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Abstract: It is well recognized that the presence of cervical lymph node metastasis is the most
important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer,
the first step during the process of metastasis is the invasion of cancer cells into the underlying
stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the
underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of
cancer progression, and the most complicated and least understood. These topics continue to be very
active fields of cancer research. A number of processes, factors, and signaling pathways are involved
in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs
targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on
invasion-related factors and emerging molecular determinants which can be used as potential for
diagnostic and therapeutic targets in OSCC.

Keywords: oral squamous cell carcinoma; invasion; metastasis; epithelial mesenchymal transition (EMT);
cell adhesion; tumor microenvironment; cell signaling; microRNA

1. Introduction

According to the latest cancer statistics, oral squamous cell carcinoma (OSCC) is the leading
cause of cancer related deaths in men, and it contributes to approximately 23% of deaths caused by
all cancer types in men [1]. Cancerous metastasis is the most important prognostic factor of OSCC
as in other carcinomas. Like most epithelial cancers, OSCC develops through the accumulation of
genetic and epigenetic alterations in a multistep process. Recent molecular studies have advanced our
understanding of the disease and provided a rationale to develop novel strategies for early detection,
classification, prevention, and treatment. In the early step of metastasis, cancer cells acquire the
reduction of cell-to-cell adhesion and mobility. Invasion is a highly dynamic process that involves
a complex interplay between cell-intrinsic elements, and acquisition of invasive capabilities ultimately
allows transmigration through the basement membrane (BM). The clinical significance of invasive
properties is affected not only by the local region, but also by regional lymph node metastasis with
extra capsular invasion. Depending on the primary site, OSCC cells can invade the underlying
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connective tissue as the first event. The pattern of invasion at the tumor invasive front within OSCC
tissue, first described by Bryne et al. [2], is directly associated with the outcome of patients. When
individual tumor cells are observed in the invasive front, the rate of lymph node metastasis greatly
increases and prognosis worsens [3–5]. Depth of invasion in tongue tumors is also well associated
with survival [6]. Indeed, when tumor thickness shows over 2 mm, nodal metastasis is frequently
observed [6]. Therefore, elective neck dissection is recommended despite clinically node-negative [5].
Bone invasion is frequently observed in OSCC and it can be categorized as erosive and infiltrative.
The latter type gives a 4-fold increased risk of death with disease. Furthermore, bone invasion is
associated with more aggressive tumor spread, with high frequency of recurrence [7]. In addition,
vascular and perineural invasion of OSCC cells are prognostic factors that give local recurrences,
and regional and distant metastasis. A recent study showed that the presence of perineural invasion in
tongue SCC predicted worse disease-specific survival, with distant recurrence as the most common
pattern of failure [8]. The head and neck region is highly populated with rich neural networks.
In particular, tongue and maxilla show rich vasculature.

In order to gain invasive properties, cancer cells require the molecular and genetic alterations
in OSCC as in other types of cancer. In addition, the stromal compartments, including both stromal
cells and extracellular matrices (ECMs), acquire these molecular and genetic changes during OSCC
progression. Initiation and maintenance of the invasion process are mainly regulated by various
signaling pathways. Understanding these genetic events eventually leads to better treatment,
and thus, good prognostication. As a tumor progresses within the epithelium, the underlying
stromal changes occur. The number of stromal cells, such as fibroblasts, macrophages, and pericytes,
increases with tumor progression (9). Moreover, the stiffness of the ECM increases [9]. Subsequently,
the communication between cancer cells and stromal cells via BM leads to the invasion by breaching
BM. Previous reports provided the following mechanisms: (i) proteolytic degradation by matrix
metalloproteinases (MMPs) and serine protease separase; (ii) mechanical forces; and (iii) reduced or
abnormal synthesis of BM components around invasive cancers [10]. The following section describes
the biology and mechanisms of invasion-related factors in OSCC and discusses these factors for
prognostic and therapeutic targets.

2. Invasion-Related Cell Adhesion Molecules

Abnormal regulation of cell adhesion molecules, (e.g., E-cadherin, Neural-cadherin (N-cadherin),
claudin, and desmoglein (DSG)) is involved in the invasion of OSCC cells. The following section
describes the abnormality of these invasion-related cell adhesion molecules in OSCC (Table 1 and
Figure 1).
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Table 1. Invasion-related molecules in OSCC.

