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How consciousness arises in the brain has important implications for clinical decision-making. We summarize recent
findings in consciousness studies to provide a toolkit for clinicians to assess deficits in consciousness and predict outcomes
after brain injury. Commonly encountered disorders of consciousness are highlighted, followed by the clinical scales
currently used to diagnose them. We review recent evidence describing the roles of the thalamocortical system and
brainstem arousal nuclei in supporting awareness and arousal and discuss the utility of various neuroimaging studies in
evaluating disorders of consciousness. We explore recent theoretical progress in mechanistic models of consciousness,
focusing on 2 major models, the global neuronal workspace and integrated information theory, and review areas of
controversy. Finally, we consider the potential implications of recent research for the day-to-day decision-making of clinical
neurosurgeons and propose a simple “three-strikes”model to infer the integrity of the thalamocortical system, which can
guide prognosticating return to consciousness.
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Severe traumatic brain injury (TBI) typically results in
disorders of consciousness (DoCs). It is generally believed
that 2 essential components to consciousness exist, arousal

and awareness, and individual conscious states are defined by
varying content (awareness) and levels (arousal) of consciousness.1

Plum and Posner2 proposed that impairment of consciousness
should be considered a form of organ failure, just as an elevation in
creatinine represents kidney failure. Impairment of consciousness
carries a significant risk of mortality, which is well-described in

stroke,3 TBI,4 and seizure.5 It is essential for clinicians to un-
derstand the brain circuitry that facilitates consciousness because
clinical management may differ depending on which brain region
is damaged.5,6

In this review, we provide an overview of DoCs and how to
evaluate them and explore current theories of consciousness
and the structures believed to facilitate it. We conclude with a
representative TBI case to illustrate our approach to clinical
decision-making for a comatose patient.

ABBREVIATIONS: anterior, anterior thalamic nuclei; atr, anterior thalamic radiations; ARAS, ascending reticular activating system; CL, central lateral nucleus;
CM, centromedian nucleus; CRS-R, Coma Recovery Scale–Revised; CSC, cuneiform/subcuneiform complex; DAI, diffuse axonal injuries; DMN, default-mode
network; DoCs, disorders of consciousness; dttM, delineated the medial; dttL, delineated the lateral; DWI, diffusion-weighted imaging; FOUR,
ull Outline of Unresponsiveness Score; GCS, Glasgow Coma Scale; GNW, global neuronal workspace; GPi, globus pallidus internus; HCP, Human Connectome
Project; IIT, information theory; IML, internal medullary lamina; LD, lateral dorsal nucleus; LGN, lateral geniculate nucleus; LP, lateral posterior nucleus;
MCS, minimally conscious state; mfb, medial forebrain bundle; MGN, medial geniculate nucleus; Midline, midline thalamic nuclei; MD, mediodorsal; pComm,
posterior commissural; str, superior thalamic radiations; TBI, traumatic brain injury;VA, ventral anterior nucleus;VI, ventral intermediate nucleus;VL, ventral lateral
nucleus; VPM, ventral posterior medial nucleus; VPL, ventral posterior lateral nucleus; VS/UWS, vegetative state/unresponsive wakefulness syndrome.
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COMMON DoC

Neurosurgeons encounter DoC daily. They are classified as
either acute or chronic. Acute DoCs, such as delirium and coma,
are typically reversible. Chronic DoCs, however, are sometimes
irreversible and include dementia, vegetative state/unresponsive
wakefulness syndrome (VS/UWS), and minimally conscious state
(MCS).2,7 Identification of DoC is critical, as prognosis varies
widely, and loved ones are often tasked with making medical
decisions for these patients. Clinical criteria for diagnosis are
extensively reviewed elsewhere.8

CLINICAL ASSESSMENT OF CONSCIOUSNESS

Objectively assessing consciousness is challenging. Currently, 3
behavioral tools are commonly used to assess consciousness. The
Glasgow Coma Scale (GCS), designed in 1974, has been widely
incorporated into clinical guidelines and scoring systems for rapid
assessment of the level of consciousness in trauma patients.9,10 The
Full Outline of Unresponsiveness Score (FOUR) was designed to
improve on the GCS by assessing brainstem reflexes and respiratory
patterns in addition to eye-opening, verbal, and motor function.11

Finally, the Coma Recovery Scale–Revised (CRS-R) grades patients
on 6 subscales based on their responses to sensory stimuli administered
in a standardized fashion.12 These tools are described in Table 1.

