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Diabetes is a common disease affecting majority of populations worldwide. Since 1980, there has been an increase in the number of
people diagnosed as prediabetic and diabetic. Diabetes is characterized by high levels of circulating glucose and leads to most
microvascular and macrovascular complications such as retinopathy, nephropathy, neuropathy, stroke, and myocardial
infarction. Bone marrow vascular disruption and increased adiposity are also linked to various complications in type II diabetes
mellitus. In addition to these complications, type 2 diabetic patients also have fragile bones caused by faulty mineralization
mainly due to increased adiposity among diabetic patients that affects both osteoblast and osteoclast functions. Other factors
that increase fracture risk in diabetic patients are increased oxidative stress, inflammation, and drugs administered to diabetic
patients. This review reports the modulation of different pathways that affect bone metabolism in diabetic conditions.

1. Introduction

Diabetic patients are at high risk of developing osteoporosis.
Normal to high bone mineral density (BMD) measurements
recorded in type II diabetes mellitus (T2DM) patients are
misleading [1]. In diabetic patients, an increase in the risk
of hip (1.4–1.7-fold) and vertebral fractures have been
reported [2]. As one ages, both genders are not only suscep-
tible to increased risk of fragile bones but are also at high risk
of developing diabetes, which augments the risk of bone frac-
tures [3–6]. Bone fragility in T2DM patients is related to
decreased bone strength and malformation of collagen fibers
that can result in faulty mineralization and increased micro
damages [7–9]. Using BMDmeasurements alone to diagnose
bone condition in T2DM may not be reliable as the strength
of the bone may be compromised in these patients. It is sug-
gested that BMD with body mass index (BMI) adjustments
may be a better indicator [10]. Supplemental data such as
biochemical markers can be additional diagnostic tool. Bone
biochemical markers such as C-terminal telopeptide (CTX)
and N-terminal telopeptide (NTX) will reflect on the bone

resorption process and breakdown of the collagen fibers.
Interestingly, in T2DM patients, there is decreased CTX
and increased NTX levels [11], and other reports did not find
any difference between the two markers [12].

However, in T2DM patients, the quality of collagen fibers
is compromised rather than increased breakdown of the col-
lagen fibers. In T2DM patients, the trabecular bone network
was shown to have large holes, decreased osteoblast recruit-
ment, and mineral apposition rates combined with increased
osteoclastogenesis [13].

The major pathophysiology in T2DM patients is insulin
resistance (IR). This can be attributed to lack of or decreased
insulin secretion and/or insulin receptors on the cell mem-
branes. A close relationship between glucose and bone
metabolism has been reported [14–18]. Yamaguchi and Sugi-
moto have described the link between glucose, fat, and bone
metabolism [2]. They have suggested that osteocalcin, an
important bone-forming marker, in the uncarboxylated form
and the Wnt signalling pathway proteins, may be modulated
to increase the fragility of bones in diabetic patients [19].
Other hormones secreted by adipocytes like adiponectin
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decrease IR [20], while leptin increases IR [21, 22]; moreover,
advanced glycation end products (AGEs) and insulin-like
growth factor-I (IGF-1), which regulate bones, may be also
modified in T2DM [1, 2]. AGE is formed by elevated blood
glucose levels that cause nonenzymatic glycosylation and
binds to its receptor (RAGE) which activates transcription
factor nuclear factor-κB (NF-κB). This results in increased
expression of receptor activator of nuclear factor kappa-B
ligand- (RANKL-) mediated osteoclastogenesis [23, 24].
Accumulation of AGE may also stimulate interleukins (IL)
such as IL-6, which reduces osteoblast proliferation and
activity while increasing osteoclastic activity [1, 25–29]. In
T2DM patients, there is hypersecretion of calcium and
decreased calcium absorption due to decreased vitamin D
levels and estrogenic levels, especially in females [30].

