

also transmitted by the Aedes aegypti mosquito threaten to establish permanent transmission

cycles if current dengue outbreaks cannot be rapidly and effectively controlled.

No country has been able to permanently eliminate DENV transmission and focus has

shifted towards control and, in particular, preventing big outbreaks as early as possible [3].

One strategy recommended to achieve this is the use of case-area targeted interventions

(CATI), where interventions are targeted in and around (typically within 100m) the houses of

dengue patients after they present to healthcare facilities [3]. For dengue, these interventions

are currently restricted to vector control activities including fogging to kill adult mosquitoes

and source reduction to eliminate mosquito egg-laying habitat [4]. CATI strategies are becom-

ing increasingly popular given the need to optimise the use of limited vector control resources

and the challenges of sustaining area-wide control [5, 6]. However, the evidence-base for the

speed, scale and efficacy of response required for CATI strategies to contain a dengue outbreak

remains far from complete. The suggestion that the control radius should equal 100m is largely

based on maximum Ae. aegypti mosquito flight range estimates from mark-release-recapture

studies, which may not cover sufficiently large areas to properly document maximum dispersal

[6]. Such studies may also not be representative, and longer flight ranges (>300m) have been

documented [7]. In addition, there is strong evidence that urban spread of dengue is largely
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attributable to movement of infected humans [5, 8, 9] and response time recommendations

are based more on practical realities than quantitative estimates of likely effectiveness [3].

While no drug is currently used for dengue treatment or prevention, a range of short-acting

anti-viral compounds are in development that could protect against infection, reduce human

infectiousness and decrease the severity of disease [10]. Such prophylactic drugs could play a

key role in CATI strategies if their deployment can be optimised and appropriately combined

with vector control.

As dengue surveillance systems have become increasingly electronic and automated, there

is renewed interest in using real-time CATI strategies for dengue control. However, three fea-

tures of dengue epidemiology may limit the effectiveness. First, a high proportion of DENV

infections are not detected by routine surveillance systems [11], meaning foci of infection may

be missed. Second, index case cluster studies have shown that humans peak in infectiousness

at the time of, or just before, becoming symptomatic [12] meaning the response may be too

slow to prevent onwards transmission. Third, Ae. aegypti mosquitoes usually bite during the

day when people are more mobile, meaning the place of residence may not accurately predict

the location where they were infected.

No randomized control trials have been undertaken for CATI against adult Ae. aegypti [6],

but there is evidence to suggest that dengue infection is highly spatiotemporally clustered

either in the household or within the local area (up to 1km) [5, 13–15]. In the absence of locally

applicable field trials, mathematical models can be used to predict what effect response speed

and scale will have on the effectiveness of a CATI strategy and identify what role novel prophy-

lactic drugs could play in improving outbreak control. Two theoretical modelling studies of

spatially reactively targeted interventions (CATI) for outbreak control have been undertaken

for dengue [16, 17], but have only considered simplistic descriptions of human movements

between two patches, i.e. travel between work or home or between village and city. One more

detailed modelling study for chikungunya [18] suggests that the effectiveness of CATI is likely

to be highly sensitive to the proportion of symptomatic cases, which is known to be lower for

dengue [1, 19, 20]. Finally, one arbovirus transmission model has been recently used to com-

pare index case-targeted vector control with realistic human movements. This found that the

performance of CATI strategies is highly dependent on the human density of the area con-

cerned, but this analysis was limited to more spatially coarse neighbourhood-level analyses

[21]. None of these analyses have been formally validated in their ability to reproduce the

unique spatial clustering patterns of urban dengue outbreaks and no modelling analyses have

considered the potential use of prophylactic drugs for targeted outbreak control.

Here we test the potential effectiveness of vector control and prophylactic drug-based CATI

strategies for the control of dengue outbreaks and identify the operational speed and scale of

response required. For this, we use a spatially explicit dengue dataset describing a series of out-

breaks in Singapore between 2013–2016. Singapore has a robust vector control programme that

maintains low baseline transmission intensity, a strong case surveillance system that detects a

relatively high proportion of DENV infections in a timely manner and has readily available geo-

positioned dengue case data over multiple years to characterise transmission [22–24]. These

characteristics make such a location a best-case scenario for CATI strategies for dengue control.

Methods

Data

We used weekly data on the location of cases across Singapore for the time period May 2013 –

June 2016 as reported by the Singapore National Environment Agency (https://www.nea.gov.

sg/dengue-zika/dengue/dengue-clusters, S1 Fig). A total of 82,185 geopositioned suspected
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and confirmed cases occurred over this time period with peaks in early-to-mid 2013, 2014 and

2016. The data are available from [25], and as part of the DENSpatial R package (https://

github.com/obrady/SpatialDengue/releases/tag/V1.2).

To represent seasonal fluctuations in transmission intensity from the mosquito population,

data on adult mosquito abundance was obtained from the National Environment Agency

entomological surveillance programme over the same time period and is included as part of

the DENSpatial R package. The average weekly Gravitrap Aedes aegypti index (GAI–number

of female aegypti caught per functional trap) across 34 representative sentinel sites measures

seasonal abundance across Singapore (SI1.1) [26].