Gene Name Aberrant Expression in OSCC Specific Function in OSCC References

E-cadherin Cell adhesion molecule Downregulation
hypermethylation Acquisition of EMT phenotype including promoting invasion [11–13]

N-cadherin Cell adhesion molecule Upregulation Promote invasiveness via activating FGFR1 signaling pathway [14,15]

Claudin-1 Cell adhesion molecule Upregulation Promoting invasion via structural and functional alterations of tight junctions [16,17]

Desmoglein-3 Cell adhesion molecule Downregulation Upregulation Involved in desmosomal intercellular junction [18,19]

MT1-MMP (MMP-14) Matrix metalloprotease Upregulation Promoting invasion via degradation of ECM (Collagens I, II, and III; gelatins; aggrecan;
fibronectin; laminin, fibrin) [20,21]

MMP-2 Matrix metalloprotease Upregulation Promoting invasion via degradation of ECM (gelatins; VII, X and, XI; fibronectin;
laminin; elastin; aggrecan) [20]

MMP-9 Matrix metalloprotease Upregulation Promoting invasion via degradation of ECM (gelatins; collagens III, IV, and, V; aggrecan;
elastin; entactin; vitronectin; N-telopeptide of collagen I) [20]

Periostin Component of ECM Upregulation Promoting angiogenesis, lymphangiogenesis, migration, and invasion [22–25]

HGF Growth factor Upregulation Promoting EMT induction via HGF/c-Met signaling [26,27]

c-Met Receptor Upregulation Promoting EMT, proliferation, and angiogenesis induction via HGF/c-Met signaling [26–28]

VEGF Growth factor Upregulation Angiogenesis [29,30]

GAL Neuropeptide Downregulation Perineural invasion [31]

RANKL Membrane protein Upregulation Bone invasion via induction of osteoclastogenesis [32–34]

EGFR Receptor Upregulation Activating P13K and Akt pathways [35–37]

STAT3 Activator of transduction Signal activation Activating gene transcription involved in the essential components of invasion
and metastasis [38]

FAK Mediator of signal
transduction Upregulation Promoting invasion as a mediator of integrin and growth factors signaling [39]

CXCL9 Chemokine Upregulation EMT induction and cytoskeleton rearrangement via activation of Akt signaling pathway [40]

CXCR3 Chemokine receptor Upregulation EMT induction and cytoskeleton rearrangement via activation of Akt signaling pathway [40]

TGF-β Growth factor Signal activation EMT induction [41,42]
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Figure 1. Invasion-related molecules in oral squamous cell carcinoma (OSCC). The figure shows
invasion-related cell adhesion molecules and invasion-related molecules in a tumor microenvironment
(TME), and a cell signaling pathway in OSCC. Red arrows show upregulation in OSCC. Blue arrows
show downregulation in OSCC.

2.1. E-Cadherin

Cell–cell adhesion is mediated by E-cadherin. It is well known that reduction in E-cadherin
stimulates the invasion of cancer cells. A meta-analysis indicates that a low level of E-cadherin is
related to poor prognosis due to the phenotypic changes in increased motility and invasiveness of
cancer cells [43]. Epithelial-mesenchymal transition (EMT) is a crucial process in cancer progression,
providing cancer cells with the ability to escape from the primary focus to invade stromal tissues and
to migrate to distant regions. EMT is the process by which epithelial cells lose epithelial phenotype and
gain mesenchymal phenotype. In cancer tissue, EMT-caused cells increase the migratory capacity and
degradation ability of extracellular matrix, then escape from the primary tumor and metastasize [44].
Downregulation of E-cadherin and upregulation of mesenchymal molecules are the hallmark of
EMT. During EMT, cancer cells lose their cell-to-cell attachment by decreasing E-cadherin expression,
due to hypermethylation of the promoter region or transcriptional repression caused by Zinc finger
E-box-binding homeobox 1 (ZEB1), ZEB2, Snail, Slug (also known as SNAI2), and TWIST [45,46].
Several reports demonstrate that loss of E-cadherin expression in OSCC is induced by epigenetic
mechanism. Hypermethylation of CDH1 promoter region correlates with loss of E-cadherin expression
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in the most invasive and metastatic area of OSCC [11,12]. During EMT, the miR-200 family (miR-200a,
-200b, -200c, -141, and -429) is shown as the most altered microRNA (miRNA) [47]. The miR-200
family makes a double negative feedback loop with ZEB1/ZEB2 to regulate cellular phenotype and
maintains E-cadherin expression by directly suppressing ZEB1/ZEB2 [48,49]. In EMT-caused cells,
the downregulation of miR-200 family induces expression of ZEB1/ZEB2, resulting in E-cadherin
suppression [50]. To identify the invasion-related miRNAs, we previously compared the miRNA
expression profiles between parent OSCC cells and their highly invasive clone [13]. We also identified
miR-200 family as the downregulated miRNA in a highly invasive clone. In addition to miR-200 family,
miR-203 is identified as the downregulated miRNA in a highly invasive clone. Reduced expression of
miR-203 is involved in the invasion of OSCC cells via upregulation of NUAK family kinase 1(NUAK1)
and SNAI2 [13]. A recent paper showed that cells expressing the partial EMT program, spatially
localized to the leading edge of primary tumors in head and neck squamous cell carcinoma by single
cell transcriptomic analysis [51]. Several reports demonstrated that that p-EMT program is distinct
from full EMT programs derived from cell lines and tumor models, as well as from “mesenchymal”
signatures derived from bulk tumor profiles [52,53]. Importantly, partial EMT is an independent
predictor of nodal metastasis in head and neck squamous cell carcinoma [51]. Therefore, EMT and/or
partial EMT-related molecules can be a prognostic marker in OSCC. As the detailed mechanism of EMT
induction and partial EMT induction in OSCC is still unclear, further experiments will be required.
It is known that the extracellular domain of E-cadherin can be proteolytically cleaved and released
from the cell surface and can be detected in the circulation. The levels of soluble E-cadherin in the
circulation reflect the progression of cancer and can be used as a diagnostic marker [54]. However,
there are no studies on serum levels of E-cadherin in OSCC.

