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Abstract. Identification of species’ Biologically Important Areas (BIAs) is fundamental to
conservation planning and species distribution models (SDMs) are a powerful tool commonly
used to do this. Presence-only data are increasingly being used to develop SDMs to aid the
conservation decision-making process. The application of presence-only SDMs for marine spe-
cies’ is particularly attractive due to often logistical and economic costs of obtaining systematic
species’ distribution data. However, robust model validation is important for conservation
management applications that require accurate and reliable species’ occurrence data (e.g., spa-
tially explicit risk assessments). This is commonly done using a random subset of the data and
less commonly with fully independent test data. Here, we apply a spatial block cross-validation
(CV) approach to validate a MaxEnt presence-only model using independent presence/absence
survey data for a highly mobile, marine species (humpback whale, Megaptera novaengliae) in
the Great Barrier Reef (GBR). A MaxEnt model was developed using opportunistic whale
sightings (2003–2007) and then used to identify areas differing in habitat suitability (low, med-
ium, high) to conduct a systematic, line-transect, aerial survey (2012) and derive a density sur-
face model. A spatial block CV buffering strategy was used to validate the MaxEnt model,
using the opportunistic sightings as training data and independent aerial survey sightings data
as test data. Moderate performance measures indicate MaxEnt was reliable in identifying the
distribution patterns of a mobile whale species on their breeding ground, indicated by areas of
high density aligned to areas of high habitat suitability. Furthermore, we demonstrate that
MaxEnt models can be useful and cost-effective for designing a sampling scheme to undertake
systematic surveys that significantly reduces sampling effort. In this study, higher quality infor-
mation on whale reproductive class (calf vs. non-calf groups) was obtained that the presence-
only data lacked, while sampling only 18% of the GBRWorld Heritage Area. The validation
approach using fully independent data provides greater confidence in the MaxEnt model,
which indicates significant overlap with the main breeding ground of humpback whales and
the inner shipping route. This is important when evaluating presence-only models within cer-
tain conservation management applications, such as spatial risk assessments.

Key words: density surface model; generalized additive model; Great Barrier Reef; habitat model; hump-
back whale; MaxEnt; ship strike; spatial cross-validation; spatial risk assessment; species distribution modeling.

INTRODUCTION

Species distribution models (SDMs) have become
increasingly popular for a wide variety of applications,
including to support conservation management deci-
sion-making processes in both the terrestrial and marine
environment (Elith and Leathwick 2009, Franklin 2010,
Robinson et al. 2011, Guisan et al. 2013, Guillera-

Arroita et al. 2015). It is an approach that can be used
for understanding patterns in current species distribu-
tions, predicting future distribution patterns related to
changes in environmental parameters, and assisting in
identifying potential conflict with human activities
(Elith et al. 2010). SDMs provide spatially explicit pre-
dictions of a species occurrence derived from environ-
mental suitability models that combine occurrence data
with spatial environmental data (Guisan and Thuiller
2005, Phillips et al. 2006). In the past, the methods for
developing SDMs often required presence/absence or

Manuscript received 27 March 2020; revised 12 May 2020;
accepted 15 June 2020. Corresponding Editor: Julian Olden.

4 E-mail: joshua.smith@uqconnect.edu.au

Article e02214; page 1

Ecological Applications, 31(1), 2020, e02214
© 2020 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of Ecological Society of America
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0001-9912-422X
https://orcid.org/0000-0001-9912-422X
https://orcid.org/0000-0001-9912-422X
info:doi/10.1002/eap.2214
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/


abundance data from systematically designed surveys
that provide equal coverage probability along environ-
mental gradients (Elith and Leathwick 2009). Due to the
widespread availability of presence-only data (e.g.,
online databases, citizen science programs), there have
been improved modeling capabilities for this type of data
and a greater use of these models in conservation man-
agement (Elith et al. 2006, Elith and Leathwick 2009).
Presence-only data are often an inexpensive source of
data that is particularly common for cryptic (or rare)
species (Franklin 2010). Similarly, marine mammals are
often “unavailable” to observers due to a large propor-
tion of their time spent underwater. While the applica-
tion of SDMs to marine species has been considerably
less compared to terrestrial species, it has been signifi-
cantly increasing over the last decade (Robinson et al.
2011, Robinson et al. 2017). In the case of whales, the
collection of absence data can often be logistically diffi-
cult and expensive given many species are highly mobile
and can occupy large spatial scales (e.g., migratory
whale species). The application of presence-only data
and predictive habitat modeling is therefore an attractive
approach for marine mammals given the logistical and
economical costs of collecting distribution data (Bom-
bosch et al. 2014, Derville et al. 2018).
However, there is a trade-off between the cost of