CORE ANATOMY OF CONSCIOUSNESS

Clinicians have long sought to understand the physiological
and neuroanatomic correlates of human consciousness. We
outline the current literature supporting the role of brainstem
arousal nuclei and the thalamocortical system as the neuroana-
tomic substrates for consciousness.

Critical Territory: Central Thalamus and Brainstem
Arousal is a prerequisite of consciousness.1 The prevailing theory

for the physiological basis of arousal hinges on excitatory input from
the ascending reticular activating system (ARAS) to the cortico-
thalamic circuit.13,14On electroencephalography (EEG), low-voltage
fast activity predominates over high-voltage slow waves present
during less wakeful states.13 In animal studies, stimulation of the
medial bulbar reticular formation in the pontine and midbrain
tegmentum resulted in desynchronized EEG activity similar to
waking from sleep.13

The ARAS pathways described by Moruzzi and Magoun were
believed to begin in the reticular formation, a cluster of nuclei in
the brainstem. This model held that the cuneiform and sub-
cuneiform nuclei, and the pontis oralis, stimulate the cortex
through thalamic excitation14,15 (Figure 1). However, this model
proved to be an oversimplification because it is now clear that the
ARAS pathways originate from brainstem nuclei within and
outside of the reticular formation proper. These arousal nuclei

provide input to the hypothalamus, thalamus, basal forebrain, and
cortex, with each pathway using a single neurotransmitter.14

The key thalamic nucleus for maintenance and regulation of
arousal is the central lateral nucleus of the intralaminar nuclei
(Figure 2).16,17 The intralaminar nuclei facilitate large-scale
corticocortical network activity in addition to providing direct
input to the thalamocortical system.16,18 Injury to the central
thalamus severely impairs arousal.16 Schiff’s mesocircuit model19

posits that deafferentation of the striatum by the cortex, after brain
injury, leads to a central thalamic “downstate.” This striatal deaf-
ferentation decreases its inhibition of the globus pallidus internus
(GPi), increasing inhibitory tone from the GPi onto central thala-
mus. Positron emission tomography-MRI in patients with brain
injury supports the mesocircuit hypothesis, revealing that increased
GPi metabolic activity accompanied decreased activity in central
thalamus and frontoparietal cortex.20 In anesthetized macaques,
increased activity in these structures correlated with the animal’s level
of consciousness.21 Furthermore, central lateral stimulation aug-
mented behavioral and electrophysiological markers of consciousness
during anesthesia.21,22 These results, in combination with the dis-
covery that central thalamic deep brain stimulation (DBS) improved
the level of consciousness in a MCS patient,23 support the view that
DBS may treat DoC. The patient regained the ability to commu-
nicate and use his limbs, years after injury, suggesting that thalamic
stimulation may salvage residual functionality in patients with DoC.
Therefore, the proposed anatomic basis of arousal lies within the
brainstem ARAS pathways and the central thalamus. Understanding
the circuitry supporting consciousness can help neurosurgeons
evaluate DoC through imaging, where visualization of injuries to
critical structures can guide subsequent treatment.