2.2. N-Cadherin

N-cadherin is an integral membrane, calcium-binding glycoprotein that mediates the intercellular
adhesion of neuronal cells and other various types of non-neuronal cells [55]. The loss of E-cadherin
and the gain of N-cadherin expression are known as the “cadherin switching” [56]. Cadherin switching
is thought to reflect an EMT, whereby tumor cells are released from E-cadherin-dependent cell–cell
interactions, and acquire a motile phenotype through the induction of N-cadherin. N-cadherin
promotes invasive ability through activating Fibroblast growth factor receptor 1 (FGFR1) signaling
by inhibiting FGFR1 internalization in breast cancer cells [57]. N-cadherin expression correlates with
EMT phenotype and malignant behavior of OSCC [14]. Consistent with these findings, overexpression
of FGFR1 correlates with EMT status with N-cadherin expression [15]. Interestingly, FGFR1-specific
inhibitor PD173074 suppresses the invasion of OSCC cells [15]. N-cadherin can be a predictive marker
for EMT induction and a prognostic marker in OSCC cells.

2.3. Claudin

Claudins are transmembrane proteins at the tight junction that create a seal between adjacent
polarized epithelial cells. Claudins have two groups: namely classic and non-classic subgroups.
Abnormal expression of claudin results in the structural and functional alterations at tight junctions
which enhance the motility and invasion of cancer cells [58]. In particular, claudin-1 and -4 have been
shown to be critical for the function of tight junctions [59]. Overexpression of claudin-1 is associated
with local recurrence and poor survival via high probability of perineural and lymphatic invasion in
OSCC [16]. Furthermore, claudin-1 knockdown decreases the invasion of OSCC cells [17]. Previous
reports suggest that claudins may be involved in cancer progression through the complex interaction
with several ECM elements. The inhibition of claudin-1 expression in OSCC cells diminished invasion
and reduced degradation of laminin-5, an important component of the BM, via inactivation of MMP-2
and Membrane type 1-MMP (MT1-MMP) [17]. These findings indicate that claudin-1 appears to be
a potential biomarker of the more progressive lesions and consequently poor clinical outcome of
OSCC patients.
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2.4. DSG

DSG glycoproteins (DSG1–4) are a group of cadherin in desmosomal intercellular junction
that establishes a link between adjacent cells [60]. The desmosomes are known to play a role in
malignant process. DSG3 is one of the component in the desmosome, and disorder of DSG3 is
known to be related with pemphigus vulgaris via loss of cell-to-cell adhesion by autoantibodies
against DSG3 [61]. Although previous reports show that downregulation of DSG3 is observed in
OSCC and breast cancer [18,62], a large-scale microarray study by Chung et al. [63] using 60 OSCC
samples revealed that a subtype of tumors contained genes involved in the function of desmosome
including DSG3 are overexpressed in poor outcome patients. Moreover, DSG3 was identified as a
highly-expressed molecule in OSCC by differential display analysis to compare the gene expression
profiles between OSCC and normal epithelial tissues [64]. Indeed, DSG3 knockdown suppresses tumor
growth and metastasis of OSCC cells in vivo [64]. Interestingly, overexpression of DSG3 enhances
membrane protrusions, and cell spreading and rounding that are the necessary prerequisites for cell
migration/invasion [64,65]. Importantly, research evidence suggests that DSG3 platforms which can
identify positive and negative nodes can be achieved within an intra operative timeframe, which
ultimately reduces unnecessary lymph node resection [19,66]. DSG3 can be a potential diagnostic and
therapeutic target in OSCC.

3. Invasion-Related Molecules in Tumor Microenvironment (TME)

Under normal circumstances, cells migrate during embryonic development and settle in a distant
location via EMT and mesenchymal-epithelial transition (MET). EMT allows polarized epithelial
cells to acquire mesenchymal cell phenotype having multiple biochemical changes which enhance
migratory capacity, invasiveness, elevated resistance to apoptosis, and greatly increased production
of ECM components [67]. Tumor cells mediate proteolytic digestion of ECM components termed
as invadopodia is essential to the invasive process. Collectively, ECM components surrounded in
cancer cells are known as TME. Substantial evidence indicates that intratumoral heterogeneity among
malignant and non-malignant cells, and their interactions within the TME, are critical to diverse aspects
of tumor biology [68,69]. The molecules in TME, such as MMP, periostin, hepatocyte growth factor
(HGF), vascular endothelial growth factor (VEGF), and galanin (GAL), promote invasion of OSCC
cells. The following section describes these invasion-related molecules in TME (Table 1 and Figure 1).

