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Abstract
Several pieces of the puzzle of the natural history of tuberculosis are assembled in this review to illustrate the potential reservoirs and sources

of the Mycobacterium tuberculosis complex (MTBC) mycobacteria, their transmission to animals and humans, and their fate in populations, in a

co-evolutionary perspective. Millennia-old companions of mammalian and human populations, MTBC are detected in the soil, in which they

infect and survive within vegetative amoebae and cysts, except for Mycobacterium canettii. Never detected in the sphere of plants, they are

transmissible by transcutaneous, digestive and respiratory routes and cause an infection of the lymphatic system with secondary dissemination

in most tissues, in which they determine a specific and non-pathognomonic granulomatous inflammatory reaction; in which MTBC survives in

dormant form irrespective of MTBC species and mammalian species; indicating that the current epidemiology in mammalian populations is

essentially governed by the probabilities of contact between mammalian species and MTBC species. Individual variabilities in clinical

expression of tuberculosis are related to MTBC species, strain and inoculum; host genetic factors; acquired modulations of the

inflammatory response; and probably human microbiota. This review of the literature suggests an evolutionary natural history of telluric

environmental mycobacteria, satellites of unicellular eukaryotes, transmissible to mammals via the digestive and then respiratory tracts, in

which they determine a fatal contagious infection that is primarily lymphatic and a quiescence-mimicking encysted form. This review

opens perspectives for microbiological and translational medical research.
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Introduction
Tuberculosis is one of the leading infectious causes of death
worldwide, and it is estimated that approximately one-quarter of

the world’s population is latently infected with Mycobacterium
tuberculosis [1,2]. This fatal infectious disease is causedby13 species

of closely related mycobacteria forming the Mycobacterium tuber-
culosis complex (MTBC) [3]. Because of their genomic proximity,
This is an open access arti
the exact taxonomic status of these species is debated, and some
authors consider the species of the MTBC as ecotypic variants of

M. tuberculosis [4]. However, these species or ecotypes have
genomic, genetic and phenotypic differences that may explain dif-

ferences in reservoirs and modes of transmission. Mycobacterium
tuberculosis does not cause tuberculosis only in humans, being

described in a variety of animals, mainly mammals [5].
The outcome for persons infected with M. tuberculosis is

highly variable, ranging from total elimination of the pathogen
by the inflammatory and immune system, to long-term
asymptomatic transport during so-called dormant tubercu-

losis, to symptomatic tuberculosis, and finally death [6]. The
role of the microbiota in modulating the expression of

M. tuberculosis infection is emerging, and the continued trans-
mission of M. tuberculosis is the main factor in maintaining the

high incidence of this disease [7].
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Mycobacteria of the MTBC
Of the 13 species or ecotypes currently described in MTBC,

only nine have been associated with human tuberculosis,
including the biliary bacillus Calmette–Guérin (BCG) vaccine
[8,9]. MTBCs have 72 highly conserved genomic sequences

(>99.9% nucleotide identity) but 73 different phenotypes. It has
been suggested that MTBC evolved from a common ancestor

via 74 successive DNA deletions/insertions, giving them their
differences in pathogenicity [10]. The genomic evolution of

these mycobacteria is achieved by a progressive decrease in the
coding capacity of their genome, which is exclusively chromo-

somal, with loss of genomic fragments called deletion regions
and invasion of the genome by insertion sequences [11].

Mycobacterium canettii is the closest species to the common
ancestor of MTBC, having a genome of 4.48 ± 0.05 Mb [11]
coding for unique functions such as the Trans cobalamin gene.

Mycobacterium canettii is responsible for non-contagious
tuberculosis [12] and has a geographical distribution limited

to the Horn of Africa. Microbiologically, M. canettii has a 17-
hour doubling time that is one-third shorter than that of

M. tuberculosis (25 hours) and produces smooth colonies, unlike
M. tuberculosis, which has a rough morphotype [12]. Mycobac-

terium tuberculosis has a worldwide distribution in six major
phylogenetic lineages (lineages 1, 2, 3, 4, 7 and the recently
described lineage 8) [13] that are unevenly distributed across

the world. L1 and L2 lineages predominate in East and South-
east Asia, while L1 and L3 lineages predominate in the Indian

subcontinent, L3 and L4 lineages predominate in Central Asia
and Russia, and the L4 lineage predominates in Europe, the