NEUROIMAGING

CT
CT is the diagnostic scan of choice in acute TBI because it

allows for rapid characterization of life-threatening intracranial
injuries that may require urgent neurosurgical intervention.24 In
particular, CT identifies patients at risk of brainstem injury from
uncal herniation, which confers a high risk of developing a DoC
because of its important role in arousal.25

Recently, the Rotterdam CT score has become a popular
prognostic indicator in TBI.26 Although the older Marshall
scoring system evaluates mortality through findings of cistern
obliteration and midline shift, the Rotterdam system also in-
corporates subarachnoid hemorrhage (SAH) and epidural he-
matoma.27 Higher Rotterdam scores are significantly associated
with unfavorable outcomes and increased mortality, making the
scale useful in predicting early death after TBI.26,28,29

Structural MRI
Although CT is the best initial imaging modality to evaluate

unconscious patients with TBI, structural MRI can better
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TABLE 1. Behavioral Tools for Assessing Consciousness

Tool Features GCS FOUR CRS-R

Range of score 3 to 15 0 to 16 0 to 23

Categories
included

Eye response (4 max points) Eye response (4 max points) Auditory (4 max points)

Verbal response (5 max points) Motor response (4 max points) Visual (5 max points)

Motor response (6 max points) Brainstem reflexes (4 max points) Motor (6 max points)

Respiration pattern (4 max points) Oromotor/Verbal (3 max points)

Communication (2 max points)

Arousal (3 max points)

Score allocation Best eye response Best eye response Auditory function

1. No eye-opening 0. Eyelids remain closed with pain 0. None

2. Eye-opening to pain 1. Eyelids are closed, but open in response to pain 1. Auditory startle

3. Eye-opening to sound 2. Eyelids are close, but open to loud voice 2. Localization to sound

4. Eyes spontaneously open 3. Eyelids are open, but are not tracking 3. Reproducible movement to
command

Best verbal response 4. Eyelids are open, or are opened, tracking
or blinking to command

4. Consistent movement to command

1. No verbal response Best motor response Visual function

2. Incomprehensible sounds 0. No response to pain or generalized myoclonus
status

0. None

3. Inappropriate words 1. Extension response to pain 1. Visual startle

4. Confused speech 2. Flexion response to pain 2. Fixation

5. Intelligible and oriented speech 3. Localizes to pain 3. Visual pursuit

Best motor response 4. Thumbs up, fist, or peace sign 4. Object localization: Reaching

1. No motor response Brainstem reflexes 5. Object recognition

2. Abnormal extension to pain 0. Absence of pupil, cough or corneal reflex Motor function

3. Abnormal flexion to pain 1. Pupil and corneal reflexes are absent. 0. None/flaccid

4. Withdrawal from pain 2. Pupil or corneal reflexes are absent. 1. Abnormal posturing

5. Localizes to pain 3. One pupil wide and fixed 2. Flexion withdrawal

6. Obeys motor commands 4. Pupil and corneal reflexes present 3. Localization to noxious stimulation

Respiration pattern 4. Object manipulation

0. Breathes at ventilator rate or apnea 5. Automatic motor response

1. Breathes above ventilatory rate 6. Functional object use

2. Not intubated, irregular breathing Oromotor/verbal function

3. Not intubated, Cheyne–Stokes breathing pattern 0. None

4. Not intubated, regular breathing pattern 1. Oral reflexive movement

2. Vocalization/oral movement
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characterize the injury after patients are stabilized.30 It is more
sensitive for contusions, axonal injury, and extra-axial hemorrhage
than CT and is recommended when neurological symptoms fail to
improve or deteriorate.30 Voxel-based morphometry on MRIs of
patients with DoC after trauma revealed significantly more
thalamic and midbrain atrophy, essential structures for mainte-
nance of arousal.31

Diffusion tensor imaging (DTI) is particularly useful for as-
sessing white matter abnormalities within the brain, such as

traumatic axonal injury.32 Tractography analysis of diffusion-
imaged normal brains detailed the structural relationships within
the ARAS arousal pathways of the human brainstem.14 More
recently, our work has demonstrated that DTI can be used to assess
the structural integrity of thalamocortical projections and that
preservation of these connections is associated with earlier com-
mand following after severe TBI.33-35 Therefore, structural imaging
methods can assess injuries to areas critical to consciousness and
provide valuable prognostic information.

TABLE 1. Continued.