acquiring species distribution data and the quality of the
data. Presence-only data are a relatively inexpensive
source of data, although often limited data are associ-
ated with sightings (e.g., sampling effort), that might
provide information on any underlying sampling
scheme. Often the data have potential sampling effort
biases and are limited to providing reliable information
only on the areas occupied by a species and not unoccu-
pied areas, resulting in a higher probability of commis-
sion error (false positive, predicting a species in
unoccupied areas; Guillera-Arroita et al. 2015). Signifi-
cant effort needs to be made in understanding and
addressing any spatial bias in presence-only data, which
is supported by an understanding of the sampling pro-
cess where possible (Bird et al. 2013). In contrast, pres-
ence/absence data are of higher quality due to being
obtained from well-structured sampling designs and a
lower probability of omission error (false negative pre-
dictions, failure to predict a species in an occupied area),
although can be costly to acquire (Franklin 2010). The
quality of the data and any inherent errors in estimates
of species occurrence can ultimately have an impact on
the inference of the model and consequently any associ-
ated ecological explanation and management recom-
mendations (Aarts et al. 2011, Soultan and Safi 2017).
The model utility of predictive SDMs is dependent on
model performance, which is measured by model cali-
bration (ability of the model to correctly predict proba-
bility of presence) and discrimination (capacity of the
model to differentiate presences from absences or
pseudo-absences) (Pearce and Ferrier 2000, Phillips and
Elith 2010). There are a number of different statistical

model performance evaluation measures (e.g., AUC,
kappa) used to evaluate the discrimination capacity of
the model, which often use semi-independent (e.g.,
resampling approaches) or preferably independent test
data (Ara�ujo et al. 2005, Hirzel et al. 2006, Elith and
Leathwick 2009, Franklin 2010, Guisan et al. 2017).
In the absence of external independent data to test the

predictive accuracy of SDMs, model performance is
often assessed using data resampling, such as cross-vali-
dation (CV) techniques (Guisan et al. 2017). CV parti-
tions a data set into two subsets, one for model training
(calibration of data) and the other testing (validation).
The training data are used for fitting the model and the
test data for evaluating the performance of the trained
model (Hastie et al. 2009). Typically, the CV process is
undertaken with repeated random selection of the subset
data used for testing. In SDMs, nearby sites are often
environmentally similar and there can be dependence
structures in the data (Roberts et al. 2017). Therefore, a
random split of training and test points may not produce
training and test sets that can be considered independent
because it is possible for data held out for validation to
be drawn from these nearby sites. Consequently, using
random test and training splits can lead to biased error
estimates (Wenger and Olden 2012). This is when spatial
block CV should be preferred over random data splits
(Renner et al. 2015, Roberts et al. 2017). A spatial block
CV can consist of blocking the training and test sets
according to different strategies; spatial blocking (i.e., a
set of spatially contiguous blocks), spatial buffering (i.e.,
a circular buffer of specified radius around an observa-
tion), and environmental blocking (i.e., sets of similar
environmental conditions; Valavi et al. 2018). The data
in one block can be considered approximately indepen-
dent of data in other blocks, because testing is under-
taken on more spatially distant records, which effectively
decreases spatial dependence (Roberts et al. 2017).
Few studies undertake an evaluation of the reliability

of the model using a fully independent data set, to test
that each probability is an accurate estimate of the likeli-
hood of detecting the species at a given site (Pearce and
Ferrier 2000, Greaves et al. 2006, Hirzel et al. 2006,
Rebelo and Jones 2010, Pinto et al. 2016, Fiedler et al.
2018). This is largely due to the expense of obtaining
new survey data. While the importance of undertaking
this type of validation is likely to depend on the applica-
tion of the model (Guillera-Arroita et al. 2015), it should
be considered desirable given the potential biases in
presence-only data. It becomes increasingly important in
wildlife management when applied to management deci-
sions where accurate and reliable data on species occur-
rence is necessary (e.g., spatial risk assessments). In
studies that have used independent test data, the derived
model test statistics from each presence-only and pres-
ence/absence data set have been compared or a measure
of difference between the two model outputs has been
calculated (Greaves et al. 2006, Hirzel et al. 2006, Sha-
bani et al. 2016, Fiedler et al. 2018). In our study, we
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validate a presence-only MaxEnt model with a tempo-
rally independent presence/absence aerial survey data
set, using a spatial block CV approach. A MaxEnt habi-
tat suitability model was initially developed using oppor-
tunistic sightings to determine the distribution of
humpback whales in the Great Barrier Reef (GBR;
Smith et al. 2012). The MaxEnt model was then used to
design and conduct a dedicated, systematic, aerial survey
within three areas of the GBR, corresponding to high,
medium, and low habitat suitability. We then evaluated
the MaxEnt model using a spatial block CV buffering
strategy using the presence-only data as training data
and independent aerial survey presence/absence data as
testing data using various performance metrics.
Humpback whales are a highly mobile marine species

