®)

BiolVled Central

Software

MICA: desktop software for comprehensive searching of DNA
databases
William A Stokes! and Benjamin S Glick*1.2

BIVIC Bioinformatics

Address: 1GSL Biotech, LLC, 5211 S. Kenwood Ave. Chicago, IL 60615, USA and 2Department of Molecular Genetics and Cell Biology, and Institute
for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA

Email: William A Stokes - wstokes@gmail.com; Benjamin S Glick* - bsglick@uchicago.edu
* Corresponding author

Published: 03 October 2006
BMC Bioinformatics 2006, 7:427 doi:10.1186/1471-2105-7-427

Received: 17 April 2006
Accepted: 03 October 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/427

© 2006 Stokes and Glick; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Molecular biologists work with DNA databases that often include entire genomes.
A common requirement is to search a DNA database to find exact matches for a nondegenerate
or partially degenerate query. The software programs available for such purposes are normally
designed to run on remote servers, but an appealing alternative is to work with DNA databases
stored on local computers. We describe a desktop software program termed MICA (K-Mer
Indexing with Compact Arrays) that allows large DNA databases to be searched efficiently using
very little memory.

Results: MICA rapidly indexes a DNA database. On a Macintosh G5 computer, the complete
human genome could be indexed in about 5 minutes. The indexing algorithm recognizes all 15
characters of the DNA alphabet and fully captures the information in any DNA sequence, yet for
a typical sequence of length L, the index occupies only about 2L bytes. The index can be searched
to return a complete list of exact matches for a nondegenerate or partially degenerate query of any
length. A typical search of a long DNA sequence involves reading only a small fraction of the index
into memory. As a result, searches are fast even when the available RAM is limited.

Conclusion: MICA is suitable as a search engine for desktop DNA analysis software.

Background

Researchers are increasingly working with large DNA data-
bases. For example, the human genome is approximately
3 gigabases. Searching these databases has traditionally
been done by using web applications to communicate
with dedicated servers. As an alternative analysis tool,
desktop computers offer richer and more responsive
graphical interfaces. Desktop software programs are avail-
able for displaying and manipulating plasmids and other
relatively small DNA molecules. Such functionality could
theoretically be extended to large DNA databases, because
typical desktop computers now have hard disk capacities

of hundreds of GB. However, most bioinformatics appli-
cations load all of the relevant DNA data into main mem-
ory, so the RAM capacity of desktop computers remains a
limitation. The challenge is to create desktop DNA analy-
sis software that accomodates large DNA databases while
using modest amounts of RAM.

A basic requirement for such software is rapid searching of
a DNA database to find all exact matches for a query
sequence. The desired search speeds can only be achieved
by indexing the database. One well-characterized index-
ing strategy is to generate a suffix tree [1]. Although suffix

Page 1 of 11

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17018144
http://www.biomedcentral.com/1471-2105/7/427
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:427

trees have been used productively for some molecular
biology applications, such as aligning whole genomes [2],
they consume large amounts of memory, up to 15 bytes or
more per base. Suffix arrays are more compact than suffix
trees and can provide similar search capabilities, but they
still require 4-8 bytes per base [3]. These conventional
suffix-based search strategies rely on loading the entire
index into memory, so they are not currently suitable for
desktop analysis of large DNA databases. A potential solu-
tion to this problem is to generate a compressed suffix
array using a Burrows-Wheeler transform [4]. The indexes
generated by this method occupy as little as 0.3 bytes per
base, but indexing is slow: generation of a compressed suf-
fix array for the human genome required many hours on
a desktop computer [4].

Non-suffix-based indexing stategies are currently in more
widespread use for DNA databases. The SSAHA algorithm
divides a DNA sequence into nonoverlapping K-mers, and
stores the position of these K-mers in a hash table [5]. A
similar indexing method is used by the BLAT algorithm
[6]. Both SSAHA and BLAT generate relatively small
indexes, on the order of 1 byte or less per base, and they
can be orders of magnitude faster than FASTA or BLAST,
which index the query sequence rather than the database
[7-9]. SSAHA and BLAT have proven to be powerful for
applications such as mapping sequence reads to a
genome, or aligning mRNA sequences with the corre-
sponding genomic DNA sequences. However, SSAHA and
BLAT have limitations. Unlike suffix-based algorithms,
which can identify all matches to any query sequence,
SSAHA cannot detect a match of fewer than K bases, and
requires 2K-1 consecutive matching bases to guarantee
that a match will be registered. Because SSAHA sorts the
search results, efficient searching is achieved by ignoring
the K-mers that occur most frequently in the database.
Similarly, BLAT sacrifices completeness for speed.