Tool Features GCS FOUR CRS-R

3. Intelligible verbalization

Communication

0. None

1. Nonfunctional: intentional

2. Functional: accurate

Arousal

0. Unarousable

1. Eye-opening with stimulation

2. Eye-opening without stimulation

3. Attention

CRS-R, Coma Recovery Scale–Revised; FOUR, Full Outline of UnResponsiveness; GCS, Glasgow Coma Scale.

FIGURE 1. Diffusion MRI tractography of the ascending reticular activating system in vivo, delineated by the human cuneiform–subcuneiform complex in the midbrain.
Deterministic tractography from a 7T acquisition was performed in an individual subject from the HCP S1200 cohort (b = 1000, 2000 s/mm2, TR/TE = 7000/71.2 ms,
and slice thickness = 1.05 mm isotropic). A, Coronal and B, sagittal sections of the projections from the reticular formation to the intralaminar nuclei of the thalamus. The
CSC was used as the seed, and the CL nucleus of the thalamus was the target. Tractography delineated the medial (dttM) and lateral (dttL) subdivisions of the dorsal tegmental
tract. pComm fibers are visualized in A, at the level of the midbrain. In B, no termination masks were used to delineate the global white matter tracts that are projections from
the dtt. Labeled neuroanatomic landmarks are mfb, atr, and str. atr, anterior thalamic radiations; CL, central lateral; CSC, cuneiform/subcuneiform complex; dttM,
delineated the medial; dttL, delineated the lateral; HCP, Human Connectome Project; mfb, medial forebrain bundle; pComm, posterior commissural; str, superior thalamic
radiations TE, echo time; TR, repetition time.
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TBIs and diffuse axonal injuries (DAI) are also commonly graded
using a combination of histopathology and structural imaging to
predict whether a patient may regain consciousness. Adams et al
initially classified DAI based on histopathological findings; however,
this grading scale was later translated to MRI findings by Gentry
et al.35,37 Although the prognostic validity of these grading scales is
controversial, meta-analysis has supported the utility of MRI-based
DAI grading scales in predicting functional outcomes.38,39

Functional MRI
Brain networks supporting consciousness are observable with

both task-based and resting functional MRI (fMRI). Specifically, the
return of consciousness after anesthesia was associated with increased
brainstem, thalamic, hypothalamic, and anterior cingulate cortical
activation and limited activation of frontal and parietal regions.40 The
latter cortical regions also exhibited increased functional connectivity in
conscious individuals.40 At rest, however, other structures are active,
making up a so-called default-mode network (DMN).41,42 The DMN,

consisting of the posterior cingulate, precuneus, and medial prefrontal
cortex, is correlated to the level of consciousness.41 Studies on DMN
functional connectivity during both conscious sedation43 and anes-
thesia44,45 have produced conflicting results. However, electrophysi-
ological studies suggest that activity in the posteromedial DMN may
be a substrate for conscious experience.46,47

Furthermore, task-based fMRI studies have also been used to
assess the level of consciousness. These studies identified a sub-
group of apparently unconscious patients who demonstrate brain
activation during motor commands in the absence of a discernable
behavioral response.48-50 “Covert consciousness” can also be
detected with EEG, underscoring the utility of these methods in
assessing patients with DoC.49,51

THEORIES OF CONSCIOUSNESS

Understanding consciousness from a theoretical perspective
has proved to be challenging. Two prevailing theories are the global

TABLE 2. Overview of the 2 Main Theories of Consciousness

Theory parameters GNW IIT

Neural correlate Frontal, parietal cortex Parietal cortex (“hot zone”)52

Role of neural correlate Global broadcasting of conscious information across
interconnected prefrontal–parietal cortices

Posterior cortex generates the cause–effect power that allows
for maximum integration of information

Central concept related to
neural correlate

Ignition phase: top-down processing of a selected
stimulus that has reached cortex level, higher-order
GNW neurons

Phi (Φ): term used to quantify the integration of subsets of
information based on the connectivity pattern, which
together creates a conscious experience

GNW, global neuronal workspace; IIT, integrated information theory.