that annually migrate thousands of kilometers from high
latitude temperate feeding grounds to low latitude tropi-
cal breeding grounds (Dawbin 1966, Rasmussen et al.
2007). The Australian east coast population (breeding
stock E1) migrate to the tropical waters of the Great
Barrier Reef (GBR) for mating and calving (Simmons
and Marsh 1986, Chaloupka and Osmond 1999, Smith
et al. 2012, Smith et al. 2020). The Great Barrier Reef
Marine Park (GBRMP) is a multiple-use marine park
that utilizes a Zoning Plan to manage the multiple users,
e.g., tourism, shipping, and fishing. The Zoning Plan
defines what activities can occur in which locations to
protect the marine environment and separate potentially
conflicting activities, with varying levels of restriction
dependent on the Zone, e.g., General Use Zone vs.
Preservation Zone. The GBR is a UNESCO World Her-
itage Area (GBRWHA) that covers approximately
348,000 km2 within which the GBRMP comprises 99%
of the area. The whale population is currently undergo-
ing a rapid, exponential rate of increase (~11% per
annum) following near extinction from commercial
whaling (Bejder et al. 2016, Noad et al. 2019). The high
rate of population increase ultimately increases interac-
tions with multiple human activities and the potential
for anthropogenic impacts (e.g., vessel strikes; Peel et al.
2018), necessitating a need for accurate distribution data
at a resolution that can be incorporated into spatial risk
assessments.

METHODS

MaxEnt presence-only spatial habitat model

A MaxEnt spatial habitat model was developed (Max-
Ent version 3.3.2) to determine the distribution of
humpback whales on their breeding ground in the
GBRMP. The MaxEnt model was developed using
opportunistic presence-only whale sighting data (2003–
2007) and five environmental variables; sea surface tem-
perature (SST), bathymetry, seabed slope, distance from
coast, and distance from outer reef. (Appendix S1:
Fig. S1, Appendix S1: Fig. S2). Seabed rugosity (a mea-
sure of seabed complexity, or roughness) was also

investigated, although was excluded from the final
model because it was highly correlated with seabed slope
based on investigation of multicollinearity among envi-
ronmental variables and a Pearson product-moment cor-
relation coefficients test. Detailed information on the
MaxEnt model and opportunistic whale sighting data
are reported in Smith et al. (2012). The MaxEnt model
was trained using 75% of the sightings (N = 80) and
tested with 25% of the data (N = 27), which were ran-
domly drawn from the entire data set for 50 bootstrap
samples. The MaxEnt model was evaluated using AUC,
response curves of the environmental variables and a
jack-knife test to evaluate the relative environmental
variable contributions to the model. The opportunistic
data consisted of whale sightings collected during an
Australian Government Border Protection Command
(BPC) aerial surveillance program as part of a broader
survey of human vessel use within the GBRMP between
1982 to 2007. Sighting data used in the model consisted
of confirmed species identification from the months of
peak whale abundance (July, August) between 2003 and
2007, during which time humpback whales are the pre-
dominant whale species. No other associated data on
sampling effort (due to confidentiality of flight paths),
environmental data or identification of calves were pro-
vided with the sightings. There was an assumption of
unbiased sampling and even coverage in the presence-
only data. This was deemed an adequate assumption
due to the BPC aerial surveillance program having ini-
tially been established according to a stratified random
sampling design (A. N. Pettitt and M. A. Haynes 1994;
unpublished manuscript) and no apparent temporal or
spatial bias in the whale sighting data (Smith et al.
2012).
Five environmental variables were used in the model;

sea surface temperature (sst), bathymetry, seabed slope,
distance from coast, and distance from outer reef. The
first four variables were selected based on their identified
importance in influencing whale distribution from pub-
lished literature (Ersts and Rosenbaum 2003, Johnston
et al. 2007, Rasmussen et al. 2007, Oviedo and Sol�ıs
2008, Smith et al. 2012, Lindsay et al. 2016, Trudelle
et al. 2016, Derville et al. 2018) and the last was specific
to this study site. Bathymetry data were obtained using
the 3DGBR high-resolution digital elevation model
(100-m resolution) for the GBR (Beaman 2010) and sea-
floor slope was derived from bathymetry data. Sea sur-
face temperature (SST) data were obtained from the
AVHRR (Advanced Very High Resolution Radiometer)
Pathfinder version 5 data set at 4.8-km resolution and
averaged for the months of July and August across years
(SD = 0.24°C). Distance to coast and distance to reef
were calculated in ArcGIS 10.6 using shapefile base lay-
ers courtesy of the Great Barrier Reef Marine Park
Authority. All environmental layers used were raster
data at a resolution of 4.8 9 4.8 km (Universal Trans-
verse Mercator [UTM] GDA 1994 Zone 55 projection)
that were converted to ASCII files.
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Independent aerial survey data and sampling effort

A dedicated, systematic line-transect aerial survey was
undertaken to validate the MaxEnt presence-only model
with an independent presence/absence data set. The
MaxEnt model was used to design an aerial survey that
sampled the GBRMP within three selected regions rep-
resenting three different categories of habitat suitability;
Region 1, low; Region 2, medium; and Region 3, high
(Fig. 1). Three regions were identified based on the
calculated maximum, average, and range of habitat
suitability values for grid cells across the region. The
average of a region approximated 50% of the range and
maximum in habitat suitability and the maximum habi-
tat suitability approximated 25% less than the region
above (Table 1). Statistics were calculated using the Arc-
GIS spatial analyst tool, Zonal statistics. The surveyed

area of the combined three regions (63,723 km2) repre-
sented 18% of the total GBRMP (344,400 km2).
The aerial survey was conducted between 3 and 10