To generate high resolution population maps building-level data from OpenStreet (www.

openstreetmap.org) was combined with planning area-level population estimates from the Sin-

gapore department of Statistics 2020 population trends report [27]. Areas where humans do

not spend significant portions of time were excluded then information of build size and height

were extracted to use as a basis for apportioning planning-area level population counts (S1

Text). This population raster was then aggregated to 1km x 1km pixel level then rounded to

the nearest integer for all subsequent model-based analyses. This 1km x 1km patch size choice

was based on previous work that suggests dengue transmission in large outbreaks tends to be

highly spatially clustered up to 1km) [5, 13–15]. For clarity, this does while the model is imple-

mented on a 1km x 1km patch scale, the model is still able to track finer-scale transmission

events and intervention policies by assuming individuals homogeneous mix and that features

of the environment (mosquito population size and human immunity) are broadly similar at

sub 1km x 1km scales. We believe to be an acceptable approximation for assessing the effects

of CATI interventions during large outbreaks.

Model structure

The model used for this analysis is a spatially explicit patch based stochastic model. Within

each patch, humans are modelled in Susceptible, Infectious and Recovered compartments

(SIR) with infectiousness varying over time since becoming infected (Fig 1). We assume

humans peak in infectiousness at the timing of onset of symptoms (i.e., after completion of the

intrinsic incubation period (IIP)). Following the IIP they develop either apparent illness and

are detectable or remain inapparent until 8 days post symptom onset upon which they transi-

tion to the Recovered and immune compartment. Humans can also move to a temporarily

immune compartment (Rp) if treated with prophylactic drugs. Mosquitoes also have an addi-

tional exposed but not infectious compartment but with no recovery from infection (SEI). To

capture realistic time delays in transmission and detection, intrinsic (human) and extrinsic

(mosquito) incubation periods are included and infected humans can only be detected as

symptomatic cases after completing their IIP. We assume that all humans contribute to trans-

mission the same regardless of their symptoms or whether they were detected as cases.

Seasonal variation in transmission intensity is represented in our model using data from

weekly adult mosquito collections (GAI, see data section). Temporal variations in GAI over

the relevant time period were scaled to have a mean equal to one and a floor of 0.1 (assuming

transmission is possible even at the most unsuitable times of year) then was used to multiply

the transmission coefficient for the corresponding day of the year. We assume that outbreaks

occur in this setting due to a combination of seasonal effects and more permanent (up to 1

year) changes to local environments that increase human-mosquito contact rates, for example,

construction site development [22].

While transmission dynamics are modelled at the patch level, human populations are modelled

as continuously mobile, allocating their time to a number of patches including their home
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residence. Here we represent flow of humans between patches using three different movement

models: i) exponential, ii) gravity and iii) radiation to represent simple distance-based, source-

sink and structured commuting-type human movement behaviours respectively [28, 29] (equa-

tions in S2 Text). The choice of human movement model is estimated during the model fitting

procedure. We assume mosquitoes do not move between patches (patch size 1km x 1km) consis-

tent with the limited dispersal of the primary species vector in Singapore (Ae. aegypti) [22].

Despite the co-circulation of multiple serotypes in Singapore both past and present, the out-

breaks between 2013 and 2015 were predominantly due to DENV1 (70–90% of reported

cases), as were the majority of cases leading up to the period of interest with the exception of a

brief period of DENV2 circulation 2007–2012 [30, 31]. With a focus on only modelling the

dynamics of the outbreaks in question we assume only a single serotype model with sterilising

infection. Given the existence of temporary cross serotype immunity following recent infection

with any one dengue type and the predominance of one type, we would expect similar results

from a multi-serotype model over the short timeframe over which our model is focussed.

Fig 1. Mathematical model structure for each patch. Humans (h) and mosquitoes (m) are divided into susceptible (S), exposed (Mosquito-only, E), Infectious (I) and

recovered and immune (R) compartments. Humans can become temporarily immune (Rp) if treated with prophylactic drugs with effective coverage rate rd with

protection waning at rate cd. Infection is controlled by a mosquito-human contact rate (β) after which humans and mosquitoes go through an incubation period (at rates

εh and εm respectively). Humans then naturally recover after 1/γ days of illness while mosquitoes stay infectious for life. Mosquitoes die at a natural death rate μn but can

also be subject to an additional focal control mortality rate μc. All human population compartments are transient and made up of all individuals who spend time in the

patch. Mosquitoes do not move between patches.

https://doi.org/10.1371/journal.pntd.0009562.g001
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Transmission dynamics

Mosquitoes within each patch (i) exist in one of three states: Susceptible (Sm), Infected (but not

yet infectious) (Em) and Infectious (Im). Transitions between these states are determined by the

following equations:

dSm=dt ¼ ðmn þ mcÞðS
m þ Em þ ImÞ � oSm � mnS

m � mcS
m

dEm=dt ¼ oSm � mnE
m � mcE

m � εmE
m

dIm=dt ¼ εmE
m � mnI

m � mcI
m;