In addition, drugs used to treat diabetes can also have an
effect on bone health. One such group of drugs is thiazoli-
diones (TZD), which increases the risk of osteoporosis in
T2DM patients. TZDs are capable of influencing the mesen-
chymal cells to differentiate more into adipocytes rather than
osteoblasts which results in increased cortical porosity [31].
Furthermore, insulin is administered to diabetic patients to
help lower circulating glucose which directly acts on osteo-
clasts. A review of the drug effects on bone can be found in
Montagnani et al. [1]. Although metformin has been shown
to reduce bone loss, based on the severity of the side effects
caused by this drug [32], absorption of nutrients essential
for bone health may be compromised [30].

2. Materials and Methods

In this review, we are presenting information on the inter-
action of different pathways that influence bone, glucose
utilization, and insulin signalling pathways. We collected lit-
erature using the following search engines: PubMed, Google
Scholar, Cochrane Reviews, and Medline. The keywords used
for the search were type II diabetes, insulin, bone, insulin and
osteoclasts, insulin and osteoblasts, insulin and Wnt, insulin
and inflammation, and insulin and oxidative stress.

3. Results and Discussion

3.1. Insulin Signalling Pathway under Normal and Diabetic
Conditions. Normally, insulin activates several cascades of
intracellular signalling pathways, which begins with phos-
phorylation of insulin receptor substrate 1 & 2 (IRS-1 & 2)
and is followed by activation of phosphotidylinositide 3
kinase (PI3-K) and protein kinase B (AKT). This series of
phosphorylation events, in turn, deactivates forkheadboxpro-
teins (FOX) and phosphorylates glycogen synthase (GSK),
which plays an important role in controlling gluconeogenesis,
glycogenolysis, and maintaining glucose homeostasis [33]
(Figure 1). In vitro DNA-binding assays and transfection
experiments showed that both mammalian FoxO and FoxA
proteins can bind to IRS and mediate transcriptional acti-
vation [34].
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Figure 1: Insulin signalling pathway in normal cells.
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Insulin regulates the transcriptional activity of hundreds
of genes involved in glucose and lipid metabolism in the
liver. Insulin along with growth hormone activates serine/
threonine protein kinase (AKT), AKTphosphorylate FOXOs,
and causes retention of FOXOs in the cytoplasm. In response
to stress, decreased insulin, and growth hormone, FOXOs
are activated and mediate bone cell functions [35, 36]. In
T2DM, due to IR, there is decreased phosphorylation of IRS
1 & 2, decreasing PI3-K and increasing mitogen-activated
protein kinase (MAPK) activation. This results in increased
FOXO1 [33] (Figure 2). FOXO1 is activated in tissues asso-
ciated with diabetic complications such as wound healing
and bone fractures [33].

FOXOs play an important role in maintaining skeletal
homeostasis by mediating both osteoclast and osteoblast
function [35–41]. Other proteins like AGE, proinflammatory
cytokines, and reactive oxygen species (ROS) are increased
with high circulating blood glucose [33]. In T2DM, pro-
longed high levels of proinflammatory cytokines such as
TNF-α, IL-1β, IL-6, and IL-18 enhance lipid peroxidation
and dyslipidemia, resulting in increased osteoclastogenesis
[42–44]. High levels of TNF-α increase the RANK/osteopro-
tegerin (OPG) ratio which enhances bone resorption [45].

Increased AGE, ROS, and proinflammatory cytokines
increase bone loss. When AGE is formed, it bonds to its
receptor RAGE and activates nuclear factor-κB (NF-κB)
resulting in increased expression of RANKL-mediated osteo-
clastogenesis [23, 24, 46]. Prolonged inflammation also stim-
ulates the expression of proapoptotic genes such as bcl-2-like

protein (Bax). This reduces the expression of genes that
stimulate osteoblast formation such as Fos-related antigen
(FRA-1) and Runt-related transcription factor (RUNX2)
[33] resulting in decreased bone formation. Oxidative stress
reduces differentiation to osteoblasts and can directly
degrade bone [47]. NF-κB responds to oxidative stress and
increases osteoclast activity and decreases osteoblast differen-
tiation [47].