Americas, North Africa and the Middle East [14]. It is in sub-
Saharan Africa that we find the greatest variety of lineages,

because in addition to the L1, L2, L3 and L4 lineages, two new
lineages have recently been identified, the L7 lineage in Ethiopia

and the L8 lineage in Rwanda and Uganda [13–15]. Mycobac-
terium africanum has two lineages (L5 and L6) distributed
exclusively in West Africa and responsible for tuberculosis that

is indistinguishable from that caused by M. tuberculosis [16–18].
The virulence of MTBC is variable and differs within strains of

the same species, for example: modern lineages of
M. tuberculosis (L2–L4) are more virulent and responsible for

most tuberculosis cases in the world [10]. Specifically, the
Beijing (L2) strains are the most virulent MTBC for humans

with a predisposition to develop further resistance to anti-
tuberculosis drugs and have a high capacity for propagation,
illustrated by the fact that these strains have been described in

cattle and dogs [5,10,19]. This virulence of Beijing strains is
correlated with deletions in the pks15/1 gene and in the RD207

region [20]. In contrast, Mycobacterium bovis BCG is the least
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 41, 100712
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virulent strain among MTBC, its attenuation follows the loss of

the RD1 region in its genome [21].

Human–environment interfaces: entrance
doors and microbiota
Since the work of Villemin and the introduction of
M. tuberculosis culture by Robert Koch, many scientists have

tried to determine how tuberculosis is transmitted to humans
[7,22]. A large part of the studies on tuberculosis transmission

were carried out at the end of the nineteenth/early twentieth
century. These studies focused on culture to demonstrate

viability, and inoculation of animals to confirm the pathology
[7]. Several theories existed at the time, and Calmette and
Guérin reported in 1905 the intestinal origin of pulmonary

tuberculosis [23]. Other works reported the culture of
M. tuberculosis in the environment [7]. It should be considered

that, at that time, knowledge of the diversity of mycobacteria
(tuberculous and non-tuberculous) was more limited, so that

several studies were carried out with environmental myco-
bacteria, or with MTBC different from M. tuberculosis [7]. An

important part of our knowledge about tuberculosis trans-
mission comes from the investigation of cases acquired during

care. It has been well recognized since the 1950s that the
respiratory tract is the main route of transmission of
M. tuberculosis; however, this does not exclude other routes of

transmission [7] (Fig. 1).

Respiratory route
Innovative studies by Riley and Wells in the 1950s and 1960s
showed that exposure of guinea pigs to aerosol droplets from

patients with pulmonary tuberculosis resulted in substantial
tuberculin conversion rates in the guinea pigs [24,25]; and this
work has recently been replicated with consistent results [7].

These studies have clarified the basic principles of airborne
transmission of pulmonary tuberculosis, which is now widely

accepted as the major route of transmission [7,26]. Cases of
transmission of M. tuberculosis by aerosolized M. tuberculosis

have been reported during autopsy [7] and surgical procedures
of incision and irrigation of tuberculous abscesses [7]. Respi-

ratory transmission also includes M. bovis tuberculosis, not only
in persons exposed to aerosols from animals infected with

M. bovis [27,28], but also by human-to-human transmission of
M. bovis [28–30].

In mice, infection with M. tuberculosis aerosols leads to a loss

of intestinal microbiota diversity 6 days after infection [31].
These rapid changes in the microbiota are attributed to the

host immune response, with all mice showing a recovery of
microbial diversity within a few days [31]. The role of the
nses/by-nc-nd/4.0/).
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respiratory microbiota in the development of tuberculosis re-

mains uncertain. In addition, the data show that there is a
unique microbial diversity between individuals with tuberculosis

and healthy controls, but the results remain controversial [32].
Importantly for the diagnosis of tuberculosis by laboratory

culture, the protocols include a step of chemical decontami-
nation (sodium hydroxide) of the sputum to remove fast-
growing microorganisms to facilitate the growth of mycobac-

teria [33]. This decontamination may have contributed to the
non-observance by culture of certain bacterial communities

that could coexist with M. tuberculosis in the lungs and respi-
ratory tract, opening prospects for clinical microbiology work.