Where μn and μc are the rates mosquito mortality due to natural and extra CATI measures

respectively (i.e., we assume vector control measures reduce the number of adult mosquitoes),

εm is the rate of EIP completion and ω is the risk of infection for each susceptible mosquito in

the patch. Calculating ωi involves summing the total person hours spent in patch i by both

human residents (Ti!i) and visitors (Tj!i). Infectivity of any given human is a function of the

mosquito-human contact rate of patch i on day z (βi,z) and the individual infectiousness of

each human which is dependent on the number of days since becoming infected (θd).

oi ¼
X

j

Tj!i

bi;zydIhj;d
Nh

j

 !" #

Consistent with observations of viral titre in dengue patients [12] over time, we assume nor-

mally distributed infectiousness, peaking at symptom onset (where transmission probabil-

ity = 1), standard deviation of 2 and constrained to 0 at time of infection and eight days post

symptom onset. The timing of peak viremia is determined by a lognormal IIP (εh) [32].

yd ¼ Nðεh; 2Þ

εh ¼ Lognormalðm; s2Þ

The additional risk of mortality due to CATI mosquito control efforts (μc) is applied if the

patch (i) is within the defined radius (L) of an index case (j).

lmin ¼ minðli!1; . . . ; li!jÞ

f ðmcÞ ¼
mc if lmin � L

0 if lmin > L

(

Infection dynamics in humans were modelled in Susceptible (Sh), Infectious (Ih), recovered

due to natural infection (Rh) and temporarily immune due to prophylactic drugs (Rh
p). Transi-

tions between these states are as follows:

dSh=dt ¼ rRh
p � φiS

h � cdS
h

dIh

dt
¼ φiS

h � cdI
h � Ihd¼ 1

εh
þ1
g

dRh=dt ¼ Ihd¼ 1
εh
þ1
g
þ cdI

h
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dRh
p=dt ¼ cdS

h � rRh
p

Sh þ Ih þ Rh þ Rh
p ¼ Nh

Susceptible humans can either be infected in their resident (i) patch or any of the patches

they visit (j):

φi ¼
X

j

Ti!j

bj;zImj
P

kðTk!jNh
k Þ

" #

All individuals (i) who reside within a distance L of the home location of any detected den-

gue case (j) will receive prophylactic drugs with an effective coverage level cd.

lmin ¼ minðli!1; . . . ; li!jÞ

f ðcdÞ ¼
cd if lmin � L

0 if lmin > L

(

Effective coverage includes barriers to access, adherence, eligibility and efficacy of the pro-

phylactic drug in question. Individuals who are treated with drugs when already infected are

assumed to acquire sterilizing immunity akin to natural infection. Infected individuals remain

in the Infectious state for the duration of their IIP + 8 days of disease (1/γ) before transitioning

to recovered state with sterilizing immunity. Individuals can be detected (Dh
t ) at any point in

their symptomatic infectious stage (i.e., 1/εh<d<(1/εh+1/γ)]) with daily detection probability

δ which is inferred from the case data (N.B. overall probability that a case is detected is there-

fore 8δ):

Dh
t ¼ dI

h
1
εh<d< 1

εhþ8½ �

εh;d ¼ Lognormalðm; s2Þ

The effective reproductive number for each patch was equal to the product of the total

number of bites an infectious person receives over their duration of their infectious period

(θ), the probability each infected mosquito survives beyond the virus’ EIP [33] and the number

of infectious bites delivered to susceptible humans by the infected mosquito population post

EIP:

Reff ¼
b̂Smy

Nh
:

εm
mn þ εm

:
b̂Sh

mnNh

Nh ¼
X

j

ðTj!iN
h
j Þ

Sh ¼
X

j

ðTj!iS
h
j Þ

The model is implemented using a daily time step with events modelled as realisations from

stochastic binomial processes. Where multiple additions or subtractions from state
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compartments existed (e.g., Exposed mosquitoes completing EIP or dying), the order of pro-

cesses were randomised then sequentially carried out to ensure each mosquito or human had

only one outcome and that certain processes were not more likely than others.

Parameters and priors

Parameter estimates and priors are given in Table 1. We use fixed distributions for parameters

describing DENV IIP and EIP (εh and εm) from a systematic review of transmission experi-

ments [32]. Our estimate of the maximum duration of symptomatic illness (1/γ) corresponds

to the upper limit of estimates of the length of the febrile phase of illness [3]. For other parame-

ters we assign weekly informative priors that are either uniform (k, δ, β) or broadly distributed

(μn) [34]. The vector-human transmission rate (β) was split into two components; a mean (βμ)

and a degree of spatial correlation with the existing levels of immunity in the population (βp).
Because our fitting metrics focussed on the relative distribution of cases over space and time,

the daily probability of detection of an infectious human (δ) was used as a scaling parameter to

match reported case count post-hoc after other parameters had been fitted. No constraints

were put on the daily probability of detection other than 0�δ�1.