FIGURE 2. A, Illustration of the various thalamic nuclei from a superior view. The dashed line represents the location of the cross-section shown in B. The CL is hypothesized
to be integral to consciousness (arousal).17 anterior, anterior thalamic nuclei; CL, central lateral nucleus; CM, centromedian nucleus; IML, internal medullary lamina; LD,
lateral dorsal nucleus; LGN, lateral geniculate nucleus; LP, lateral posterior nucleus; MGN, medial geniculate nucleus; Midline, midline thalamic nuclei; MD, mediodorsal;
VA, ventral anterior nucleus; VI, ventral intermediate nucleus; VL, ventral lateral nucleus; VPM, ventral posterior medial nucleus; VPL, ventral posterior lateral nucleus.

NEUROSURGERY PRACTICE VOLUME 4 | NUMBER 2 | 2023 | 5

BRAIN CIRCUITRY OF CONSCIOUSNESS



neuronal workspace (GNW) theory and the integrated information
theory (IIT).We discuss these theories below and summarize them in
Table 2.

GNW
Baars53 postulated that a network of “unconscious specialized

processors,” capable of communicating with the rest of the system
through the global workspace, facilitates conscious experience.
Dehaene expanded on this model, stating that the specialized
processors are bottom-up neural correlates carrying discrete pieces
of information to create the content of consciousness when
projected throughout the global workspace.54,55

According to GNW, conscious access occurs in 2 phases. In Phase
I, a stimulus ascends the cortical hierarchy of specialized processors in
a bottom-up fashion. If selected, based on salience and the indi-
vidual’s attention state, Phase II ensues. During Phase II, the ignition
phase, the stimulus is amplified in a top-down manner and main-
tained by the sustained attention of GNW neurons throughout the
global workspace, whereas other simultaneous stimuli are in-
hibited.55 Ignition is posited to occur ∼250-500 ms after stimulus
onset and is characterized by a broad cortical evoked potential,
known as P3b.55,56 P3b is a subcomponent of the event-related
potential (ERP) known as P3 or P300, elicited on stimulus iden-
tification tasks.56,57 P3b is believed to correlate with the subjective
report of the target stimulus, thus implicating it in conscious pro-
cessing.55,56However, whether this ERP is confounded by themotor
response to target identification remains a question.58-60

Dehaene and colleagues61 further elaborated on the GNW by
distinguishing between subliminal and preconscious processing.
They defined subliminal processing as bottom-up stimuli with
minimal thalamocortical activation. Subliminal processing never
reaches the global workspace and, therefore, is not conscious.61

Alternatively, preconscious processing has sufficient thalamocortical
activation but does not receive sufficient attention, rendering the
information potentially accessible to conscious processing.61 This
distinction aligns with the no-report paradigm discussed later.

IIT
In 2004, Tononi introduced IIT,62 which proposes a set of 5

phenomenological axioms, that is, consciousness exists and is
structured, informative, integrated (irreducible), and exclusive (1
experience at a given time). These axioms have corresponding
physical postulates, which specify the necessary properties of a
system to generate a conscious experience. First, the system has
causes and effects, including system elements (eg, neurons) having
causes and effects within the system. Second, the elements of the
system form higher-order mechanisms. Third, the interacting
elements have different possible states representing concepts,
called conceptual structures. Fourth, a conceptual structure is ir-
reducible to independent elements. Information generated by the
system, above and beyond the information generated by the
individual elements of the system, is called integrated information
also known by the term phi (Φ). Finally, only 1 set of elements,

among all possible overlapping sets, gives rise to a conscious
experience. According to IIT, the quality, or content, of each
conscious experience corresponds to the conceptual structure. The
quantity of the experience, or level of consciousness, corresponds
to integrated information (Φ).62,63