August 2012 using a Partenavia Observer P-68B six-sea-
ter, twin engine, high-wing aircraft. The aerial survey
was designed to maximize detection of humpback
whales as the target species and flown at a ground speed
of 100 knots (1 knot = 1.852 km/h) in passing mode at
an altitude of 1,000 feet (1 foot = 0.30 m) to improve the
ability of identifying calves. Transects were spaced
20 km apart and oriented at an angle from the coastline
to survey across the depth gradient. The survey was
undertaken to coincide with peak whale abundance
within the breeding season (Chittleborough 1965),
whereby it is assumed whales are utilizing habitat impor-
tant to their breeding behavior and not engaging in
migratory behavior.

FIG. 1. MaxEnt probability of presence model for humpback whales in the Great Barrier Reef World Heritage Area
(GBRWHA) and overlay of the aerial survey transects in areas of low (Region 1), medium (Region 2), and high (Region 3) predicted
occurrence.
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The survey team consisted of four dedicated observers
and a survey leader, constituting a double platform
observer configuration. The rear observers were acousti-
cally and visually (using curtains) isolated from the front
observers to allow perception bias to be calculated (Pol-
lock et al. 2006). Sightings were recorded using aviation
headsets on a Zoom H4N handheld digital recorder
(Zoom Corporation, China) and environmental condi-
tions (Beaufort sea state, cloud cover, wind speed, tur-
bidity, and glare) were recorded on a handheld GETAC
PS236 PDA (Getac Technology Corporation, Shanghai,
China). Whale sightings included species identification,
declination (using a Suunto PM-5/360PC clinometer;
Suunto, Finland) and horizontal (protractor) angles to
the group, total number of animals and calves in a group
and sighting cue.

Density Surface Model (DSM) of aerial survey data

Density surface models of the line transect aerial sur-
vey data were fitted to calculate spatially explicit esti-
mates of whale density using a two-stage process in the
dsm R package (Miller et al. 2019), as outlined in Smith
et al. (2020). The purpose of producing a DSM was to
derive aggregated aerial survey segment data, an effec-
tive strip area (ESA), and visualize a smoothed density
surface of the aerial survey data to visually compare with
the MaxEnt model. Predicted whale densities estimated
by the DSM were not used in the cross-validation pro-
cess because we wanted to validate the MaxEnt model
and compare the MaxEnt prediction in areas of low/
medium/high habitat suitability to whale count data in
the area(s) that the aerial survey was conducted, rather
than compare predicted whale occurrence (from Max-
Ent) to areas of predicted whale density (from the
DSM).
First, the double-platform data are analyzed using a

mark–recapture distance sampling model to develop a
detection function model, as described in Laake and
Borchers (2004) and Burt et al. (2014) using the MRDS
package (Laake et al. 2015) in R (R Development Core
Team 2015). To improve detection function fit, sightings
were truncated and the best fitting model was selected
using AIC.
A detection-adjusted density surface model is then

developed using a generalized additive model (GAM),
the detection function model and environmental covari-
ates (Hedley and Buckland 2004) to estimate whale

density. Aerial survey track lines (transects) were seg-
mented into pre-defined lengths of 20 km to capture
adequate environmental variability. The number of
whale groups and total animals (including the presence
and number of calves) were summed for each segment,
incorporating the environmental variables and estimat-
ing a total effective strip area. The number of whales in
each segment is adjusted by the probability of detection
of a sighting in that segment given its sighting condi-
tions. This is accomplished via an offset in the model,
equivalent to log(effective area) of each segment. A
Tweedie distribution was used to account for over-dis-
persion in the counts of groups per segment. The DSM
incorporated the same spatial variables to those used to
create the MaxEnt model; SST, bathymetry, seabed
slope, distance from coast, and distance from outer reef.
It did not include any spatial covariates (e.g., latitude,
longitude), so we could extrapolate beyond the survey
area. There was little survey effort in depths > 90 m, so
depths > 90 m were set at 90 m to prevent a linear rela-
tionship with depth in deeper waters. Predictions of
whale densities across the GBR were undertaken at the
same resolution as the MaxEnt model (4.8 9 4.8 km)
for three whale groups: (1) all whales, (2) groups that
contained a calf (hereafter, calf groups), and (3) groups
in which a calf was not present (hereafter, non-calf
groups).