In the absence of an internationally recognised target product profile for dengue prophylac-

tics, here we consider a drug with 90% protective efficacy against infection administered with

90% coverage to all individuals regardless of infection status (cd = 0.81). We assume that the

drug also acts as a therapeutic, preventing transmission and symptoms if given to someone

already infected with DENV. We assume the drug is taken with sufficient frequency to ensure

Table 1. Model parameter values.

Parameter Definition Value Source

Fixed parameters and constraints
1/εh Intrinsic incubation period of the virus LogNormal(μ = 5.9, σ = 1.05) [32]

1/εm Extrinsic incubation period of the virus LogNormal(μ = 7, σ = 1.23) [32]

θ Cumulative human infectiousness over the course of an infection y ¼
R negBinð29:37;0:88Þ

maxðnegBinð29:37;0:88ÞÞ
[35], S2

Fig

1/γ Maximum duration of symptomatic illness following completion of IIP 8 days [3]

Rt,0 Average effective reproduction number at the beginning of the outbreak 1<Reff,t = 0<10 [36]

1/rd Duration of effectiveness of prophylactic drugs and the number of days for which vector

control is effective

Assumed 30 -

Fitted parameters with priors
k Proportion of time at risk of dengue infection�� each human spends at home in patch i vs all

other locations

Uð0; 1Þ -

δ Daily probability of a DENV infected individual being detected and reported as a case 0�δ�1 -

μn Daily mortality rate of a mosquito Beta(α = 11.93, β = 107.4) [34]

β Vector-to-human and human-to-vector transmission rate� m ¼ Uð0:1; 2Þ
p ¼ Uð� 1; 1Þ

-

τ Type of human movement model “gravity”, “radiation” or “exponential” (S2

Text)

-

Experimentally varied parameters
cd The effective coverage of prophylactic drugs in the target area 0.81 (0.2–0.81) -

μc The effective coverage of adult mosquito vector control in the target area 0.81 (0.2–0.81) -

L Radius around an index case that receives drug dosing or vector control 50–1000 meters -

� Vector-human transmission rate and its variation over space is parameterised using mean (μ) and correlation with baseline immunity (p) parameters.

�� The total time at risk of dengue infection can equal less than 24 hours e.g., only at risk at dawn and dusk, this parameter merely divides however many hours are at

risk among different patches.

https://doi.org/10.1371/journal.pntd.0009562.t001
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30 days of effective prophylaxis with complete adherence. For comparability, we assume that

each application of vector control is effective for 30 days, has a 90% probability of killing adult

mosquitoes on each day and is applied with 90% coverage across the target area. For index

case radii < 1000m we assume a proportional reduction in coverage that lowers effective

coverage.

Initial conditions

A nationally-representative age-stratified serosurvey for dengue was conducted between

December 2013 and February 2014 just before the two main focus time periods of our data

clusters [37]. In this study Tan et al. found a nationwide average IgG prevalence of 48.6%, with

clear increases with age. Despite the authors finding no geographic variation in age-specific

IgG prevalence rates, because the average age of residents varies across Singapore, the observed

IgG prevalence in the resident population will still vary. To represent this geographic variation

we combined the age-specific IgG seroprevalence measurements from Tan et al. with age-strat-

ified population data from Singapore Department of Statistics 2020 population trends report

[27] (S3 Fig). Dengue virus serotype 1 has predominated (accounting for 70–90% clinical

cases) since Singapore began DENV serotype surveillance with the exception of the years of

2007–2012 [24, 31]. We therefore consider an average IgG seroprevalence of 48.6% representa-

tive of the degree of functional immunity to dengue in Singapore in 2014 despite the co-circu-

lation of other serotypes at lower prevalence during this time.

The susceptible mosquito population size was initialized with an inexhaustible 1:1 ratio

with human population size. Model fitting was insensitive to initial mosquito population size

as the magnitude and spatial variation in mosquito-human contact rate can compensate for

any true differences in population size. The number of infected humans in the previous trans-

mission generation was calculated from the first timepoint of the fitting dataset with the total

number of infectious and exposed mosquitoes derived using the following equations:

Ih
0� g ¼ Dh

0
=8dRt

Em
0
¼ Ih

0� gybz

Im
0
¼ Em

0
ð1 � mnÞ

1
εmð Þ

Infectious and exposed mosquitoes were randomly distributed in space weighted by the

product of each infectious persons’ time allocation between patches and variation in infec-

tiousness given days since becoming infected. Because cases were only reported weekly, we

randomly assigned a day to each reported case over the week prior to their notification.