These various algorithms have been designed with the
assumption that the complete index of a DNA database
will be stored in main memory. Such algorithms are
inconvenient for desktop applications. An index might be
too large to fit within the RAM of a personal computer.
Even if sufficient RAM were available, loading an index
might be time-consuming. For example, a compressed
suffix array of the human genome occupies about 1 GB
[4], and reading those data from a hard disk into RAM
would require tens of seconds, an unacceptable delay for
users who expect fast access to information. We are devel-
oping software that will allow users to open and browse a
large DNA database as rapidly as they open a plasmid file.
The main innovation of our approach is to leave the index
on disk, and to retrieve the relevant data selectively during
a search.

http://www.biomedcentral.com/1471-2105/7/427

For general purpose DNA analysis software, the database
searches need to be comprehensive. Applications include
searching whole chromosomes to create complete lists of
restriction sites or oligonucleotide hybridization sites. We
have met this need with an indexing and searching algo-
rithm called MICA (K-Mer Indexing with Compact
Arrays). The indexes occupy ~2 bytes per base and can be
generated quickly. Unlike most other algorithms, MICA
indexes not only the standard nucleotide base characters
A, C, G, and T, but also the degenerate base characters B,
D, H, K, M, R, S, V, W, Y, and N. Efficient search proce-
dures identify all matches for a nondegenerate or partially
degenerate query of any length. When a file is being
searched, only a fraction of the index is loaded into mem-
ory. The result is that desktop computers with modest
amounts of RAM can rapidly open and search large DNA
databases.

Implementation

Index structure

Indexing a DNA sequence can be achieved by scanning the
sequence with a window of width K. For a sequence of
length L, sliding the window one base at a time yields L -
K + 1 overlapping K-mers. A MICA index uses arrays to
store all of the positions for each K-mer in the subject
DNA sequence. Because chromosomal DNA molecules
can be up to several hundred million bases long, the K-
mer position values would normally be represented as 4-
byte integers. We reduce this data storage requirement by
dividing the sequence into C separate "chunks" of 65,535
(216-1) bases, where C = ceiling(L/65,535). The intra-
chunk positions of each nondegenerate K-mer are stored
as 2-byte integers. The absolute positions of a K-mer
within the full DNA sequence can then be calculated with
the aid of a list specifying the number of instances of the
K-mer within each chunk.

In addition to the four nondegenerate base characters,
there are 10 characters (B, D, H, K, M, R, S, V, W, and Y)
representing partially degenerate base possibilities, plus
one character (N) that represents any possible base. Par-
tially degenerate K-mers must be recognized if the index is
to capture all of the information in any DNA sequence. It
would be wasteful to create an array for all of the different
partially degenerate K-mers because most of the array ele-
ments would typically be empty. Instead, for each par-
tially degenerate K-mer that is actually present in a subject
sequence, we use a 4-byte integer to record the absolute
position of the K-mer, followed by a K-byte string to
record the sequence of the K-mer. This approach is ineffi-
cient with regard to data storage, but most DNA sequences
contain very few partially degenerate K-mers, and the sim-
plicity of the data format facilitates searching. A separate
strategy is used for stretches of N's, which are commonly
used to indicate undefined portions of a sequence. Here S

Page 2 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

designates the number of "N-stretches" of K or more con-
secutive N's. MICA efficiently indexes N-stretches by
recording their starting positions and their lengths.

Also stored in the index is the topology of the subject DNA
molecule (linear or circular). With circular DNA mole-
cules, MICA finds matching sequences that span the
numerically defined origin.

http://www.biomedcentral.com/1471-2105/7/427

Table 1 summarizes the MICA file structure, together with
the generic data storage requirements for each part of the
file. As an example, Table 1 lists the specific data storage
requirements for human chromosome 1, which at ~246
million bases represents one of the longest DNA mole-
cules that needs to be indexed. To ensure that memory
addresses can be represented as 4-byte integers, we have
constrained MICA to index individual DNA sequences of

no more than 1 gigabase.