Spatial block cross-validation of MaxEnt model and
aerial survey data

To validate the MaxEnt model, we applied a spatial
block CV buffering strategy, using BPC occurrence
sightings as training data and independent aerial survey
data as testing data. The validation process tests whether
the MaxEnt presence-only model is capable of accu-
rately and reliably predicting the occurrence of hump-
back whales within the GBRMP based on a temporally
independent, systematically derived, data set. MaxEnt
models were fitted using the R packages dismo (Hijmans
et al. 2017) and MaxEnt (version 3.4.1) using default set-
tings except the hinge feature was removed and we
retained duplicate presence points (removeDupli-
cates = False). By not removing duplicates, the resulting
fitted model is a Poisson point process model in which
presence-only locations are treated as independent (Ren-
ner and Warton 2013). The analysis is based on the num-
ber of presence records per unit area rather than

TABLE 1. The three regions surveyed during the 2012 aerial survey for humpback whales in the Great Barrier Reef Marine Park
(GBRMP), based on habitat suitability (HS) values derived from the MaxEnt model.

Survey region Habitat suitability class Area (km2)

HS

Average Maximum Range

1. Port Douglas low 11,971 0.15 0.42 0–0.42
2. Townsville medium 17,126 0.29 0.59 0.01–0.59
3. Mackay high 34,626 0.42 0.79 0.03–0.79
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probability of presence on a per grid cell basis. The out-
put is a measure of intensity similar to density, defined
as the number of presence records per unit area rather
than one presence record per grid cell, and is a measure
of abundance rather than probability (Renner et al.
2015). By default, MaxEnt fits models with a lasso pen-
alty (Tibshirani 1996), which accounts for potential
overfitting of the model to the observed data by shrink-
ing parameter coefficients toward 0. The degree of
shrinkage is determined automatically in MaxEnt based
on the number of observed points (Phillips and Dud�ık
2008). Applying a lasso penalty has been shown to
improve predictive performance (Elith et al. 2006) and
may be part of the reason why MaxEnt remains a popu-
lar choice among ecologists.
MaxEnt models were built using BPC presence-only

whale sightings (N = 107, 2003–2007) and five environ-
mental variables (same as used in the initial MaxEnt
model and DSM), with a spatial block that created a
buffer of specified distance that excluded any BPC sight-
ings around a test point. We used the aerial survey seg-
ment data (the midpoint) as test locations, comparing
two components of the aerial survey data aggregated in
a segment; total number of whales (N count data) and
the density of whales standardized for the effective strip
area (ESA; density = N/ESA). The number of test loca-
tions is determined by the aerial survey transect segment
length and this determines the number of MaxEnt mod-
els built in the cross-validation process. For example, a
segment length of 20 km results in 165 test locations and
a MaxEnt model is built for each of the test locations.
For each model, a test point was chosen and a MaxEnt
model was built withholding all BPC data within the
specified buffer distance around the aerial survey seg-
ment test point (e.g., a 20-km buffer around the mid-
point of the test location; Fig. 2). This produced a set of
predicted humpback intensities from the BPC data
derived by MaxEnt and we used the MaxEnt model pre-
diction at the test location to compare to the aerial sur-
vey count and density data using a number of
performance metrics.
We explored the effect of buffer size and segment

length on the performance measure by assessing differ-
ent buffer sizes (10, 20 and 40 km) around the test
sites and various distances of aerial survey transect
segment lengths (5, 10, 20, and 30 km). The choice of
these buffer sizes and segment lengths was made with
reference to the observed point pattern of the pres-
ence-only sightings, which appeared to exhibit some
clustering. A preliminary analysis in spatstat (Baddeley
et al. 2015) to investigate spatial autocorrelation was
conducted using the same variables as the MaxEnt
model, which revealed clustering up to 15 km that
was unexplained by the modeled environmental varia-
tion. Hence, our choices encompass buffer sizes and
segment lengths that allowed us to explore differences
in predictive performance over a range of potential
spatial autocorrelation.

The spatial block CV evaluated model performance
using a number of metrics, including the area under the
curve (AUC) of the receiver operating characteristic
(ROC), true skill statistic (TSS), and Cohen’s kappa
(kappa). The ROC curve is drawn by plotting the true
positive rate or sensitivity (i.e., the proportion of verified
humpback presences correctly predicted as presences;
omission error) against the false positive rate or speci-
ficity (i.e., the proportion of verified humpback whale
absences falsely predicted as presences; commission
error) for various classification thresholds of presence
and absence from the fitted MaxEnt intensities. The area
under the curve (AUC) can range from 0 to 1, with 0.5
representing an uninformative classifier and values >0.9
considered good, 0.7–0.9 moderate, and <0.7 poor
(Fielding and Bell 1997). TSS incorporates sensitivity
and specificity, is not sensitive to prevalence and is given
by the formula TSS = sensitivity + specificity – 1
(Allouche et al. 2006). TSS provides a value between �1
and + 1, where + 1 indicates perfect agreement and val-
ues of ≤0 indicate a performance no better than random.
Values >0.6 are considered good, 0.2–0.6 are fair to
moderate, and <0.2 are poor. We provide both the maxi-
mum and mean true skill statistic over all possible classi-
fication thresholds. We also compute Pearson’s
correlation coefficient between the fitted MaxEnt inten-
sities and the observed counts of humpback whales and
density estimates standardized for effective strip area
searched for whales within each segment.