3.2. Type 2 Diabetes Modulation of Bone Marrow Stem
Cells. The microenvironment in bone marrow cells is affected
by complications of diabetes. The mesenchymal stem cells
(MSC) can differentiate into adipocytes or osteoblasts
depending on the prevailing signalling molecules. Long-
standing diabetes causes disruption of the bone marrow
microenvironment by depleting and altering stem/progen-
itor cells resulting in enhanced adipogenesis and depressed
osteogenesis [3, 48–56]. In vitro studies on RAW264.7 cells
have demonstrated that high glucose decreases autophagy
of osteoclasts thereby increasing osteoclastogenesis [57].
The multifactorial causes of enhanced adipogenesis are
augmented insulin signalling, hyperlipidemia, and ROS.
One of the major players is peroxisome proliferator-activated
receptor gamma (PPARγ), an important regulator of lipid,
glucose, and insulin metabolism. It consists of two iso-
forms—PPARγ1 and PPARγ2. PPARγ2 regulates the dif-
ferentiation of MSC to either adipocytes or osteoblast
[58]. Inside the cells, high levels of blood glucose activate
phosphatidylinositol 4,5 bisphosphate 3 kinase (PI3k) and
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Figure 2: Insulin signalling pathway in cells of patients with type 2 diabetes mellitus.
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phosphorylate protein kinase B (PKB). This decreases per-
oxisome proliferator-activated receptor gamma (PPARγ)
through FOXO1 and increases adipogenesis.

Activation of mechanistic target of rapamycin (mTOR)
increases adipocyte specific factors in preadipocytes and
increases muscle satellite cells [33]. The PI3K/PKB path-
way is also stimulated by oxidative stress generated by
ROS and enhances adipogenesis, thereby decreasing osteo-
clastogenesis [55].

3.3. FOXO1 Regulates RANKL-Mediated Osteoclastogenesis.
FOX-1 is a transcription factor that mediates RANK-
induced osteoclast formation. Osteoclast formation includes
several steps such as differentiation of myeloid precursors
to preosteoclasts, fusion of mononuclear preosteoclast to
multinucleated osteoclasts, and maturation and activation
of osteoclasts. Several proteins are involved in osteoclasto-
genesis such as RANKL, NK-κB, TNF, macrophage colony
stimulating factor (M-CSF), and nuclear factor of activated
T cells (NFATC1) [36]. Initially, M-CSF binds to its receptor,
which upregulates and activates RANK and NF-κB in
osteoclast precursor cells. RANK signalling stimulates the
formation of single-cell tartrate-resistant acid phosphatase-
(TRAP-) positive preosteoclasts, which fuse together to form
the multinucleated TRAP-positive osteoclast [34].

Cell fusion is the most important step in osteoclasto-
genesis and dendritic cell-specific transmembrane protein
(DC-STAMP), which induces NFATC1, the master gene
in osteoclastogenesis [33]. Other NFATC1-mediated fusion
molecules areTRAP,osteoclast-associated receptor (OSCAR),
CathepsinK,protooncogene tyrosineproteinkinase (C-SRC),
and β3 integrin. Cell fusion can also be induced by other
molecules independent of NFATc1 such as CD9, CD44,
E-cadherin, merlin α, and macrophage fusion receptor
[39]. When RANK stimulates NFATC1 through extracellu-
lar signal-regulated kinases (ERK)/c-Jun amino-terminal
kinases (JNK)/MAP kinase p38 [33, 36], it also activates
phospholipase C (PLC). This releases inositol triphosphate
(IP3) which causes extracellular calcium influx and intracel-
lular calcium release inducing calcium oscillation.

These calcium oscillations activated by NFATc1 are reg-
ulated by Transmembrane 64 (Tmem 64) and interact with
sarcoplasmic endoplasmic reticulum carbonic anhydrase
(SERCA), causing osteoclast differentiation [59]. Tmem64
also interacts with SERCA2 through tyrosine-based activa-
tion motif (ITAM) that has a common Fc receptor gamma
subunit (FCRγ) and DNAX-activating protein 12 (DAP12).
This costimulation leads to activation of phospholipase
gamma (PLCγ) and IP3 causing calcium release from endo-
plasmic reticulum (ER), generating calcium oscillations.
These oscillations activate Ca2+/calmodulin-dependent pro-
tein kinase (CaMK) IV and cyclic AMP response element-
binding protein (CREB), which plays an important role in
the generation of mitochondrial ROS, induction of NFATc1
and C-FOS necessary for osteoclast production. NFATc1
induced by CREB is short acting but continuously spike
cycling Ca2+ by activating SERCA2, which is necessary to
sustain NFATc1 activity during osteoclastogenesis [38].
Later, osteoclasts are polarized by actin, integrin αV, and