Model fitting

Because the time series data we had access to began mid-epidemic and because Singapore

often sees frequent importation and co-circulation of multiple chains of transmission [38], we

pre-processed the data using a data clustering algorithm prior to model fitting. This clustering

algorithm grouped reported cases into transmission clusters based on their timing and loca-

tion. For this analysis a simple two week generation time was assumed [39] and data from

three weeks ago was used when data from two weeks prior was missing. Parent cases were

identified by finding the nearest case from two weeks ago with distance measured using i)

exponential, ii) gravity or iii) radiation model networks (generating three datasets). Cases were

considered to belong to a new case cluster (following importation) if the distance of the nearest
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case was above the 99th centile of case distance measurements. A sensitivity analysis to this

choice of linkage threshold was performed at 95th and 99.9th centiles (S1 Table). The three

most probable clusters were selected for model fitting (3 clusters x 3 movement models = 9 fit-

ting datasets). To focus on the dominant period of transmission, each cluster was restricted to

either the 2014 (Weeks 40–99) or 2015 (Weeks 100–160) dengue season based on height of the

peak.

The model was fitted to each movement model cluster (xτ) combination using sequential

Monte Carlo approximate Bayesian computation (SMC ABC) following an algorithm from

Toni et al. [40]. We fit the model by minimising mean squared error of the relative distribution

of cases across eight equally spaced time periods throughout the epidemic (T) and eight quad-

rants of Singapore (Q):

dxt
¼ Trel þ Srel

Trel ¼
XT¼8

T¼1

ðDh;observed
T � Dh;predicted

T Þ
2

Srel ¼
XQ¼8

Q¼1

ðDh;observed
Q � Dh;predicted

Q Þ
2

Three rounds of SMC were performed with each round consisting of 1,000 parameter sam-

ples, each evaluated from the median prediction from 10 model simulations. The top 10%

parameter sample combinations (lowest d values) were retained and used for the proposal dis-

tribution in the next SMC round. Only combinations of samples that gave an effective repro-

ductive number between 1 and 10 were accepted to increase computation efficiency. For

round one, parameter samples were taken from the priors in Table 1. For rounds two and

three parameter combinations from the previous round were sampled then individually uni-

formly perturbed up to ±10%.

Results

There is a limited time window for preventing individual transmission

events, but a prophylactic drug could extend this

To determine the effective time window for CATI strategies we first constructed a simple

model of DENV generation time in one human host and their vectors (Fig 2). This simple

model assumed that vector control and prophylactic drugs had 100% efficacy and that delays

in their application was the only factor that limited effectiveness. A limiting factor for reactive

dengue control is that humans only become symptomatic at the time of, or just before, their

peak in viraemia. As dengue is typically a mild illness, especially in the early stages, symptom-

atic individuals often take several days to seek treatment, receive a correct diagnosis and be

notified to the public health authorities (detection delays). Further delays in notification of the

case, its details and the organisation of a house/area visit (response delays) can also mean reac-

tive control can be implemented days or even weeks after the transmission event.

We find that even short delays in detection or response can have a significant impact on the

probability of controlling onward transmission. The probability of preventing onward trans-

mission by killing adult mosquitoes (with, for example, fogging) rapidly declines with time; a

response nine days after symptom onset is approximately half as effective as a response on the

day of detection (Fig 2B). By contrast, adult vector control responses deployed greater than
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two weeks after the patient’s first symptoms have less than a 20% chance of interrupting

onwards transmission.

CATI strategies with prophylactic drugs have the potential to extend this tight time window

of effective control by as much as the human IIP (~ 6 days), depending on how such a prophy-

lactic drug prevented disease and transmission. Averting disease cases with reactive control

using prophylactic drugs could be effective (> 50% chance of interrupting transmission

chains) up to 13 days post symptom onset (Fig 2).

While this simple model gives insight into how reactive delays affect the relative effective-

ness of controlling a single chain of transmission, additional factors complicate predicting

absolute effectiveness of such strategies. This is because: i) it assumes that control can be accu-

rately targeted to the area(s) of infected mosquitoes (vector control) or infected humans

(drugs) which may not be the case as infection events typically happen in the day when many

humans may not be at their place of residence and ii) it assumes that all infections can be

detected when in reality many dengue infected individuals are asymptomatic or don’t seek

treatment. The degree of spatial clustering of successive generations of DENV transmission

affect the importance of each of these factors. Therefore, to predict effectiveness in more detail

we constructed a spatially explicit stochastic model fit to dengue outbreak data from Singapore

and simulated the effectiveness of different vector control and drug CATI strategies.

Model fit results

As a data pre-processing step, we first disaggregated reported cases in Singapore from May

2013 –June 2016 into distinct clusters using a spatiotemporal case-clustering algorithm based

on three different kinds of human movement models (Fig 3). There was a consensus among

movement models on the emergence of three main case clusters during the period of observa-

tion. The largest (primary cluster, red Fig 3) has seen continual low-level circulation until caus-

ing a large outbreak in 2015 (peaking at week 140). During the 2014 outbreak two main

clusters predominated that then fell to low levels in 2015 (Secondary and Tertiary clusters Fig

3). All cluster algorithms also identified other clusters throughout the period of observation

that may represent pre-existing case clusters with an unobserved origin, importations from

neighbouring countries or smaller foci of transmission. To simplify model fitting, we chose to

Fig 2. Probability of interrupting a single chain of transmission over time. A) the probability distribution of infectious humans, the mosquitoes they infect and the

subsequent human dengue cases. The red dotted line shows a typical reactive delay. Day 0 is the day of first symptoms due to dengue. B) Probability of interrupting

transmission over different delay durations. Black dotted lines show the time when there is a 50% chance of interrupting transmission.

https://doi.org/10.1371/journal.pntd.0009562.g002
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fit to the three main clusters for each human model and truncated each cluster to the year in

which it caused its major outbreak (2015 for the primary cluster and 2014 for the secondary

and tertiary clusters, dotted black lines Fig 3).