3.1. Matrix Metalloproteinases (MMPs)

Degradation of restrictive ECM proteins is mediated by the action of MMPs. ECM degradation by
MMPs plays a pivotal role in cancer progression by promoting motility, invasion, and angiogenesis.
Many studies have shown that MMP expression is increased in OSCCs. Previous our review summarize
the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14, and -19, that are
highly expressed in OSCCs and involved cancer invasion and angiogenesis [20]. Among MMPs,
MMP-2, -9, and -14 are associated with invadopodia [70]. MT1-MMP (also known as MMP-14) is
considered a central factor of invadopodia-mediated ECM degradation. Furthermore, MT1-MMP is
directly regulated by Src kinase via phosphorylation on Tyr573 and activates MMP-2, -3, and -9 [21].
Phosphorylation of MT1-MMP on Tyr573 has been shown to be required for tumor growth and
invasion both in vitro and in vivo. Hence, trafficking of MT1-MMP on the cell surface is involved
in the cancer invasion. Expression of MT1-MMP is directly associated with metastasis and poor
prognosis in OSCC [21]. Although clinical trials fail when MMP activity is blocked, new therapeutic
strategies aiming to target the specific MMPs have been proposed. Devy et al. [71] indicate that a
monoclonal antibody, DX-2400 against the catalytic domain of MT1-MMP, suppresses angiogenesis,
tumor formation, and metastasis via blocking MMP2 cleavage in tumor and endothelial cells. The above
drug or blocking substrates were successful in preclinical studies [72], and this could be a promising
potential therapeutic target in the future. A murine monoclonal antibody REGA-3G12 against the
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catalytic domain of MMP-9 specifically inhibits MMP-9 activity [73]. MMP-9 is secreted by various
human cancer cells and can be secreted by infiltrating immune cells including macrophages and
neutrophils. MMP-9 is known to contribute to tumor progression including angiogenesis and invasion.
Therefore, REGA-3G12 may be an effective cancer therapeutic drug. However, to date, clinical trials
of this drug not yet have been initiated. In our previous study, cancer invasion-related factors were
identified by comparing the gene expression profiles between parent and highly invasive clone of
cancer cells [74]. MMP-13 is identified as a common upregulated gene by cancer invasion-related
factors [75]. Although MMP-13 slightly promoted tumor invasion, MMP-13 is involved in tumor
angiogenesis via activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase
(ERK). Thus, elevated production of MMPs in TME contributes to tumor invasion. Inhibition of the
function of MMPs by drugs including blocking antibody and blocking cleavage may be an effective for
tumor progression in OSCC.

3.2. Periostin

Periostin is known as a component of ECM and is overexpressed in various cancers including
OSCC [76]. In OSCC, periostin promotes tumor angiogenesis, migration, and metastases [22],
and its overexpression has been shown to enhance invasion and anchorage-independent growth
and spread [76]. Overexpression of periostin promotes invasion and metastasis by activation
of Akt/protein kinase B (PKB) signaling via αvβ3 integrin [77]. Thus, periostin is believed
to play a role during invasion, angiogenesis, and metastasis, as demonstrated by in vitro and
in vivo experiments [23,78]. Recent finding suggests that periostin may have a role in sprouting
neovascular endothelial tips of disseminated tumor cells, promoting breast cancer cell outgrowth in
a tumor-suppressive microenvironment [79]. Periostin is a driver of the EMT and induces expression
of MMP-9, MMP-10, and MMP-13, resulting in the degradation of ECM, believed to be crucial for
local tumor spread and/or metastasis via invasion and neovascularization [24,25,75]. Furthermore,
it is involved in remodeling the tumor microenvironment by promoting tumor survival, growth,
and invasiveness [76]. Periostin-overexpressing human mammary epithelial cells acquire part of
the multi-lineage differentiation potentials of mesenchymal stem cells and promote tumor growth
and metastasis of human breast cancer cell line [80]. These data indicate that periostin is a critical
matricellular component in remodeling tissue microenvironment in tumor growth and metastasis.
Interestingly, the neutralizing antibody to periostin, MZ-1, suppressed tumor metastasis of periostin
overexpressing ovarian cancer cell line by intra-peritoneal injection [81]. Furthermore, targeting
periostin with a modified DNA aptamer, PNDA-3, that is capable of binding to periostin with high
affinity and inhibiting its function markedly antagonized adhesion, migration, and invasion of breast
cancer cells both in vitro and in vivo [82]. These findings suggest that periostin can be a potential
therapeutic target for OSCC.