integrin β3, which activates vacuolar ATPase and release of
cathepsin K (CTSK), lysosomal cysteine, and protease to
degrade bone matrix, causing bone resorption.

FOX-1 which mediates the effect of RANK on osteo-
clastogenesis also modulates Toll-like receptor (TLR) and
cytokine production in monocyte and dendritic cells as
well as downstream regulation of NFATC1. This, in turn,
regulates dendritic cell-derived protein (DC-STAMP) and
ATP 6VOD2, which play an important role in cell fusion
[33].Thedifferentiatedosteoclast expressesNFATc1,OSCAR,
CTSK, and PPARγc1b. In diabetic conditions, increased
RANKL/OPG ratio contributes to increased osteoclastogene-
sis [35]. Interestingly, in the absence of RANK, NF-κB can be
activated by TNF receptor-associated factor 6 (TRAF6) path-
way, ectopic NFATC1, and activated RANKL promoters [41].

3.4. Role of FOXOs against Oxidative Stress in Osteoblasts.
FOXOs protect osteoblasts from oxidative stress by interact-
ing with transcription factor which regulates amino acid
import, proliferation of osteoblasts, and generation of antiox-
idant enzymes such as catalase, superoxide dismutase (SOD),
and glutathione [40]. In response to oxidative stress gener-
ated by reactive oxygen species (ROS), FOX 1, 3, and 4 are
activated in the nucleus of the osteoblasts and produce anti-
oxidants to decrease bone resorption. Oxidative stress is the
critical step for osteoclast differentiation and function [35].

Both FOX1 and activating transcription factor 4 (ATF4)
are located in the cytoplasm and respond to stress. Both are
translocated to the nucleus which promotes protein and
amino acid synthesis. ATF4 controls protein synthesis
through a negative feedback mechanism that leads to accu-
mulation of glutathione and collagen production. FOX1 also
promotes osteoblast proliferation by increasing cell cycle
cyclin D1 and D2 and suppressing cell cycle inhibitor
p27Kip1. Decreased FOX1 suppresses osteoblastogenesis by
decreasing osterix and type 1 collagen protein levels but does
not affect levels of Runx2 and Bsp (bone sialoprotein) [40].
FOXOs are potent repressors of osteoblastogenesis by also
decreasing PPAR-γ [37, 40]. This increase in bone resorption
may be attributed to activation of antiosteoclastogenic factor
osteoprotegerin (OPG) which promotes FOX-mediated
transcription of β-catenin/T-cell specific transcription factor
(TCF), thereby promoting RANK-mediated osteoclastogen-
esis by increasing PPAR-γ. This increases apoptosis of oste-
ocytes and enhances adipogenesis as indicated by decreased
bone markers such as calcitonin, TRAP, and cathepsin K
[37]. Osteoblasts exposed to oxidative stress also have
decreased expression of RUNX2 and osteocalcin and
increased adipogenesis-related factors PPAR-γ and fatty acid
binding protein-4 (FABP4) [55].