A fine scale dengue microsimulation model was then fit to each of the nine cluster datasets

in Fig 3 using ABC SMC. All models offered improved fit (26.7–36.8% reduction in d) with

each SMC round giving positive but diminishing improvements (S4 Fig). The radiation

human movement model gave the best fit to the first cluster (d = 2.66, Table 2) while the expo-

nential model gave the best fit to clusters 2 and 3 (d = 2.75 and d = 2.95 respectively, Table 2).

Fig 3. Top three identified case clusters according to exponential (A), gravity (B) and radiation (C) human movement models. Week 0 is May 2013. Only top 5

clusters shown. Dotted lines indicate the beginning of the 2014 and 2015 outbreaks.

https://doi.org/10.1371/journal.pntd.0009562.g003
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The posterior distribution of model parameters suggests differing patterns of transmission

between cluster 1 (the largest cluster) and clusters 2 and 3 (Fig 4). The fitted model suggests

that cluster 1 occurred among a group of less mobile individuals (mean 63% at-risk time spent

at home) living in lower transmission intensity areas (mean 0.27 bites per day) but with a

higher probability of reporting (0.15%).

In contrast, parameter values from cluster 2 and 3 fits suggest transmission among a more

mobile set of the population (15% and 9% time at risk spent at home) in higher transmission

intensity areas (0.70 and 0.68 bites per day) and a lower probability of reporting (0.04% and

0.03%). No clear correlation between transmission intensity in the current outbreak and his-

torical transmission intensity was observed for any clusters (Transmission coefficient (correla-

tion), Fig 4).

To assess the fitted model’s ability to reconstruct the spatio-temporal patterns of transmis-

sion we compared the distribution of distances between cases in successive generations of

Fig 4. Histograms of the distribution of each model parameter using the best fitting human movement model (exponential for cluster 1, gravity for clusters 2 and 3)

over successive sequential Monte Carlo rounds (Red = round 1, Green = round 2, Blue = Round 3). Probability of reporting is on a logarithmic scale (base 10).

https://doi.org/10.1371/journal.pntd.0009562.g004

Table 2. Final values of the objective function (d) across and within clusters and its improvement between rounds 1 and 3 of sequential Monte Carlo rounds.

Exponential movement Gravity movement Radiation movement

Final deviation % improvement Final deviation % improvement Final deviation % improvement

Cluster 1 2.90 16.64 2.69 24.04 2.66 30.11

Cluster 2 2.75 26.66 2.74 22.56 2.79 17.30

Cluster 3 2.95 36.76 3.00 34.98 3.67 11.40

https://doi.org/10.1371/journal.pntd.0009562.t002
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transmission, i.e., dispersal kernels (Fig 5). Distance between cases two weeks apart were com-

pared to approximate the serial interval of DENV. This analysis showed that the majority of

cases in the next generation of transmission are likely to occur locally (84%, 80% and 86% for

clusters 1–3) with long-distance dispersals orders of magnitude lower. The fitted models repli-

cated comparable dispersal kernels, particularly for clusters 1 and 2. The models estimate com-

parable within patch transmission (77%, 70% and 61% for clusters 1–3) with a slight tendency

to overestimate long distance transmission events (9000m+).

CATI strategies can be effective in both the short and long term, but

effectiveness is likely to be variable, especially with vector control

To assess the effectiveness of different CATI strategies, our model was run using an ensemble

of posterior parameter values from each cluster to represent the likely effectiveness under real

world conditions in Singapore where multiple chains of transmission often co-circulate. The

model suggests that individuals living in areas that receive at least one CATI prophylactic drug

dose at any point in the outbreak show strong protection against future infections over the

duration of the drug’s effective period. This level of protection, on average, exceeds the effec-

tive coverage level of the drug when deployed (median 100% predicted efficacy vs 81% drug

effective coverage, Fig 6A), suggesting the non-treated individuals within the area receive

some indirect protection from local, rapid control. Long-term effectiveness in treated patches

declines but still maintains efficacy in most areas (median 50%). Effectiveness was, however,

highly variable (95CIs span 0–1) and some patches see little or no impact. Multivariate regres-

sion analysis showed that patches in low population density areas had higher effectiveness

than more densely populated areas and that more connected areas treated later in the outbreak

had marginally higher effectiveness (Fig 6B).