RESULTS

Presence-only data and MaxEnt model

In total, there were 381 whale sightings collected from
2003 to 2007 by the BPC aerial surveillance program. Of
these, 131 (34%) were confirmed humpback whales and
107 occurred during July and August and were used to
develop the MaxEnt presence-only model (Smith et al.
2012). The mean test AUC using the Coastwatch data
was 0.86 (range 0.80–0.92 over 50 bootstrap samples),
indicating that the model is reliable at predicting pres-
ence sites from random background sites (Elith 2002).
The environmental variables that contributed the most
information to the MaxEnt model were SST and water
depth, based on the jack-knife test of variable impor-
tance (Appendix S1: Fig. S3). These two variables had
the most useful information as single variables in isola-
tion on training gain (highest gain scores) and the most
predictive power (highest AUC) within the model.
Response curves indicate a preference for waters within
SST ranges of 21°C to 23°C and between 30 and 58 m in
water depth (Appendix S1: Fig. S4).

Independent aerial survey data

In total, 343 unique humpback whale groups were
sighted during the aerial survey, consisting of 562
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individual whales (492 adults, 70 calves; Table 2).
Humpback whales were sighted in all three of the
regions surveyed, with sightings increasing with latitude:
Region 1 (5%), Region 2 (14%), and Region 3 (81%;
Fig. 3). Calves were sighted in all three regions among
sightings of non-calf groups, in both inshore and

offshore waters (Fig. 3). Region 3 had the highest num-
ber of whale sightings although the lowest ratio of calves
to adults, whereas Region 1 had the lowest number of
whale sightings yet the highest ratio of calves to adults
(Table 2). The most common group sizes were single
whales (48%) and groups of two (43%), with Region 3

FIG. 2. Example of the spatial cross-validation (SCV) approach, using a buffer size and segment length of 20 km for the Border
Protection Command (BPC) presence-only training data and systematic aerial survey test data.

TABLE 2. The number of groups and individuals of humpback whales, mean and range in group size, and ratio of calves to adults
sighted in the three survey regions during the 2012 aerial survey.

Survey region

Number of
Calf : adult

ratio

Group size

Groups Individuals Adults Calves Mean Range

1. Port Douglas 16 30 24 6 1:4 1.88 1–3
2. Townsville 49 68 56 12 1:4.7 1.39 1–3
3. Mackay 278 464 412 52 1:7.9 1.67 1–6
Total 343 562 492 70
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having the greatest variation in group size (range one to
six whales).

Density Surface Model of aerial survey data

The fitting of a detection function from the aerial
survey data was based on 295 observations (268 seen
by the front observers and 192 by rear observers; thus
165 were duplicate sightings). To improve the robust-
ness of detection model fitting, aerial sightings data
were left truncated at 0.5 km and right truncated at
4.0 km. The double platform model assumed point
independence because the full independence model
showed a lack-of-fit. The best fitting model was a per-
pendicular distance-only model for detection and a
mark–recapture model that, in addition to distance,
included school size and sea state as covariates. Esti-
mated mean group size was 1.54 � 0.06 (mean � SE)
and the estimated average effective strip half width
(uncorrected for g(0); that is, animals on the transect
line) was 2.25 km. This model is simply a measure of

perception bias and does not take into account the
availability of whales at the surface.
The DSM identified sea surface temperature and

bathymetry as the top performing covariates from the
five habitat variables considered, that contributed the
most information in the model explaining the distribu-
tion of whales in the GBRWHA. The model identified
preferential sea surface temperature between 20° and
22.7°C (peak whale densities between 20.9° and 22.2°C)
and favored habitat in water depth between 5 and 80 m
(highest densities in depths 47–80 m). Three DSMs for
each whale group were developed using the aerial survey
data: (1) all whale sightings (Fig. 4), (2) non-calf groups
(Appendix S1: Fig. S5), and (3) calf groups
(Appendix S1: Fig. S6).

Presence-only model validation using spatial block cross-
validation

The performance of the MaxEnt models fitted in the
spatial block CV and tested with independent aerial

FIG. 3. Map of humpback whale sightings from the 2012 dedicated aerial survey overlayed onto the MaxEnt model.
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survey data was evaluated by a number of metrics. The
influence of spatial buffer size around test points and
segment length of aerial survey data were tested to deter-
mine its effect on model performance (Table 3). Using
leave-one-out CV, both a 10-km and 20-km spatial buf-
fer around the test sites and 20-km transect segment
lengths (165 in total) performed the best in the spatial
CV, with similar results. For a spatial buffer and transect
segment length of 20 km, there was an AUC of 0.742, a
mean and maximum TSS of 0.242 and 0.434, and Pear-
son correlations between the MaxEnt prediction and the
observed counts and densities of whales of 0.383
(Table 3). We chose to highlight a buffer size and seg-
ment length of 20 km due to the transects being 20 km
apart, which allows for minimal movement of individual
whales between transects and reduces the probability of
double-counting whales. We explored other choices of
buffer sizes and segment lengths, which produced rela-
tively similar results (Table 3). AUCs ranged from 0.669
to 0.743, mean and maximum TSS ranged between
0.169 to 0.243 and 0.286 to 0.434, respectively, and Pear-
son correlations between the MaxEnt prediction and the
observed counts and densities of whales ranged between
0.265 to 0.466 and 0.254 to 0.449, respectively. The
results suggest good congruence between the predicted
humpback intensities from MaxEnt and the aerial

survey observations, such that areas of high whale den-
sity closely reflect areas of predicted high habitat suit-
ability.