3.5. Wnt/β-Catenin Pathways in Metabolic Syndrome. Acti-
vation ofWnt (β-catenin) signalling promotes differentiation
of progenitor stem cells into osteoblasts and prevents adipo-
genesis. Regulation of Wnt signalling is a balance between
adipogenesis and myogenesis [60]. Wnt/(β-catenin) is acti-
vated when PPAR-γ binds with lymphoid enhancer factor/
T cell factor (LEF/TCF), binding domain of β-catenin, and
facilitates its phosphorylation by glycogen synthase kinase3b
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(GSK3b), thereby resulting in increased differentiation
within preadipocytes [61, 62]. TheWnt family has 19 ligands,
10 Wnt receptors, frizzled (Fz) coreceptors, and low-density
lipoprotein receptor-related proteins (LRP-5 and LRP-6).
The actions of Wnt include canonical and noncanonical
pathways. Noncanonical Wnt signalling cascade also plays
an important role in adipogenesis. Wnt binds to its receptor
and activates phospholipase C (PLC), generating diacylglyc-
erol (DAG) and inositol triphosphate (IP3), which results in
the release of intracellular calcium from the endoplasmic
reticulum. Efflux of intracellular calcium activates protein
kinase C (PKC). This leads to the phosphorylation of SET
domain bifurcated-1 (SETB1) histone methyltransferase,
inhibiting PPAR-γ through histone methylation H3-K9,
and upregulates RUNX2 required for osteoblastogenesis
[63, 64]. PKC has a dual role in adipogenesis. Its isoforms
α, δ, and μ inhibit adipogenesis, while β1 and γ isoforms pro-
mote adipogenesis. Hyperglycemia-induced noncanonical
Wnt pathway increased adipogenesis through activation of
various PKC isoforms [55]. Wnt/β catenin pathway inhibi-
tor, sclerostin, is increased in the serum of T2DM and is
inversely related to levels of bone turnover markers [65, 66].

Regulation of Wnt signalling is a balance between adipo-
genesis and myogenesis. Insulin action and insulin resistance
can be modulated by Wnt and lipoprotein receptor-related
protein 5 (LRP5) activity [57]. Wnt canonical pathway acts
on Fz/(LRP5/6), decreasing GSK-3β and increasing β-
catenin, which translocates to the nucleus, conjuncts with
lymphoid enhancer factor/T-cell factor (TCF), and regulates
transcription of Wnt target genes. The in vitro study using
human adipose-derived stem cells has shown that during
the differentiation of insulin-producing cells (IPC), protein
levels of Wnt 1, β-catenin, and GSK3β are increased [67].
At the same time, TCF-1 and cyclin-D increased from day
1 to day 9 and decreased from day 9 onwards and continued
to decrease. Inhibition of Wnt signalling does not decrease
differentiation from day 1 to day 9 but upregulates IPC spe-
cific markers such as insulin promoter 1 (PDX-1), insulin,
and insulin receptor substrates 1 and 2 (IRS-1 and 2) from
day 9 to day 12. Wnt signalling specific marker such as
glucokinase decreased from day 9 to day 12. Activation
of Wnt signalling on day 9 decreases IPC specific markers,
and deactivation of Wnt signalling is necessary for IPC
maturation [39, 67]. Overall, Wnt signalling may be more
involved in IPC maturation [58]. In the pancreas and
hepatocytes, β catenin/Wnt signalling pathways activate
glucokinase promoter activities in the presence of PPAR-γ
and cyclin-D promoter with transcription factor 7-like 2
(TCF7L2) binding sites [68] and play an important role in
maintaining β-cell function [69].

IRS-2 and Akt are key signalling molecules in maintain-
ing β-cell mass [70]. Akt prevents free fatty acid-induced β-
cell apoptosis through inhibition of proapoptotic proteins
like germinal center kinase 3α, β(GCK3α/β), FOX 1, and
p53 [70]. The cross talk between insulin and Wnt signalling
occurs at the level of coreceptor LRP 5, which has a profound
positive effect on insulin signalling in preadipocytes [71].

The direct interaction between insulin receptors and
LRP 5 occurs in an insulin/Wnt inducible manner. Insulin

receptor/LRP 5 plays an important role in the pathogene-
sis of IR and obesity. Decreased Wnt canonical pathway
receptor LRP5/6 increases the risk of diabetes mellitus
and impaired glucose intolerance [33, 60].

Wnt signalling varies slightly in different cells. In pre-
adipocytes, both insulin and Wnt3a lead to phosphoryla-
tion of LRP 6, GSK3b, Akt, and extracellular signal-regulated
kinase (ERK1/2). If both IGF receptors and insulin recep-
tors decrease, insulin-mediated Wnt3a phosphorylation
decreases. Whereas, Wnt-mediated phosphorylation decreases
not only when insulin receptors and IGF receptors are
decreased but also in the absence of these receptors.