Table I: MICA file structure and data storage requirements

File Element Generic Storage Requirement (bytes) Storage Requirement for Chromosome | (bytes)

Sequence Segment

A. Segment Format |

|
B. Segment Size 4 4
C. Sequence Properties | |
D. DNA Sequence L 245,522,847 (234 MB)
SEGMENT TOTAL 6+L 245,522,853 (234 MB)

Index Segment
E. Segment Format |

I
F. Segment Size 4 4
G. Index Properties | |
H. Chunk Counts Summary 4K+ K =4: 1,024 (1 KB)
K= 6:16,384 (16 KB)
I. Degenerate K-mer Count 4 4
J. N-Stretch Count (S) 4 4
K. Chunk Data Array (4K* C + number of nondegenerate K-mers) * 2 K = 4: 447,573,936 (427 MB)
K = 6: 476,350,748 (454 MB)
L. Degenerate Data Array (number of partially degenerate K-mers) * (4 + K) K=4:1,752 (1.7 KB)
K = 6: 3,650 (3.6 KB)
M. N-Stretch Data Array 8S 296
SEGMENT TOTAL Typically about 2L bytes. K = 4: 447,577,022 (427 MB)

K = 6: 476,371,092 (454 MB)

A MICA file consists of a Sequence Segment (elements A — D) followed by an Index Segment (elements E — M). If a sequence occupies more than 16
chunks, then loading of a MICA index consists of reading elements A — C of the Sequence Segment, skipping over the DNA sequence, and reading
elements E —] of the Index Segment. The parameters for human chromosome | were: L = 245,522,847 bases; C = 3,747 chunks; S = 37 N-stretches
(total of 22,695,000 N's).

(A) A single byte is used to specify the Sequence Segment format.

(B) The size of the Sequence Segment is specified by a 4-byte integer.

(C) A single byte is used to record properties of the sequence, including its topology (linear or circular) and its strandedness (single- or double-
stranded).

(D) The DNA sequence is stored as a string of uppercase ASCII characters.

(E) A single byte is used to specify the Index Segment Format.

(F) The size of the Index Segment is specified by a 4-byte integer.

(G) A single byte is used to record the byte order ("endianness") of the index. If the byte order is opposite to that of the machine being used to run
the queries, MICA corrects the byte order when processing the index data.

(H) The Chunk Counts Summary is a list of 4K 4-byte integers representing the total number of times each nondegenerate K-mer appears in the
sequence. For the MICA index, the 4-base nondegenerate DNA alphabet is arranged in the order G, A, T, C. Thus, the first nondegenerate K-mer
listed is GGGG (K = 4) or GGGGGG (K = 6), and the last one listed is CCCC (K = 4) or CCCCCC (K = 6). This lexicographical order yields
contiguous index reads for K-mers that end in the most common partially degenerate bases: R (A or G), Y (C or T),and W (A or T).

(I) The Degenerate K-mer Count is a 4-byte integer representing the total number of partially degenerate K-mers in the sequence.

(J) The N-Stretch Count S is a 4-byte integer representing the number of separate stretches of K or more consecutive N's.

(K) The Chunk Data Array is divided into 4K partitions corresponding to the 4K nondegenerate K-mers. Each partition contains a list of 2-byte
integers representing the number of times the K-mer is present in each of the C chunks, followed by a list of 2-byte integers representing the intra-
chunk positions of the K-mer in each of the C chunks. The first partition contains the data for GGGG (K = 4) or GGGGGG (K= 6), and the second
partition contains the data for GGGA (K = 4) or GGGGGA (K = 6), and so on.

(L) The Degenerate Data Array is a list of the partially degenerate K-mers. Each partially degenerate K-mer is represented as a 4-byte integer that
marks the absolute position of the K-mer, followed by a K-byte string that encodes the sequence of the K-mer.

(M) The N-Stretch Data Array consists of S pairs of 4-byte integers that represent the starting positions and lengths of the N-stretches.

Page 3 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

Choice of K

The main body of a MICA index is the Chunk Data Array,
which stores the positions of the nondegenerate K-mers
(Table 1). The total number of position values is largely
independent of K. However, there are 4K different nonde-
generate K-mers, so the Chunk Data Array is divided into
4K partitions. Each partition is divided into C sub-parti-
tions that contain the intra-chunk position values. The
sizes of these sub-partitions are recorded in a list at the
beginning of the partition. As a result, the practical upper
limit for K is 7, because for K = 8 there would be 65,536
sub-partitions per chunk, and the lists of sub-partition
sizes would occupy more space than the lists of K-mer
position values. The practical lower limit for K is 3,
because reducing K increases the size of the partitions that
must be read from disk, thereby slowing most searches.