DISCUSSION

Conservation planning typically requires an under-
standing of the geographical extent of a given species or
landscape to make effective decisions, although accurate
information on species distributions is not always avail-
able. Errors in estimates of species distributions can
reduce the effectiveness (e.g., falsely predicting a species
in unoccupied areas) and efficiency (e.g., failing to pre-
dict a species in an occupied area) of conservation deci-
sions (Hermoso et al. 2015). Some management
frameworks (e.g., spatial risk assessments) may require
more spatially accurate data than others (e.g., Biologi-
cally Important Areas), and model validation becomes
more important within this context. Here, we validated a
MaxEnt model of humpback whale distribution in the
GBR using a spatial block CV approach to determine its
reliability and usefulness in identifying impacts from
human activities (e.g., shipping). Moderate performance
results from the spatial block CV (Table 3) demonstrates
good congruence between the MaxEnt model predicted
intensities and aerial survey observations, and visually

FIG. 4. Density surface model (DSM) of the (a) predicted density and distribution of “all whale” humpback whale groups in
the Great Barrier Reef Marine Park (GBRMP) based on 2012 line-transect aerial survey data and (b) corresponding coefficient of
variation.
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aligns well with the predicted DSM whale densities
(Fig. 4 and Appendix S1: Fig. S1). Areas of higher
whale density closely reflect areas of higher habitat suit-
ability, and hence probability of occurrence. In turn, this
supports the assumption of unbiased sampling and even
coverage in the collection of the BPC opportunistic data
(Smith et al. 2012), which is critical for presence-only
data and modeling techniques (Fiedler et al. 2018). Con-
sequently, it suggests the MaxEnt model is reliable in
identifying current distribution patterns for this mobile
marine species within the GBRMP and highlights con-
flict with current human activities (e.g., shipping).
The application of SDMs to marine species is not as

prolific compared to terrestrial species (Robinson et al.
2011), although their use is increasing due to the logisti-
cal and economical costs of collecting systematic distri-
bution data (Redfern et al. 2006, Robinson et al. 2017).
This is particularly evident for opportunistic, presence-
only data due to the development of modeling
approaches such as MaxEnt, which performs particu-
larly well in its predictive accuracy compared to other
modeling methods (Elith et al. 2006). In our study, the
performance measures from the spatial block CV show
the independent aerial survey presence/absence data sup-
port the MaxEnt habitat model. These data suggest the
area of highest predicted habitat suitability and density
of whales occurs in the southern GBR lagoonal waters
(Appendix S1: Figs. S1 and S4). A possible explanation
for this is that the distance to offshore reefs decreases as
latitude decreases, such that the outer reef structure is
considerably closer to the coast in the north (~50 km)
compared to the south (~150 km). This is due to the nat-
ural structure of the reef, which results in the southern
GBR lagoonal waters providing the greatest area of
available suitable habitat. Both the DSM and MaxEnt
models identified SST (MaxEnt 21°–23°C, DSM 20.9°–
22.9°C) and bathymetry (MaxEnt 30–58 m, DSM 47–80
m) as the two top performing environmental covariates

that contributed the most in predicting the distribution
of whales in the GBRMP.
The performance measures indicated the MaxEnt

model performed moderately, although not perfectly,
when compared to presence/absence data. This is not
surprising given we are comparing two measures of dis-
tribution that are static in time for a mobile marine spe-
cies’. There can be a mismatch in data due to a range of
issues including dynamic environmental predictors and
inter-annual variation, sampling biases, various propa-
gated errors throughout the modeling process, and the
degree to which species have specific ecological require-
ments. The marine environment is a highly fluid environ-
ment with dynamic environmental parameters (e.g., sea
surface temperature, salinity, ocean currents), which can
affect the validity of model assumptions and predictive
model performance (Robinson et al. 2011). This can be
compounded by detectability issues of mobile marine
mammals, which can increase the probability of failing
to observe a species in an area of identified suitable habi-
tat. Furthermore, it is possible that humpback whales
might not have highly restricted ecological requirements
on their breeding grounds and consequently environ-
mental features do not completely explain whale distri-
bution. Other factors may be important drivers of whale
distribution that are not incorporated into the models,
such as social behavior, which may operate at different
spatial scales. For example, water temperature may influ-
ence whale distribution at a broad scale (hundreds to
thousands of kilometers; Rasmussen et al. 2007, Derville
et al. 2019), whereas the availability of suitable reproduc-
tive habitat (e.g., based on water depth; Rasmussen et al.
2007) and social behavior could influence it at a local
scale (tens to hundreds of kilometers; Clapham and Zer-
bini 2015). Ultimately, the distribution of males and
females on the breeding grounds could in part be a con-
sequence of their polygynous mating system (Clapham
2000, Cerchio et al. 2005).