For equivalent effective coverage and duration of efficacy, CATI with vector control is pre-

dicted to have lower, less persistent and considerably more variable effectiveness (effectiveness

63% short term, 0% long term, Fig 6A). Both short and long-term effectiveness of patches

treated using a CATI strategy are likely to be lower than if vector control was consistently

applied in these patches throughout the outbreak, although a CATI strategy would also use

fewer resources. This occurs due to reinvasion of transmission into each patch, asymptomatic

infection and, to a lesser extent, the additional delay in response time of vector control inter-

ventions (Fig 2). Applying both prophylactic drugs and vector control in a CATI strategy has

the potential to marginally improve long-term effectiveness (53% vs 50%).

CATI strategies with a large case radius can make up for late or low

effectiveness responses

Next we tested the sensitivity of effectiveness of CATI strategies to I) the response radius

around an index case, ii) the delay between case detection and intervention application and iii)

the effectiveness of the intervention used. Due to the slow average spatial diffusion rate of the

dengue outbreak, we observe only moderate sensitivity to delays in CATI response with only a

5–15% drop in effectiveness between a response that occurs on the day of detection compared

to a response 2 weeks later (Fig 7A and 7B). Contrastingly, increasing the radius around the

index case that interventions are deployed significantly increases overall effectiveness of the

CATI strategy. We predict that a CATI response with a 100m radius delivered 2 weeks after

detection will be more effective than a response with a 50m radius delivered on the day the

case is detected, emphasising the importance of scale over speed in CATI response. CATI

using vector control showed lower overall effectiveness and less sensitivity to implementation
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Fig 5. Comparison of the spatial transmission kernels of observed cluster data and model predictions. These

histograms show the observed and model predicted distances between detected cases in the current week and cases two

weeks (approximately one serial interval) ahead. Case distances are calculated as Euclidian distance to nearest

neighbour with case location assigned to the midpoint of a 1km x 1km grid. Model predictions show the median of 10

runs from the best fitting human movement model (gravity for A and B, exponential for C). Number of cases shown

on a log10 scale for cluster 1 (A), 2 (B) and 3 (C).

https://doi.org/10.1371/journal.pntd.0009562.g005
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delay, but also showed substantial increases in effectiveness with larger intervention radii

(Fig 7B).

Using an intervention with lower efficacy or lower coverage (i.e., lower effective coverage)

predictably has a proportionally lower overall efficacy (Fig 7C and 7D). However, we predict

that medium to high final effectiveness can still be achieved with low efficacy interventions

when used in a CATI strategy with larger case radii (250-1000m, Fig 7C and 7D). This is

because larger rings ensure hotspots of transmission are treated regularly and repeatedly,

increasing the chance of effective control. This prediction does, however, assume that inter-

ventions fail at random as opposed to more fundamental barriers to effectiveness, e.g., insecti-

cide resistance or hard-to-reach human or mosquito populations.

CATI strategies are likely to be less effective in higher endemicity settings

Finally, we aimed to assess the generalisability of our findings to other dengue endemic set-

tings outside Singapore where baseline transmission intensity is typically higher and case

detection rates are lower (Fig 8). We predict that even modest increases in baseline transmis-

sion intensity (βμ) considerably reduce the ability of even the largest ringed CATI strategies

(1000m) to control dengue outbreaks (doubling βμ leads to ~ 2 times the number of infec-

tions). Reductions in case detection probability also significantly restrict the utility of CATI

strategies for outbreak response. Reducing detection probability by 50% (relative to Singapore

levels) leads to 10–69% more cases with the biggest increases in low endemicity settings such

as Singapore.

Discussion

CATI strategies are becoming increasingly popular for dengue control due to: i) a growing

emphasis on outbreak prevention as the key goal of dengue control [41], ii) the failure of tradi-

tional control approaches to contain transmission long-term [24], iii) resource limitations and

iv) increasing availability of data and data analytics platforms to predict and enable rapid pre-

cision responses [42]. There is, therefore, a growing need for a quantitative understanding of

the strengths and limitations of CATI strategies to enable a more nuanced discussion of what

role it can play in dengue control.

In this analysis we use a mathematical model, fit to a Singapore setting, to explore the

impact of different CATI strategies. We find that controlling individual chains of transmission,

e.g., within a household or local community, is likely to be highly time sensitive and prophylac-

tic drugs could be a useful tool for extending this time window, particularly if people present

Fig 6. Within patch effectiveness of case-area targeted interventions. A) Effectiveness compares proportion of symptomatic cases in areas treated with prophylactic

drugs and adult vector control over the short (30 day) and long (365 day) time periods. Both drugs and vector control are predicted to have 81% effective coverage

(solid horizontal line) deployed the day after index case detection within a 1km radius of the index case, maintaining efficacy for 30 days. B) Relative effectiveness

between the highest and lowest value pixels with respect to three characteristics (as predicted by a multivariate model fit to the long-term drug effectiveness results).

https://doi.org/10.1371/journal.pntd.0009562.g006
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several days after the onset of symptoms. Following Phase 1 and 2 trials, more detailed model-

ling studies will be necessary to explore how the effectiveness of CATI strategies with prophy-

lactic drugs changes with the specific characteristics (e.g., duration of efficacy) of each drug.