Index creation

To create a MICA index, a subject DNA sequence in FASTA
format [10] is scanned using a window of width K. Both
uppercase and lowercase characters are recognized. An ini-
tial scan fills in the data for index elements E - J (Table 1).
Then the appropriate memory for the data arrays (index
elements K - M) is allocated, and a second scan fills in the
positions of the K-mers and N-stretches. These operations
are fast, partly because building the index requires no sort-
ing.

If sufficient memory is available, indexing speed is maxi-
mized by building the entire index in memory and then
writing to disk in a single step. In the case of human chro-
mosome 1, this process requires about 0.67 GB of RAM,
an amount that is available on many desktop computers.
If memory is limiting, only a subset of the K-mer position
values are stored in memory at a given time, and the index
is written to disk in multiple steps.

Currently, MICA embeds a copy of the DNA sequence
within the file. This sequence consists of uppercase char-
acters in 8-bit ASCII format, and therefore occupies L
bytes. The original sequence file is then dispensable for
searching. For future applications, MICA will be inte-
grated with software that automatically generates a suita-
bly formatted DNA sequence.

General search strategy

If a DNA sequence occupies more than 16 chunks (~1
megabase), only elements A - C and E - J of the MICA file
are initially read from disk (Table 1). These reads are very
fast because they involve a small amount of data, just over
1 KB for K =4 orjust over 16 KB for K = 6. During a search,
MICA uses the data from this first portion of the index to
find the relevant position values. For example, to find the
positions of a nondegenerate K-mer, an entry in the
Chunk Counts Summary (index element H) indicates

http://www.biomedcentral.com/1471-2105/7/427

where the relevant position values can be read from the
Chunk Data Array (index element K). Thus, MICA selec-
tively reads only the essential data from disk, thereby per-
forming efficient I/O operations and minimizing RAM
usage.

Figure 1 provides a pseudocode summary of the basic
MICA search routines. The query length Q can range from
one base to the length of the subject DNA sequence. Both
strands of the DNA molecule are searched. For a query
that is palindromic-i.e., identical to its reverse comple-
ment-a single search is performed. For a query that is
nonpalindromic, two successive searches are performed,
one with the query and another with the reverse comple-
ment of the query. If the DNA molecule is circular, the ini-
tial search is followed by a secondary search for matches
that span the origin. The key step in this secondary search
involves dividing the query in half and then checking for
one of two possibilities: either the first half-query matches
within the last Q-1 bases of the DNA sequence, or the sec-
ond half-query matches within the first Q-1 bases of the
DNA sequence.

If a query is shorter than K bases, it is extended to K bases
by adding N's, and is then treated as being partially degen-
erate (see below). If a query is exactly K bases, the search
consists of converting the 2-byte intra-chunk position val-
ues for that K-mer to 4-byte absolute position values. If a
query is longer than K bases, it is decomposed into con-
stituent K-mers, which are examined as follows. The list of
intra-chunk position values for the first K-mer is read from
the index and converted to absolute position values,
thereby creating an initial working list. Each value in the
working list is then compared with the second K-mer list.
The result is a new working list, which indicates where
both the first and second K-mers from the query match
the subject DNA sequence. This new working list is then
compared with the next K-mer list, and so on. In this man-
ner, MICA progressively trims the initial working list to
generate a final list of matches.

With a query longer than K bases, the constituent K-mers
are examined in increasing order of their frequency of
appearance in the subject DNA sequence. For example, a
search for the 12-mer AAAACCCCGGGG using K = 4
might involve calculating the positions for CCCC, then
comparing each CCCC position against the list of posi-
tions for GGGG, then comparing each CCCCGGGG posi-
tion against the list of positions for AAAA, which in this
case would be the most common of the three 4-mers. This
strategy of starting with the rarest K-mer can significantly
accelerate searches because some K-mers are found less
frequently than others and therefore result in fewer com-
parisons. In chromosome 1, the most common 4-mer
(AAAA) appears 56 times more often than the rarest 4-mer