In skeletal muscles, Wnt/β-catenin signalling (1)
increases muscle-specific myogenic transcription factor, (2)
decreases PPAR-γ-related adipogenesis and C/EBP α
expression, (3) converts type 2 skeletal muscle fibers into
type 1 muscle fibers, (4) decreases c-myc-mediated activa-
tion of p27, which decreases myogenesis and increases adi-
pogenesis, and (5) activates mitogenic factor 5 (Myf 5),
which in turn activates myoblast determination protein D
(myoD) [72, 73]. Risk of T2DM increases with decreased
Wnt signalling in the skeletal muscle and increased adipo-
genesis [55, 74].

In hepatocytes, canonical Wnt3a stimulation decreases
key enzymes of gluconeogenesis such as phosphoenolpyr-
uvate carboxykinase (PEPCK) and glucose 6-phosphatase
(G6Pase). Noncanonical Wnt 11 stimulation decreases
glucose output by hepatocytes. Insulin increases TCF7L2,
which increases cyclin D, a downstream target of the Wnt
signalling pathway [75]. β-Catenin phosphorylation is posi-
tively correlated with transcriptional activity of β-cat/TCF.
β-catenin phosphorylation occurs with (1) protein kinase A
(PKA) activation; (2) PKA/cyclic adenosine monophosphate
(cAMP) activator and glucagon stimulate cAMP responsive
element-binding protein (CREB) phosphorylation, and (3)
insulin is able to stimulate β-catenin phosphorylation [76].

In response to feeding, insulin mediates a repressor effect
on gluconeogenesis through TCF7L2 and β-catenin phos-
phorylation. In the absence of TCF7L2, insulin also decreases
gluconeogenesis by attenuating FOX [77]. Wnt and TCF7L2
are negative regulators of gluconeogenesis, while FOX is a
positive regulator of gluconeogenesis [76]; insulin increases
TCF7L2 in intestinal L-cells and stimulates the expression
of proglucagon gene and incretin hormone glucagon-like
peptide 1 (GLP-1) [77]; glucagon increases FOX through
cAMP, and insulin decreases FOX through PI3K/Akt-medi-
ated nuclear exclusion of FOXO1 [78], and TCF7L2 increases
hepatic glucose production and the risk of T2DM [77].

3.6. Hormonal Balance in Skeletal Homeostasis andMetabolic
Syndrome. Certain hormones associated with bone metab-
olism and energy balance such as osteocalcin, leptin, and
adiponectin affect insulin signalling pathways and other
hormones related to calcium homeostasis [70]. Osteocalcin
is the marker of osteoblast activity [79] and is modulated
in the osteoblast-specific gene esp, which encodes osteotes-
ticular protein tyrosine phosphatase (OST-PTP) [80]. This
OST-PTP dephosphorylates the insulin receptor [79].
Decreased OST-PTP increases insulin signalling through
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the insulin receptor and promotes pancreatic β-cell prolifera-
tion, while increasing insulin and insulin-sensitizing adipo-
nectin [79, 81].

Leptin produced by adipocytes acts on the hypothalamus,
which regulates decreases and increases on appetite and sati-
ety, as well as decrease in bone formation by inhibiting osteo-
calcin production in new bones [82, 83]. Adiponectin, also
produced by adipocytes, acts on bones in an age-dependent
manner and is inversely proportional to BMD [84]. Adipo-
nectin is an antagonist to leptin, acts on the brain, and
increases sympathetic output to peripheral osteoblast [85].

Other hormones like vitamin D and estrogen levels may
be associated with developing T2DM and IR [65, 86].
Decreased levels of vitamin D decrease renal reabsorption
of calcium and reduce osteocalcin production by osteoblasts
[87], resulting in diminished bone formation. Estrogen, on
the other hand, is implicated in IR. Of the two estrogen
receptors, ERα is positively associated with glucose metabo-
lism [88]. Both direct and indirect effects of ERα on IR have
been reported. Directly, ERα can act on insulin signalling and
increase GLUT4 expression, while indirectly, it can modulate
oxidative stress and inflammation [89].