Casali and colleagues64 designed a measure to assess the in-
tegrated information content of EEG activity after transcranial
magnetic stimulation (TMS). Their perturbational complexity
index served as a proxy for Φ, estimating the cause–effect rela-
tionship of perturbation-induced activity and thus differentiating
levels of consciousness.64 In a recent study, investigators recorded
local field potentials in macaques and discovered that activity in
the parietal, thalamic, and striatal regions contributed most to Φ
estimates during wakefulness, but not the frontal lobes.65

Therefore, parietal circuits incorporating the striatum and thal-
amus best predicted consciousness.65 This supports Tononi’s
original theory62 that the thalamocortical system represents the
neural correlates of consciousness (NCC), given the diversity of
both intrathalamic and thalamocortical connections promoting
information exchange across disparate brain regions. The
structure–function relationship of this network facilitates the
information integration critical to conscious experience.

AREAS OF CONTROVERSY

Theoretical Controversy
Although both GNW and IIT present theoretical models

explaining consciousness, the 2 theories are incompatible. Ac-
cording to GNW, the frontal cortex is essential for consciousness,
as represented by the importance of the ignition phase. To review,
ignition is the top-down processing of a selected stimulus that has
reached higher-order GNW neurons. Only stimuli aligning with
the top-down goals of the cortical GNW neurons reach conscious
awareness.55 By contrast, proponents of IIT assert that the parietal
and sensory cortices contain the true neural correlates of con-
sciousness. As previously mentioned, recent evidence suggests that
consciousness depends on integration of information (Φ) between
the parietal cortex, thalamus, and striatum, not frontal cortex.65

This gives rise to the so-called front vs back debate.66 However,
the controversy regarding the neural correlates of consciousness
extends beyond GNW and IIT. We now address recent skepti-
cism regarding the significance of both the thalamus and frontal
lobes in consciousness.

Controversy Surrounding Thalamic Contributions
to Consciousness
Despite evidence of the thalamic involvement in consciousness,

its role is debated. In a retrospective cohort of patients with
thalamic strokes, lesions limited to the thalamus did not severely
affect the level of consciousness.67 These results align with some
previous rodent data68 and support the belief that thalamic
contributions to arousal may be due to its shared vascular supply
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with arousal-producing brainstem structures.65 Similarly, a study
on patients who survived hemorrhagic stroke found little evidence
of impaired consciousness in individuals with thalamic lesions.68

However, these lesions were not complete/bilateral.
Indeed, it is possible that the thalamus is critical for the content

of consciousness, but not arousal. Our observations in patients
with severe TBI and in silico have demonstrated that thalamic
injury results in dysfunctional cortical networks with simplistic
and repetitive characteristics, supporting the idea that thalamic
input is crucial for the content of consciousness.33

Frontal Lobes: Can There be Reasonable Recovery with
Frontal Lobe Damage?
Substantial evidence from both brain lesioning and stimulation

studies undermines the importance of the frontal lobes in con-
sciousness. Brickner69 described the first patient to undergo bi-
lateral frontal lobectomy sparing only Brodmann area 6 and Broca’s
area. Despite postoperative mood changes, the patient’s exami-
nation was unremarkable. Interestingly, an epileptic patient who
underwent complete bilateral prefrontal resection experienced an
increase in his intelligence quotient.70 A woman with significant
bilateral prefrontal damage graduated high school and lived with

intact consciousness.71 Thus, lesion studies suggest that intact
frontal lobes are not required for consciousness.
Boly and colleagues assert that areas of the parietal, temporal, and

occipital lobes, known as the posterior hot zone, are more integral to
consciousness than the frontal lobes.6,72 Stimulation studies have
corroborated this claim.73-75 The case for a posterior hot zone aligns
with findings from studies that used no-report paradigms, which
separate the experience of consciousness from the report of con-
sciousness. These paradigms typically do not cause frontal activation.
The purpose of this paradigm is to isolate the NCC from the brain
regions involved in the report of consciousness.76,77 A key example is
the binocular rivalry task implemented by Frassle and colleagues.78

In this fMRI study, the authors presented competing visual stimuli to
healthy participants who were instructed to indicate dominant
stimuli by pressing a button (report). Importantly, eye movements
that occurred independent of button-pressing allowed the authors to
dissociate report from the perceptual experience. They found that
that parietal and occipital cortices were activated even without report
(button-pressing), whereas frontal cortex was not.78 Therefore, the
no-report paradigm further supports the idea that the frontal lobes
are not critical for phenomenal consciousness (subjective experience).