Page 4 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427 http://www.biomedcentral.com/1471-2105/7/427

I
Search(query) {
1. hits = SearchTopStrand(query)

2. if(doubleStranded && !Palindromic(query))

3. reverseHits = SearchTopStrand(ReverseComplement(query))
4. else

5. reverseHits =[]

o

return [hits, reverseHits]
7.}

/I
SearchTopStrand(query) {
1. length = | query |

/IPad query to length K with N's if necessary.
if(length < K) {

query = PadQuery(query, K)

length = K

kmers = [query]

}

o0k wD

//Otherwise divide query into K-mers.
7. else{
8. kmers = DivideQuery(query, K)
9. //Sort by increasing frequency in subject DNA sequence.
10. kmers = SortKMers(kmers, kmerFrequencies)
11.}

12. if(VeryDegenerate(kmers[1]))
18. return BruteForceSearch(query) //Examine DNA sequence directly.

/[Fetch first K-mer intra-chunk position values from index and
/lconvert to 4-byte absolute position values.

14. newlList = Hits(kmers[1]);

15. workingList = AbsolutePositions (newList);

/ICull working list using subsequent K-mers.
16. for(i=2: 1 kmers|){

17. if(VeryDegenerate(kmers[i])) {

18. CheckHits(workingList, query) //Examine DNA sequence directly.
19. break

20. }

21. else{

22. newlList = Hits(kmers]i]);

23. workingList = Intersect(newList, workingList);
24. if(| workingList | == 0) break

25. }

26. }

//1f subject sequence is circular, search for hits spanning the
/lorigin and append these hits to the working list.

27. if(circular)

28. workingList = AppendWrapAroundHits(workingList, query)

29. return workingList;
30.}
I/

Figure |
Pseudocode summary of the basic MICA search routines. See the text for additional information about memory man-
agement, intersection algorithms, and merge operations for degenerate K-mers.

Page 5 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

(CGCG), and the most common 6-mer (TTTTIT) appears
929 times more often than the rarest 6-mer (CGTACG).

Each successive K-mer search is limited to the range of
chunks that generated hits for the current working list. In
the example above, after the CCCCGGGG hits have been
identified, the search for AAAA is limited to the chunks
between the first and last occurrence of CCCCGGGG. If a
working list contains no hits, the search is terminated.
This range limitation method can accelerate searches
when a query has a small number of matches to the sub-
ject sequence.

Searching with partially degenerate queries

A partially degenerate query can be expanded by searching
for all of the possible matching sequences. For example,
the restriction enzyme Bsp12861 has the recognition
sequence GDGCHC, which can potentially match 9 non-
degenerate sequences (when the second base is A, G, or T,
and the fifth base is A, C, or T) and 40 partially degenerate
sequences (when the second base is D, R, K, or W, or the
fifth base is H, M, Y, or W). A search for GDGCHC will
therefore return matches for all of the 49 possible match-
ing 6-mers. Alternatively, searches for a partially degener-
ate query can be restricted to return only literal matches to
that character string, so a search for "GDGCHC" will
return matches only for the single 6-mer GDGCHC.

MICA scans a partially degenerate query to determine an
efficient search strategy that limits the degeneracy of the
constituent K-mers. For example, the restriction enzyme
Bael has the recognition sequence ACNNNNGTAYC, and
for K = 4 the matches are found by searching for GTAY,
TAYC, and ACNN. The MICA index is ordered lexico-
graphically, so the K-mer ACNN invokes 16 contiguous
disk reads from the Chunk Data Array, whereas the equiv-
alent K-mers NNAC and NACN would invoke non-contig-
uous reads. Because contiguous reads are faster than non-
contiguous reads, MICA pushes any degeneracy to the end
of a K-mer whenever possible.