3.3. Hepatocyte Growth Factor (HGF)

Overexpression of HGF and its receptor c-Met have been reported in the majority of OSCCs [26].
Activation of HGF/c-Met pathway promotes EMT induction and has emerged as a potential therapeutic
target. HGF is secreted by tumor associated fibroblasts within TME as an inactive proenzyme,
and once cleavage occurs it become a heterodimer that is capable of binding to c-Met. This activates
downstream signaling via adaptor molecules (i.e., growth-factor-receptor-bound protein 2 (Grb2) and
Grb2-associated binder 1 (Gab1)) ultimately promoting invasion/proliferation and cell survival [27].
Aberrant HGF/c-Met signaling in OSCC promotes tumor progression by increasing the invasive
capacity by acquiring an elongated spindle-like morphology [26]. Several agents have been developed
to target HGF/c-Met and its downstream molecules such as tyrosine kinase inhibitors (TKIs),
monoclonal antibodies, and competitive HGF antagonists and c-Met receptor decoys. Crizotinib
(PF-2341066)—an orally available small-molecule inhibitor of c-Met—exhibits cyto-reductive antitumor
efficacy through anti-proliferative and antiangiogenic mechanisms [83]. Crizotinib significantly inhibits
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tumor proliferation and abrogation of downstream AKT signaling, and reduces blood vessel density
in vivo [28]. Furthermore, increased expression of c-Met correlated with resistance to platinum-based
agents, radiation, and to epidermal growth factor receptor (EGFR)-targeting agents in OSCC [84].
Although there were several monoclonal antibodies against HGF, to date ficlatuzumab remains the
only antibody against HGF undergoing clinical evaluation in OSCC [84].

3.4. Vascular Endothelial Growth Factor (VEGF)

Most solid tumors induce neoangiogenesis by producing angiogenic factors for the tumor cells’
nourishment. In the metastatic cascade, the first step is invasion followed by intravasation and
extravasation. The most common route of metastasis in OSCC is via lymphatics, and traditionally
lymphatic invasion is a passive process. However, recent data suggest that lymphangiogenesis in the
tumor site may provide more opportunities for cancer intravasation. However, further studies are
necessary in order to assign it as a therapeutic target. In contrast, vascular invasion is an active process.
There are a number of factors that have been demonstrated to enhance angiogenesis such as VEGF and
HGF. VEGF is one of the best known and well established regulators of angiogenesis to date. Therefore,
specific targeting of VEGF signaling has been one of the key avenues in developing anti-angiogenic
therapies. VEGF neutralizing antibody, Bevacizumab (also known as Avastin), has been approved
for use in a variety of cancer types, such as lung cancer and colon cancer [85]. In OSCC, VEGF
overexpression is frequently observed [29]. Indeed, a number of clinical trials have examined the
combinatorial therapeutic effects of bevacizumab with other drugs for the treatment of recurrent or
metastatic OSCC [30].

3.5. Galanin (GAL)

Some head and neck tumors exhibit a tendency towards neural invasion, and perineural invasion
predicts poor survival in OSCC. Perineural invasion, as well as lymphovascular invasion, are important
processes of metastasis in OSCC. Therefore, inhibition of perineural invasion can be an important
strategy for OSCC treatment. Recent studies revealed that cancer cells have an innate ability to actively
migrate along axons and is supported by various cell types in the perineural niche that secrete multiple
growth factors and chemokines. Neuropeptide GAL initiates nerve-tumor crosstalk via activation of
its G protein-coupled receptor, GALR2. Prostaglandin E2 promotes cancer invasion, and in a feedback
mechanism, GAL released by cancer induces neuritogenesis, facilitating perineural invasion. Therefore,
GALR2-induced pathway is a potential treatment target of perineural invasion [31].

4. Invasion-Related Molecules in Cell Signaling Pathway

Cell signaling is part of any communication process that governs basic activities of cells and
coordinates all cell actions. The cell signaling pathway, such as receptor activator of nuclear factor-κB
ligand (RANKL)/RANK, EGFR, signal transducer and activator of transcription (STAT), and focal
adhesion kinase (FAK) are involved in the invasion of OSCC cells. As described above, EMT is
an important process of OSCC progression. The following section describes the invasion-related
molecules in cell signaling pathway and EMT related signaling pathway (Table 1 and Figure 1).