Digestive route
Historically, the digestive tract has been the primary route for
BCG vaccine administration, illustrating the possibility of sys-

temic passage of MTBC after ingestion [34,35]. This route of
administration was abandoned in most countries following the

‘Lübeck Disaster’, and in 1976 Brazil was the last country to
abandon this route, because of poor response to skin testing

and for economic and operational reasons [36,37]. Currently,
the possibility of a digestive gateway for MTBC is neglected

despite published evidence, illustrated by the ‘Lübeck Disaster’
in Germany in 1929–1933 [38]. During this episode, oral
administration to 251 neonates of BCG vaccine that was acci-

dentally contaminated with M. tuberculosis caused tuberculosis
in 228 children, all of whom developed lymph node involve-

ment, while a pulmonary form was reported in 30 children; 71
FIG. 1. Reservoirs of the Mycobacterium tuberculosis complex and routes of
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(28.3%) died of tuberculosis [38]. This accident shed light on

the transmissibility of M. tuberculosis through the digestive tract,
and in this accident the form of tuberculosis caused by the

M. tuberculosis was similar to the forms of tuberculosis caused
by M. bovis in humans, most commonly affecting the lymph

nodes after entry of the pathogen through the digestive tract
[38]. For M. canettii, current clinical and experimental data
[12,39] suggest the existence of an unknown environmental

reservoir, and digestive transmission via food with local repli-
cation in the oropharynx and cervical lymph nodes and

increased dissemination in the respiratory and digestive tracts
[12]. Digestive transmission of tuberculosis is known particu-

larly for zoonotic tuberculosis caused mainly by M. bovis [27].
Zoonotic tuberculosis is primarily a foodborne disease that

follows consumption of unpasteurized milk or milk products
[27]. Meat from animals with tuberculosis is not recognized as a
vehicle for transmission of M. bovis, at least when cooked, and

M. bovis is rarely found in muscle [27]. WHO has estimated that
in 2018 zoonotic tuberculosis with M. bovis caused 143 000

new cases and 12 300 deaths [2].
Abdominal tuberculosis represents 12% of extrapulmonary

tuberculosis cases and 1%–3% of total tuberculosis cases [40];
15%–25% of abdominal tuberculosis cases have concomitant

pulmonary tuberculosis [41]. Modes of MTBC infection in cases
of abdominal tuberculosis include swallowing infected sputum,

ingestion of infected food, lymphatic spread from an extra-
abdominal focus, and by contiguous spread from urogenital
organs [40,42].
transmission to humans.

© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 41, 100712
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Abdominal tuberculosis can be classified into four forms:

luminal (ileocaecal), peritoneal, nodal and visceral involving
solid intra-abdominal organs [40].

Several series of cases of abdominal tuberculosis have been
reported, in some studies this localization is mainly attributed

to M. bovis then to M. tuberculosis [43–45].
Alteration of the intestinal microbiota after antibiotic

administration has been reported in mouse models to cause

susceptibility to tuberculosis. Mice with microbial dysbiosis
showed a significant increase in M. tuberculosis in the lungs and

spread to the spleen and liver [46]; similar results to those
observed at the induction of dysbiosis by Helicobacter hepaticus

infection [47].

Tuberculosis of inoculation
Cutaneous inoculation is also a rare route of transmission,

reported in some accidental cases among health-care workers
[48,49], or in patients following corticosteroid injections or

skin trauma [50] and tattooing [51]. This route of inoculation
results in primary cutaneous tuberculosis. On the other hand,

facial cutaneous tuberculosis, peri-ocular cutaneous tubercu-
losis, has been described and the authors hypothesized that this

unusual presentation could be due to minor trauma followed by
inoculation [52]. Annobil et al. described primary tuberculosis
of the penis with bilateral hypertrophy of the inguinal lymph

nodes in a 4-month-old baby circumcised at 6 weeks of age;
possibly related to the barber-operator having moistened the

razor with sputum before sharpening it [53]. Also, an anecdotal
report of sexual transmission of M. tuberculosis has been

described, involving penile cutaneous tuberculosis followed by
endometrial tuberculosis in the patient’s partner; the two

strains ofM. tuberculosis were identical by molecular typing [54].
In rare cases, tuberculosis can be contracted after solid organ

transplantation from an infected organ donor, and because of
immunosuppression, transplant recipients frequently develop
extrapulmonary or disseminated TB; however, tuberculosis