“THREE-STRIKES” MODEL AND CASE
APPLICATION

“Three-Strikes” Model for Prognosticating in TBI
Although previous TBI prognostic models have used clinical

(GCS, FOUR, and CRS-R), radiological (Rotterdam, DAI,
fMRI), or EEG findings in isolation, we felt that a more com-
prehensive prognostic model was necessary. Our proposed
model—the “Three-Strikes”model—consists of integrating 3 key
components: (1) the neurological examination, (2) imaging, and
(3) the pattern of EEG activity (Figure 3). A poor result on any of
these assessments constitutes a “strike,” whereas a positive result
does not. Prognosis is poorer with more strikes. Positive findings
on examination include complex (nonposturing) responses to
pain, spontaneous movements, reactive pupils, and an im-
provement in daily CRS-R assessment. On MRI, the presence of
intact thalamocortical projections is another positive sign. These
projections are best assessed through DTI, but more conventional
diffusion-weighted sequences (diffusion-weighted imaging
[DWI]) can also show these injuries.79,80 Finally, low-amplitude,
high-frequency activity (alpha and beta) on EEG is a positive
prognostic indicator.33,34,81,82 “Strike-earning” results on phys-
ical examination, imaging, and EEG include posturing, damaged
thalamocortical projections, and absence of a posterior dominant
rhythm, respectively.
Although the “Three-Strike” model’s components may un-

doubtedly change during a patient’s hospital course, the strength
in this proposed model is its comprehensive nature. For example,
if a patient were to suffer an adverse event during their hospital
stay, such as recurrent apneic episodes, the “Three-Strike” model
components can be easily reassessed for renewed prognostication.

FIGURE 3. Schematic of the proposed “three-strikes” model. Left: signs on
neurological examination, diffusion-weighted imaging, and EEG that
constitute a strike (red ‘X’), suggesting a poorer prognosis. These signs include
posturing, damaged thalamocortical projections, and the absence of a
posterior dominant rhythm, respectively. Right: reassuring signs on neu-
rological examination, diffusion-weighted imaging, and EEG including
purposeful movement (localization to endotracheal tube), intact thala-
mocortical projections, and a discernable posterior dominant rhythm, re-
spectively. These signs do not merit a strike. Tractography images from
Mofakham et al, 2022.33 © S Mofakham, used with permission.
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Although anMRI may be cumbersome and expensive to reobtain,
a thorough physical examination and EEG recordings can be
easily reobtained cost-effectively. In addition, MRI structural
findings are less likely to change acutely and dramatically com-
pared with physical examinations and EEG.
We believe that incorporating this coarse framework into

clinical practice can help neurosurgeons and families make in-
formed decisions regarding TBI patient management. Notably,
this conceptualization is not designed for quantitative predictions;
we have proposed a three-point Time to Follow Commands score
elsewhere for this purpose (high-impact trauma, a single fixed and
dilated pupil, and poor Rotterdam CT score). Each gets a point,
with three points indicating that command following is likely to
return late or never.29

CONCLUSION

We have reviewed the current literature on consciousness and
discussed its anatomic correlates, namely, the thalamus and
cortex. We believe that thalamocortical connectivity is essential
for the content of consciousness but nonetheless have addressed
criticisms of prevailing theories of consciousness. Finally, we
explored an illustrative case (see Supplemental Digital Content,
http://links.lww.com/NEUOPEN/A57) and presented our three-
strikes model to provide an approach for clinicians in diagnosing
and prognosticating patients with DoC.
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