4.1. Receptor Activator of Nuclear Factor-κB Ligand (RANKL/RANK)

OSCC readily invades the proximal jaw bone and this is closely associated with poor
prognosis. Osteoclastogenesis is regulated by a complex signaling system that involves three essential
molecules: RANKL, its receptor (RANK), and its decoy receptor osteoprotegerin (OPG). Recently,
Chuang et al. [32] compared RANKL expression between buccal SCC without bone invasion (25 cases)
and gingival SCC with invasion (15 cases) and showed no difference: however, the buccal SCC
cells do possess the potential to induce osteoclastogenesis through the RANKL/RANK pathway if
triggered under appropriate conditions. Molecular control of RANKL gene expression in cancer cells
is pivotal to our understanding of cancer progression. Jimi et al. [33] conclude that the inhibition of
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osteoclast differentiation and function by blocking RANKL/RANK constitutes with soluble RANK or
OPG successfully prevents the development of bone invasion. A phase I study testing recombinant
OPG in patients with multiple myeloma, or breast carcinoma-related bone metastases, is currently
in progress [86], and there have not been any side-effects so far when administered as a single
subcutaneous injection to patients [87]. A new humanized monoclonal anti-IL-6 antibody, MEDI5117,
showed an inhibitory effect on cancer stem cells in OSCC and is currently in clinical trials for
rheumatoid arthritis [88]. Another group demonstrated that RANKL expression is autoregulated via
transcription factor NAFTc2 in OSCC cells, and treatment with OPG inhibited the autoregulation [34].
Hence, targeting molecules involving autoregulation of RANKL may be useful targets in controlling
tumor growth and bone invasion.

4.2. Epidermal Growth Factor Receptor (EGFR)

Overexpression of the EGFR is frequently observed in OSCC, and increased activity in
EGF signaling pathways has been associated with resistance to treatment and poor clinical
outcome [35,89,90]. The EGFR is a transmembrane protein that is a receptor for members of the
EGF family of extracellular protein ligands, such as EGF and transforming growth factor alpha
(TGF-α) [91]. The EGFR binding with specific ligands activates intracellular signaling pathways
that control growth, differentiation, survival and invasion [36,91,92]. The EGFR is therapeutically
targeted by agents, such as a chimeric anti-EGFR monoclonal antibody (i.e., cetuximab, zalutumumab,
nimotuzumab, panitumumab, MEHD7945A, necitumumab, and RO5083945), the multi-targeted small
molecule tyrosine kinase inhibitors (TKI) (i.e., lapatinib, dacomitinib, afatinib, vandetanib, icotinib,
and CUDC-101), and the anti-EGFR TKI (i.e., erlotinib) [37]. The chimeric anti-EGFR monoclonal
antibody (mAb) cetuximab was the first molecularly targeted therapy to receive US Food and Drug
Administration (FDA) approval for the treatment of OSCC.

4.3. Signal Transducer and Activator of Transcription (STAT)

Proteins of the STAT family mediate cellular responses to cytokines and growth factors. STAT3 is
known to regulate expression of essential components of invasion and metastasis in various cancers
including OSCC. Upstream receptors of STAT include IL-6, receptor tyrosine kinases (RTKs), vascular
endothelial growth factor receptor (VEGFR), EGFR, Janus-activated kinases (JAK), and Src family
kinases (SFK). Activated STAT3 up regulates the transcription of cyclin D1, survivin, and Bcl-XL [93].
Therapeutic agents targeting upstream receptors of STAT3, STAT3 domain, STAT3-DNA binding,
and STAT3 transcription are still ongoing in early phase clinical trials in different stages [38,94].

4.4. Focal Adhesion Kinase (FAK)

FAK has been proposed as a new candidate for molecular-based therapeutic approaches. FAK is a
multifunctional regulator of cell signaling within the TME [95]. FAK functions as a major mediator of
signal transduction by cell surface receptors including integrins, growth factor, and cytokine receptors.
Therefore, FAK plays a crucial role in carcinogenesis, especially in cell proliferation, cell motility,
invasion, inhibition of apoptosis, angiogenesis, and immunosuppression. Increased levels of FAK
mRNA in OSCC are correlated with tumor invasion and progression. Furthermore, overexpression of
FAK is linked with poor survival in esophageal cancer and OSCC patients [39]. In TME, FAK favors
tumor progression via the regulation of signaling pathways of endothelial cells, hematopoietic cells,
platelets, macrophages, and fibroblasts. FAK activity promotes migration, proliferation, and survival
of endothelial cells and stimulates tumor angiogenesis. FAK-mediated regulation of endothelial cell
permeability can influence tumor metastasis [96]. Although not tested in OSCC, as a small molecule,
FAK inhibitors are emerging as promising chemotherapeutics and combined treatment with FAK and
SRC inhibitors demonstrated enhanced anti-tumor activity in small cell lung cancer [97]. So far, there
are two clinical trials (Pfizer and GSK), and both trials found that the compounds are tolerated with
low adverse events. Notably, in the Pfizer trial, some patients exhibited stable disease [96,98].
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4.5. EMT Related Signaling Pathways