after solid organ transplantation is most often caused by pri-
mary infection or reactivation of a latent infection [55].
Fate of M. tuberculosis in humans
Once inhaled, M. tuberculosis travels from the trachea to the
lungs where it is phagocytosed by alveolar macrophages in

which it is internalized in the phagosomes and then in the
phagolysosomes [56,57]. However,M. tuberculosis can block the

acidification and maturation of phagosomes to survive in the
host alveolar macrophages [58,59]. Macrophages and other

immune cells aggregate to form the granuloma [60], in which
mycobacteria are both intracellular within macrophages and
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 41, 100712
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extracellular [61]. This granuloma is formed mainly by macro-

phages infected and uninfected with M. tuberculosis bacilli sur-
rounded by immune cells including granulocytes, dendritic cells,

natural killer cells and T and B lymphocytes [60] (Fig. 3). Under
these conditions, both innate and adaptive immune defences are

involved in the control of M. tuberculosis [62], limiting their
replication and leading to a state of equilibrium between the
host organism and the pathogen. In the granuloma,

M. tuberculosis bacilli are exposed to a variety of stress condi-
tions, in particular hypoxia, which promotes the dormancy of

the mycobacteria [62]. This dormant state in M. tuberculosis
results in an ability to persist in host tissues without replication

for months or even years, without causing tuberculosis disease,
and resulting in chronic asymptomatic infection in up to 90% of

infected persons—known as latent tuberculosis infection
[6,63–65]. On the other hand, 5% of infected persons will
develop active tuberculosis [66], whereas others will be

competent to eliminate the pathogen. Dormant mycobacteria
may reside in old granulomatous lung lesions (in the macro-

phage and/or caseum), pulmonary lymph nodes [67], or adipose
tissue, which is described as a large reservoir housing dormant

mycobacteria and preserving them from antimicrobial agents
and the host immune system [68]. In 5%–15% of latently

infected persons, M. tuberculosis can reactivate, leading to active
tuberculosis [68]. Indeed, when host immunity is compromised

and environmental conditions around M. tuberculosis become
conducive to its reactivation, these bacilli accelerate replication,
leading to necrosis of infected macrophages and release of

intracellular mycobacteria, which could infect new cells and
spread to other tissues [69,70]. In addition to their ability to

reactivate, the important role of dormancy in the natural his-
tory of tuberculosis lies in the fact that dormant mycobacteria

are potentially infectious. Indeed, this has been demonstrated
not only experimentally [69,70] but also clinically, where it has

been found that dormant mycobacteria can be even more in-
fectious than metabolically active mycobacteria in the expec-
torant of patients with pulmonary tuberculosis [71].

Tuberculosis in the animate environment:
animals
Data from the literature indicate that except for M. bovis BCG,
which is a vaccine strain, and M. canettii, all other MTBC (11/13

species) can infect one or more animal species, including
humans (Fig. 2). MTBC species are genetically closely related

(>99.9% nucleotide identity) and some authors classify them
into strains that are adapted to the human host, such as

M. tuberculosis and M. africanum, and those that have the po-
tential to spread and transmit in a wide variety of wild and
nses/by-nc-nd/4.0/).
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FIG. 2. Species distribution of Mycobacterium tuberculosis complex in mammals; based on references [8,23,26,28,29,32,33,37,38,85].
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domestic animal hosts [3]. However, it should be noted that the
species barrier is not strict and in rare situations M. tuberculosis

can infect domestic animals, or wild animals in captivity. More
than 15 species of animals can be infected with M. tuberculosis,
including parrots [5,72,73]; similarly, M. africanum has been

sporadically isolated from African monkeys with active tuber-
culosis and from cows [18,74]. Five MTBC have already been

reported as zoonoses, causing tuberculosis in animals and
transmissible to humans, including M. bovis [27,75–77], Myco-

bacterium caprae [78,79], Mycobacterium microti [80–82],
Mycobacterium orygis [83,84] and Mycobacterium pinnipedii