3.7. Influence of Drugs Used for Treating Diabetes and Bone.
Different drugs commonly prescribed for treating diabetes
like metformin, thiazolidinedione, and sulfonylurea do affect
bone mass (Table 1). Most of them act on different pathways
to influence bone status in the patients. One highly pre-
scribed medication for T2DM patients is metformin. This
drug has been associated with the most bone protective prop-
erties. Metformin can activate adenosine monophosphate
kinase (AMPK) to reduce indigenous glucose production or
may also act independent of the AMPK pathway by inhibit-
ing glycolytic enzymes or adenylate cyclase and decreases
gluconeogenesis [90, 91]. At the mesenchymal cellular level,
metformin reduces adipocyte formation in the bone marrow
by preventing endothelial nitric oxide synthase (eNOS)
expression [14]. Metformin acts as an insulin sensitizer,
increases GLP-1 secretion in L-cells of the intestines, stimu-
lates nuclear translocation of β-catenin, and increases tran-
scription of luciferase reporter gene. GLP-1 increases (1)
pancreatic insulin secretion, (2) proinsulin gene expression,

and (3) β-cell mass. GLP-1 also decreases gastric emptying
and glucagon release. Inside the cells, metformin increases
IRS-2, p-PI3K, p-PKB, calcium/calmodulin-dependent pro-
tein kinase 2 (CaMK2), CREB, p-GSKSβ (inactive form),
enzymes of glycolysis like phosphofructokinase (PFK), and
Kreb’s cycle enzymes (isocitrate dehydrogenase, malate
dehydrogenase). Glucose utilization mediated by metformin
is through calcium-dependent protein kinase [55]. Metfor-
min also increases the markers of osteogenic differentiation
and function [33]. Although metformin has beneficial
effects on bone, there is concern for patients who have
moderate to severe digestive intolerance after consuming
this medication, as nutrients necessary for bone health may
not be absorbed properly.

Sulfonylureas are organic compounds that act on the pan-
creatic cells and increase the release of insulin. They act on
membrane channels,first by blocking the potassium channels,
causing depolarization in the cell which then opens the Ca2+

channels and this increases the release of insulin [92]. There
are very few studies that show the interaction between the con-
sumption of these drugs and bone. The few reports show that
C-terminal telopeptide (CTX) and N-terminal telopeptide
(NTX) levels are decreased in patients who take these drugs
[32, 93]. Sulfonylureas can also activate the PI3K/ATK path-
way which then increases the expression of alkaline phospha-
tase and osteocalcin mRNA expression [94]. It has been
reported that sulfonylureas protect against ovariectomy-
induced bone loss and also increase the mechanical strength
by increasing bone formation [95]. Based on the limited
evidence available, sulfonylureas are beneficial to the bone.
In-depth, long-term studies are necessary to know the exact
function of sulfonylureas on the bone in T2DM patients.

Recently, incretin-based therapies are being used. Incre-
tins are inhibitors of glucagon-like peptide 1 receptors (GLP-
1) and dipeptidyl peptidase 4 (DPP-4). GLP-1 receptors are
expressed in the pancreatic β cells and other cells promoting
metabolic activity [32]. It has been reported that GLP-1 can
control bone resorption by interacting with GLP-2 and
glucose-dependent insulinotropic polypeptide (GIP) [96]. In
addition, it can also act on a calcitonin-dependent pathway
[96]. GLP-2 may have antiresorptive function [97] while GIP
can influence bone resorption and bone formation [80, 98].

Table 1: Effects of antidiabetic drugs on bone metabolism.