EMT related signaling pathways play a crucial role in tumorigenesis, mainly P13K/Akt signaling
pathway and its partners transforming growth factor-ß (TGF-β), NF-κB, Ras, and Wnt/β-Catenin
pathways. Recent study shows that the chemokine C-X-C motif chemokine ligand 9 (CXCL9)/receptor
CXCR3 axis induces EMT and cytoskeleton rearrangement via activation of Akt signaling pathway
in OSCC [40]. Indeed, overexpression of CXCL9/CXCR3 promotes migration and invasion of OSCC
cells [40]. It is well known that TGF-β is a key initiator of EMT, which can induce artificial EMT of
normal epithelial cells, as well as cancer cells [99,100]. TGF-β upregulates expression of key EMT
regulators, including Snail and δEF1/SIP1, in epithelial and cancer cells [41]. Several intracellular
signals, such as tumor necrosis factor-α, FGF-2, FGF-4, EGF, and HGF enhance TGF-β signaling to
promote tumor invasion/metastasis and EMT [101,102]. In OSCC, TGF-β not only induces EMT to
increase the capacity for invasion, but also promotes factors which prolong osteoclast survival [42].
As EMT is involved in malignant behaviors of cancer cells, inhibition of these EMT-related signal
transduction pathways can be used as new tool in anticancer therapy. For example, Akt inhibitor
redford can inhibit a combination of P13K and Akt which is in Phase II clinical trials [103]. Sulindac
inhibits Wnt signaling pathway via downregulating ß-Catenin and Cyclin D1 [104]. Jang et al. [105]
reported that inhibiting Wnt pathway by low-density lipoprotein receptor-related protein 6 (LRP6)
reversed the EMT restoring the epithelial phenotype. Further, by blocking the Hedgehog signaling
pathway with CUR0199691, it significantly weakened the ability of invasion in breast cancer [106].

5. Invasion-Related miRNAs

MicroRNAs are a class of highly-conserved 18–25 nucleotide, small, non-cording RNAs, which
regulate a number of gene expressions through translational repression or mRNA degradation.
They have important roles not only in various biological processes including cell proliferation,
stress resistance, and metabolism, but also in pathogenesis. Many reports have shown that several
miRNAs have oncogenic or tumor suppressive activities [107,108]. Here we listed various oncogenic
or tumor suppressive miRNAs that are involved in the invasion and EMT induction in OSCC
(Table 2). EMT-inducing molecules are upregulated by downregulated EMT-related miRNAs in
OSCC. Invasion-suppressive molecules are downregulated by upregulation of oncogenic miRNAs
in OSCC, and invasion-promoting molecules are upregulated in OSCC by downregulated tumor
suppressive miRNAs in OSCC. These miRNAs can be a therapeutic modality and a diagnostic marker
for targeting invasion of OSCC cells.

Table 2. Invasion-related microRNA (miRNA) in OSCC.

Function miRNA Target Gene Etc. References

EMT-related miRNAs

miR-200 family (miR-200a, miR-200b,
miR-200c, miR-141, miR-429) ZEB1/ZEB2 [13]

miR-203 SNAI2/NUAK1 [13]
miR-485-5p PAK1 [109]
miR-27a-3p YAP1 [110]

miR-101 EZH2 [111]
miR-153 SNAI1/ZEB2 [112]

Oncogenic miRNAs

miR-21 DKK2 [113,114]
miR-29a upregulating MMP2 [115]
miR-196 NME4 [116]
miR-155 BCL6 [117]
miR-24 FBXW7 [118]

miR-1275 upregulating IGF-1R/CCR7 [119]
miR-342-3p included in exosome [120]
miR-1246 included in exosome [120]
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Table 2. Cont.

Function miRNA Target Gene Etc. References

Tumor suppressive
miRNAs

miR-222 MP1/SOD2 [114]
miR-138 - [121]
miR-363 podoplanin [122]

miR-491-5p GIT1 [123]
miR-140-5p - [124]
miR-133b - [125]
miR-29b SP1 [126]
miR-125a ESRRA [127]
miR-34a MMP9/MMP14 [128]
miR-329 Wnt-7b [129]
miR-410 Wnt-7b [129]
miR-143 CD44v3/hrxokinase 2 [130,131]
miR-222 ABCG2 [132]
miR-188 SIX1 [133]

miR-196b - [134]
miR-23b MET [135]
miR-27b MET [135]

miR-200c-3p CHD9/WRN [136]
miR-205-5p TIMP-2 [137]

miR-22 NLRP3 [138]
miR-195-5p TRIM14 [139]
miR-30a-5p FAP [140]
miR-376c-3p HOXB7 [141]

miR-375 PDGF-A [142]
miR-320a - [143]