[85,86]. However, the main agent of tuberculosis in animals is
M. bovis, which can infect a wide range of mammals and has a

worldwide distribution in cows [75,87].
Other MTBC species identified in animals have never been

reported in humans, including Mycobacterium mungi, Mycobac-

terium suricattae, Dassie bacillus and Chimpanzee bacillus
[8,9,86,88]. These data suggest that there is no specificity be-

tween MTBC species and infected mammalian species, and that
the current distribution of MTBC species among mammals

results from the probability of contact.
Tuberculosis in the inanimate environment
Current data in the literature depict a scenario in which MTBC
were initially environmental mycobacteria that evolved from
This is an open access artic
unicellular eukaryotic (amoeba) opportunistic pathogens to
mammalian opportunistic pathogens and then to contagious

pathogens in humans (Fig. 1). Some studies have shown the
persistence of M. tuberculosis and M. bovis in soil experimentally
inoculated in the laboratory under controlled temperature and

humidity conditions for a period of 12 months [89]. This
experimental observation was followed by field observations in

Tehran, Iran, where 1% of the soil samples and 10% of the
water samples were found to have grown M. tuberculosis, which

was re-cultivated 9 months after sampling; and whose geno-
types determined by spoligotyping corresponded in part to

those of tuberculosis patients diagnosed in Tehran [90]. Recent
work has reviewed all the experimental and field observation

data to confirm the possibility of prolonged storage of MTBC in
soil [7]. Patients with pulmonary tuberculosis pass
M. tuberculosis in the stool, which is an alternative to sputum for

the diagnosis of tuberculosis by culture [91] and by molecular
biology [92]. Individuals infected with M. tuberculosis could

contaminate the environment [90]. In addition, there has been a
reported case of transmission of M. tuberculosis to an embalmer

from the corpse of a patient who died of pulmonary tubercu-
losis [93], illustrating that the corpses of tuberculosis patients

could be a source of soil infection [5].
Some experimental observations indicate the survival of

MTBC within the vegetative forms of free amoebae of the genus

Acanthamoeba [94]. It has been shown experimentally that the
five free amoebae Acanthamoeba polyphaga, Acanthamoeba
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 41, 100712
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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FIG. 3. Risks predisposing to the acquisition of tuberculosis and the life cycle of Mycobacterium tuberculosis in the granuloma. (a) Dormant

M. tuberculosis bacilli persist in macrophages and caseum for extended periods of time. (b) When environmental conditions become conducive to

reactivation, mycobacteria actively replicate leading to disruption of the integrity of the granuloma and spread to other tissues. (c) Under the action of

antibiotic treatment and the immune system, initially replicating mycobacteria will be eliminated while a proportion may become dormant and persist.
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castellanii, Acanthamoeba lenticulata, Vermamoeba vermiformis

and Dictyostellium discoideum can be infected by M. bovis; it is
encysted by each of these five amoebae; it persists for at least

60 days within the cysts; and that experimental inhalation of
vegetative amoebae and cysts infected with M. bovis causes

pulmonary tuberculosis in BALB/c mice [95]. This intra-
amoebic life was the occasion for genetic exchanges between

the host amoeba and the mycobacteria [96]. Interestingly, only
M. canettii is not cyst-positive at the time of amoeba cyst for-
mation, unlike M. tuberculosis, which can probably survive for

extended periods of time within the cyst, as it has been shown
that Acanthamoeba amoeba cysts can survive for 50 decades

[97]. The mechanism of M. canettii’s early exit is not known,
even though this MTBC codes for an active cellulase that could

cleave the cellulose wall of the developing cyst [94]. Also, the
modality of survival of MTBC inside the amoeba cyst is un-

known even though they could be dormant mycobacteria [98].
All these observations suggest the possibility of an environ-
mental cycle independent of the usual hosts, the possibility of

which is not documented. However, the role of soil as a source
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 41, 100712
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of contamination of certain mammals does not seem unrea-

sonable (Fig. 1).
Conclusions and perspectives
This review of the literature from different geographical and

thematic sources describe scenarios of reservoirs, sources,
modes of transmission and fates of MTBC in animal and human

populations that are broader than those usually reported.
Indeed, tuberculosis can be understood as an infection by

telluric bacteria initially pathogenic to unicellular eukaryotes,
which progressively acquired the capacity to infect pluricellular

eukaryotes and then to be directly transmissible from host to
host conferring the contagious character currently observed in
human populations. The observation of pulmonary tuberculosis

alone obscures the knowledge of these possible scenarios,
diminishing vigilance on current and past alternative modalities

for prehistoric populations.
nses/by-nc-nd/4.0/).
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