Our results also have wider implications for index-case based intervention trial designs [43],

Fig 7. Scale, speed (A and B) and intervention effective coverage (C and D) required for a case-area targeted strategies with drugs (A and C) and vector control (B

and D).

https://doi.org/10.1371/journal.pntd.0009562.g007
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emphasising the need for rapid response to maintain intervention effect size, particularly for

vector control tools that target adult mosquitoes [44]. We found that most areas treated one or

more times using a CATI approach do see protection from dengue that lasts for the duration

of the outbreak, especially in low density areas. Effectiveness of CATI strategies were found to

be highly sensitive to the radius around the index case with radii 250m or larger giving the

largest and most durable protection even if the efficacy of the interventions used is low. Finally,

we estimate that CATI strategies will be highly sensitive to baseline transmission intensity and

are only likely to be effective in areas that have already reduced transmission to lower levels

Fig 8. Effectiveness of CATI strategies in higher endemicity settings. All values proportional to Singapore parameters (βμ and δ). Assumes drug CATI strategy with

1km radius delivered the day of detection with 81% effective coverage lasting 30 days per response over a 1-year time horizon.

https://doi.org/10.1371/journal.pntd.0009562.g008
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and have relatively high levels of case detection. This leads us to conclude that CATI strategies

for dengue are likely to be effective, but are unlikely to be a precision, low resource require-

ment solution that is universally applicable. The need to have already achieved low levels of

baseline transmission intensity, have high rates of case detection and be able to repeatedly

deploy interventions at broad spatial scales suggest that CATI strategies will be best suited to

non-endemic areas or as a “final-mile” approach in the latter stages of a wider dengue elimina-

tion programme. Similar conclusions have been reached on the role of reactive case detection

and focal mass drug administration in malaria elimination [45, 46]—a vector-borne disease

that is complicated by similar issues of asymptomatic infection and mobility of infected indi-

viduals. This also highlights the need for targeting preventative interventions such as environ-

mental clean-up campaigns and vaccines (e.g., CDY-TDV) in high density, high transmission

areas which may then allow CATI to contain outbreaks where it previously could not.

The predicted between-cluster variability in effectiveness of CATI also suggests that such

strategies may need to be flexible and adaptable, changing index case radius, timeliness and

even mixtures of interventions in response to the unfolding dengue epidemic. CATI strategies

would, therefore, be best implemented alongside additional serological human or entomologi-

cal sampling to further understand where and why effectiveness changes.

Our findings are subject to a number of limitations of our chosen model structure, fitting

procedure and generalisability. Our model likely underrepresents geographic heterogeneity in

mosquito-human contact, particularly in Singapore where small-scale construction sites are

known to be significant contributors to overall transmission [47]. Higher geographic heteroge-

neity would make individual hotspots harder to control, but potentially more susceptible to

focal targeting if they can be successfully identified. Over the time period of our data entomo-

logical surveys were only available from a small number of sentinel sites that were sufficient to

measure variation in mosquito abundance over time, but not space at a sufficiently high reso-

lution. If entomological data were available at higher spatial resolution the model may have

been able to better capture the observed spatial heterogeneity in dengue cases [48]. Our model

also demonstrated variable ability to fit different case clusters in Singapore, particularly out-

breaks with more geographically restricted ranges. More work is needed to understand if and

why the spatial spread of some epidemics differs. This may require developing a multi-serotype

model to reflect co-circulation of multiple DENV serotypes and the complex pattern of human

immunity that they impose in settings like Singapore. Integrating human movement data

from, for example call data records [49], instead of relying on human moment models may

also help better characterise movement heterogeneity across Singapore. Developing multiple-

infection models with realistic population dynamics will also be important for projecting the

longer-term reductions in disease burden attributable to CATI. This is important as it remains

unknown whether the infections CATI averts are truly averted or just delayed until later in an

individual’s lifetime.

We also did not consider spatio-temporal variability in vector control when fitting our

model. Our model placed no restrictions on the frequency within which interventions could

be re-applied. Continual dosing of dengue prophylactic drugs over multiple months may not

be feasible or practical. The model also assumed random efficacy and coverage of the interven-

tion meaning multiple rounds of drug dosing or vector control boosted effective coverage and

led us to the conclusion that large radii CATI strategies would be particularly effective. In real-

ity there may be a cap on intervention effective coverage due to hard-to-reach populations/vec-

tor habitats or individuals/individual houses ineligible for drug dosing.

CATI strategies are becoming increasingly prevalent components of wider dengue control

strategies. Here we aimed to quantitatively assess their potential effectiveness and assess their

sensitivity to a range of operational and epidemiological parameters. This emphasised the
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importance of using broad radii around index cases and the need to continue other interven-

tions to keep baseline transmission intensity low and case detection rates high. If this can be

achieved, CATI strategies with drugs or vector control could play an important role dengue

control efforts.
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