5.1. EMT-Related miRNAs

During EMT, cells lose adhesion and increase in motility by repression of E-cadherin expression,
which also occurs during the initial stages of metastasis. As mentioned above, the miR-200 family
and miR-203 is involved in EMT induction in OSCC [13,47–50]. The miR-200 family is believed to
play an essential role in tumor suppression by inhibiting EMT. The miR-200 family makes a double
negative feedback loop with ZEB1/ZEB2 to regulate cellular phenotype and maintains E-cadherin
expression by directly suppressing ZEB1/ZEB2 [48,49]. In EMT caused cells, the downregulation
of the miR-200 family induce expression of ZEB1/ZEB2, resulting in E-cadherin suppression [50].
miR-200 targets the E-cadherin transcriptional repressors ZEB1 and ZEB2. Indeed, knockdown of
miR-141 and miR200b has been shown to reduce E-cadherin expression, thus increasing cell motility
and inducing EMT [47,48]. miR-203 is also involved in EMT and invasion via targeting SNAI2 and
NUAK1 [13]. Both miR-200 family and miR-203 are downregulated in OSCC cells with high invasive
ability [13]. Moreover, several miRNAs, such as miR-153 (via targeting SNAI1 and ZEB2), miR-101
(via targeting enhancer of zeste homolog 2: EZH2) miR-27a-3p (via targeting yes-associated protein
1: YAP1), and miR-485-5p (via targeting p21 RAC1 activated kinase 1: PAK1) are involved in EMT
induction [109–112].

5.2. Invasion-Related Oncogenic miRNAs

The following miRNAs are involved in the invasion of OSCC via targeting various genes. In OSCC,
miR-21 (via targeting Dickkopf-related protein: DKK2), miR-29a (via upregulating MMP2), miR-196
(via targeting non-metastatic cells 4: NME4), miR-155 (via targeting B-cell CLL/lymphoma 6: BCL6),
miR-24 (via targeting F-box and WD-40 domain protein 7: FBXW7), and miR-1275 (via upregulating
Insulin-like growth factor 1 receptor: IGF-1R and C-C chemokine receptor type 7: CCR7) promote the
invasion as an oncogenic miRNA [113,115–119]. Oncogenic miRNAs are frequently overexpressed in
OSCC. Interestingly, oncogenic miRNAs are included in exosome from OSCC cells [120,144]. MiRNA
array analysis identified two oncogenic miRNAs, miR-342-3p and miR-1246, that were highly expressed
in exosomes isolated from a highly metastatic human OSCC cell line [120]. Exosomes, which are packed
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with RNA and proteins and are released in all biological fluids, are emerging as an important mediator
of intercellular communication. To detect certain miRNAs can be used for useful tool for early detection
and prediction of metastasis in OSCC.

5.3. Invasion-Related Tumor Suppressive miRNAs

On the other hand, tumor suppressive miRNAs inhibit the invasion of OSCC. In OSCC, tumor
suppressive miRNAs are frequently downregulated. In OSCC, many tumor suppressive miRNAs are
involved in invasion, as the following; miR-222 (via targeting MMP1 and manganese superoxide
dismutase 2: SOD2), miR-138, miR-363 (via targeting podoplanin), miR-491-5p (via targeting
G-protein-coupled receptor kinase-interacting protein 1: GIT1), miR-140-5p, miR-133b, miR-29b (via
targeting Sp1), miR-125a (via targeting estrogen-related receptor α: ESRRA), miR-34a (via targeting
MMP9 and MMP14), miR-329 and miR-410 (via targeting Wnt-7b), miR-143 (via targeting CD44 v3),
miR-222 (via targeting ATP-binding cassette sub-family G member 2: ABCG2), miR-188 (via targeting
SIX1), miR-196b, miR-23b and miR-27b (via targeting receptor tyrosine kinase MET), miR-200c-3p
(via targeting chromodomain-helicase-DNA-binding protein 9: CHD9 and Werner syndrome
ATP-dependent helicase, WRN), miR-205-p (via targeting the tissue inhibitor of metalloproteinases-2:
TIMP-2), miR-22 (via targeting NLR family pyrin domain containing three: NLRP3), miR-195-5p (via
targeting tripartite motif-containing protein: TRIM14), miR-30a-5p (via targeting fibroblast activation
protein α: FAP), miR-376c-3p (via targeting HOXB7), miR-143 (via targeting hexokinase 2), miR-375
(via targeting platelet-derived growth factor-A: PDGF-A), and miR-320a suppress the invasion as a
tumor suppressive miRNA [114,121–143,145].

6. Conclusions

In this paper, we introduce several invasion-related cell adhesion molecules, invasion-related
in TME, invasion-related molecules in cell signaling pathway, and invasion-related miRNAs
(Tables 1 and 2, and Figure 1). So far, there are numerous reports on invasion-related molecules
in OSCC. However, the full scope of this mechanism has not yet been clarified. Among various
molecules, we need to find out which factors can be critical targets for OSCC treatment through
inhibiting invasion and metastasis. Moreover, various oncogenic and tumor suppressive miRNAs are
involved in invasion of OSCC via targeting variety of genes. However, mutual relationships among
various miRNAs and/or invasion-related molecules needs to be clarified. Our desire is to develop
effective diagnostic and/or therapeutic targets against invasion and metastasis in OSCC.
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