Antidiabetic drugs Mode of action References

Amylin At low concentrations ⬇ osteoclastogenesis [90]

Incretin
⬇ GLP-1 receptors; ⬆ GIP influence on bone

resorption and bone formation
[30, 71, 86]

Insulin ⬆ Bone formation [87–89]

Metformin
⬇ Indigenous glucose production; ⬆ insulin

sensitivity; ⬆ osteogenic markers
[31, 51, 78, 79, 80–82]

Sodium glucose cotransporter inhibitors
Interferes with calcium and phosphate

homeostasis; ⬆ CTX and ⬇ BMD
[91, 92]

Sulfonylureas ⬇ CTX, NTX; ⬆ ALP, osteocalcin, bone strength [30, 81, 83]

Thiazolidinediones ⬆ Adipogenesis; ⬇ BMD [31]

⬆ = increases; ⬇ = decreases. GLP-1 = Glucogon like peptide 1, GIP = G;ucose-dependent insulinotropic polypeptide, CTX =C-terminal telopeptide,
NTX =N-terminal telopeptide, BMD= bone mineral density, ALP = alkaline phosphatase.
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Many clinical studies with patients who are on insulin
treatment for T2DM have reported increased risk of fracture,
especially in postmenopausal women [99–101]. Insulin is
known to increase bone formation generally, and lack of
detailed study on the reasons for insulin increasing fracture
rates is not understood.

Amylin is a peptide that is reported to have some effects
on bone metabolism [32]. Both in vitro and in vivo studies
show this peptide, when present in lower levels, is associated
with inhibited osteoclastic activity [102]. However, there is
not much data on clinical studies regarding the effects of
amylin on the bone.

Sodium glucose cotransporter inhibitors (SGCT) are
drugs that reduce the reabsorption of glucose from the
kidneys by inhibiting the sodium glucose cotransporters.
They are capable of altering the calcium and phosphate
homeostasis; therefore, they affect the bone and may be
more deleterious to the bone. Several reports have shown
that imbalance in the calcium and phosphate homeostasis
triggers secretion of PTH which increases bone resorption
[103]. Increased levels of CTX and decreased BMD values
are also reported with the use of these drugs [104]. How-
ever, some reports have not shown any significant influ-
ence on the mineral levels or the levels of parathyroid
hormone (PTH) and vitamin D [105, 106]. This may be
due to any differences in the intake of vitamins and min-
erals. At this point, it may be safe to say that these drugs
may be deleterious to the bone although more in-depth
studies are required to determine the mechanism by which
these drugs affect the bone [32].

TZDs are the most popular set of drugs that are proven to
be harmful to the bone. The primary mechanism of action in
TZDs is through direct induction of PPAR-γ leading to
improved insulin sensitivity. The stimulation of differentia-
tion of multipotent stem cells into adipocytes and increased
adiposity in bone marrow are seen in patients treated with
TZDs. The most common side effect of TZDs is weight gain
through promotion of PPAR-γ, with increased adipogenesis
leading to increased subcutaneous and bone marrow fat
depots and decreased bone formation. These properties of
TZDs make the patients’ bones become very fragile, and their
BMD is significantly decreased [33].

4. Conclusion

There is increasing evidence about the interaction between
the glucose metabolic pathway, insulin signalling, and bone
metabolic pathways. In 2015, it was reported that there was
a rise in people aged 66 and older having T2DM [107].
Unfortunately, this is also the age when both men and
women have decreased bone mass and are at high risk of hav-
ing hip and spine fractures [65]. This may be because of the
interaction of signalling pathways that modulate bone and
glucose metabolism in T2DM patients. In order to assess
the fracture risk, a combination of BMD, FRAX, and bio-
chemical markers should be used. T2DM patients should be
tested for their bone health regularly, and bone status in
T2DM patients should be recognized as a complication of
diabetes as recommended by Sanches et al. [58]. Another

factor that influences the bone in T2DM is as a side effect
of the drugs that are prescribed to treat diabetes. It is impor-
tant to note that there is an intricate connection between the
different pathways that are altered in T2DM patients and
bone metabolism. Although there is evidence of the effects
of metformin and TZDs on bones, more research need to
be conducted with the newer antidiabetic drugs. Therefore,
patients being treated for diabetes should be tested for several
vitamin and mineral levels. This information should be used
to advise patients on the nutrient intake of specific vitamin
and mineral deficiencies. In addition, medications used for
treating diabetes should be carefully chosen, and any micro-
nutrient deficiency should be supplemented.
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