TABLE 3. Measures of performance of the MaxEnt model using spatial cross-validation (SCV) evaluated for different segment
lengths and buffer sizes around aerial survey data test points.

Segment length (km) SCV buffer (km) No. segments AUC

TSS Pearson correlation

Mean Maximum Count Density

5 10 612 0.676 0.176 0.286 0.283 0.272
10 10 314 0.710 0.210 0.336 0.353 0.326
20 10 165 0.743 0.243 0.434 0.390 0.390
30 10 114 0.693 0.193 0.353 0.466 0.449
5 20 612 0.674 0.175 0.288 0.279 0.267
10 20 314 0.712 0.212 0.336 0.347 0.320
20 20 165 0.742 0.242 0.434 0.383 0.383
30 20 114 0.690 0.190 0.327 0.447 0.431
5 40 612 0.669 0.169 0.300 0.265 0.254
10 40 314 0.698 0.198 0.338 0.335 0.311
20 40 165 0.730 0.230 0.413 0.365 0.366
30 40 114 0.679 0.179 0.307 0.443 0.430

Note: Performance measures consist of AUC, True Skill Statistic (TSS) and Pearson correlation.
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Model validation of SDMs should ideally be under-
taken using independent data to increase model reliabil-
ity (Ara�ujo et al. 2005), although this can be rare due to
the expense of acquiring new data. This is particularly
important for presence-only models with potential sam-
pling biases and we suggest is critical for some conserva-
tion management applications, e.g., spatial risk
assessments. However, in the process of acquiring new
data, we demonstrate presence-only models can be used
as a cost-effective approach to inform the design of sys-
tematic surveys for sampling larger areas of interest
(Rebelo and Jones 2010). This can reduce the required
sampling effort and additionally provide more targeted
and detailed species information in BIAs for use in
broad-scale management frameworks. For this to occur
though, it is essential that any spatial bias in the pres-
ence-only observations is understood and addressed
before any validation process (Fiedler et al. 2018), and
an understanding of the sampling process is obtained

where possible (Bird et al. 2013). In our study, we
designed an aerial survey that targeted three areas in the
GBRMP that represented high, medium, and low habi-
tat suitability. This resulted in 18% of the entire Marine
Park (344,400 km2) being surveyed across 7° of latitude.
Humpback whales were sighted in all three of the
regions surveyed, there was an evident decrease in the
number of sightings from high to low habitat suitability,
and whale sightings closely conformed to suitable areas
predicted by the MaxEnt model (Table 2, Fig. 3). The
aerial survey presence/absence data enabled the identifi-
cation of calf and non-calf groups, which was not avail-
able in the presence-only data, and consequently a better
understanding of calving vs. mating areas based on the
presence of a calf was achieved. While calf groups
occurred among non-calf groups in all regions, calf
groups have a greater predicted range throughout the
GBRMP compared to non-calf groups and higher calf

FIG. 5. MaxEnt model of habitat suitability for humpback whales in the GBRMP and overlay of the GBR inner shipping
route.
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to adult ratio in the northern area of Region 1 (Table 2,
Appendix S1: Figs. S5 and S6).
Model error and uncertainty can have a large

impact for some management frameworks, for exam-
ple, spatial risk assessments, where spatially accurate
data are necessary for implementing mitigation strate-
gies. Here we demonstrate that comparing a presence-
only model to fully independent data through a robust
spatial block CV approach, we can increase confidence
in the reliability of the presence-only model for a risk
assessment framework. In the context of this study,
the GBRMP is managed as a multiple-use area and
includes a range of commercial and recreational activi-
ties such as commercial shipping, marine tourism and
recreational boating. The MaxEnt model suggests that
the area located offshore of Mackay is a potentially
important wintering area for humpback whales during
the breeding season (Fig. 3). This area also signifi-
cantly overlaps with the GBR inner shipping route
(Fig. 5). Internationally and within Australia, hump-
back whales are the most common species involved in
ship strikes (Vanderlaan and Taggart 2006, Peel et al.
2018). Given the Australian east coast population is
increasing (11% per annum) at close to the maximum
plausible biological rate and shipping traffic (commer-
cial and recreational) is increasing in the GBR,
impacts from ship strikes and associated ship noise
with breeding humpback whales is likely an emerging
issue. Validation of the MaxEnt presence-only model
has been critical for providing confidence in the pre-
dicted distribution of humpback whales on their
breeding ground to be incorporated at an appropriate
management scale for a spatial risk assessment of ship
strike to humpback whales (Fig. 5). Ultimately, a lack
of systematic, dedicated species data should not be an
impediment to quantitatively assessing risk from
human activities.
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