With a partially degenerate K-mer, the working list must
be compared to multiple individual K-mer lists using an
intersection algorithm. An obvious approach would be to
adapt the method that is used with a single nondegenerate
K-mer. In that case, MICA finds the intersection of the
working list and the next K-mer list using a standard tech-
nique: a pointer is assigned to the K-mer list, and for each
successive element in the working list, the pointer is
advanced until the value in the K-mer list equals or
exceeds the value in the working list [11]. When there are
multiple K-mer lists, a pointer can be assigned to each
one, and a working list element can be compared to all of
the K-mer lists. However, this method becomes very inef-
ficient if the working list is larger than the individual K-

http://www.biomedcentral.com/1471-2105/7/427

mer lists, because most of the comparisons fail to advance
the pointers. MICA therefore uses an alternative intersec-
tion algorithm for partially degenerate K-mers. A boolean
array of 65,535 elements is used to represent the positions
in a chunk. For a given chunk, all of the individual K-mer
lists are scanned, and the 2-byte position values are
recorded by setting the corresponding boolean elements
to true, yielding a boolean array that indicates which posi-
tions in the chunk match one of the K-mers. Then the
intersection is obtained by checking whether each work-
ing list element corresponds to a value of true in the
boolean array. This method is efficient due to the rela-
tively small number of operations and the sequential
nature of the memory accesses.

When a K-mer is very degenerate, a substantial amount of
time may be needed to read and process the index data. In
such cases, MICA switches to an alternate mode that uses
the embedded DNA sequence. The entire query is com-
pared to DNA sequence fragments that overlap each hit in
the working list. Based on empirical tests, MICA was con-
figured to perform this mode switch whenever the
amount of index data that would need to be read exceeds
33% of the total DNA sequence data. This condition typi-
cally arises with extremely degenerate K-mers such as
ANNN (K = 4) or ANNNNN (K = 6). Even with a less
degenerate K-mer, the alternate mode is used if more data
would be read by using the index than by directly examin-
ing the DNA sequence. Thus, at each stage of a search,
MICA takes advantage of the fastest available option.

Memory management during searches

Reading data from disk is slow, so the search speed can be
maximized by pre-loading the entire file into main mem-
ory. MICA uses this approach when the sequence occupies
up to 16 chunks. The corresponding files usually occupy
no more than 3 MB of RAM and can be read from disk in
a fraction of a second.

For longer sequences, as described above, MICA sacrifices
some potential search speed in exchange for rapid index
loading and low memory usage. The only parts of the
index that are initially read into memory are the elements
that describe the structure of the data arrays. During a
search, the position values for the relevant K-mers are
selectively read from disk. These read operations are usu-
ally the rate-limiting step in the search, but they are rela-
tively efficient because of the compact 2-byte indexing
format and because all of the positions for each K-mer are
stored contiguously. Only a small portion of the index is
used at a given time, so a typical search requires very little
memory.

If a query sequence contains a degenerate or otherwise

abundant K-mer, then reading the full list of position val-

Page 6 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

ues for that K-mer might require more RAM than is avail-
able. MICA deals with this situation by dividing the
subject sequence into segments and searching each seg-
ment in turn. During the search of a given segment, only
the corresponding K-mer position values are read into
memory.

Results and discussion

MICA was coded in C++ and tested on a 2.5-GHz G5 Mac-
intosh running OS X (10.4, Tiger) with 2.5GB of RAM. As
subject data we used the May 2005 Ensembl release of the
human genome [12], comprising 3.08 gigabases in 25
files representing the linear chromosomes 1-22, X, and Y,
plus the circular mitochondrial chromosome. A simple
graphical user interface was later constructed using Troll-
tech's Qt 4.1.

Indexing performance

For a server application, a large index may be acceptable if
sufficient memory is available, and slow indexing is
acceptable because the index is created once and then
used indefinitely. For a desktop application, smaller
indexes are desirable because they occupy less disk space.
Moreover, versatility is increased if the index can be cre-
ated and updated rapidly, because this feature facilitates
the analysis of new sequences and the modification of
existing sequences.

Table 2 shows representative MICA index sizes and index-
ing times. With human chromosomes, storage require-
ments for the indexes were just under 2 bytes per base,
reflecting the existence of N-stretches in the current
genome assembly. With a computer-generated random
sequence containing no degenerate base characters, the
storage requirement was slightly over 2 bytes per base. The
indexing time for chromosome 1, which is ~246 million
bases, was 19.3 sec for K = 4 or 27.1 sec for K = 6. Only

http://www.biomedcentral.com/1471-2105/7/427

56% of the K = 6 indexing time (15.3 sec) was due to the
indexing procedure itself, with most of the remaining
time being consumed by writing the completed index to
disk. Indexing the entire human genome required 262 sec
(4.4 min) for K = 4 or 345 sec (5.8 min) for K = 6. These
speeds should enable a researcher to process a DNA data-
base and move promptly to the analysis stage.

To simulate indexing with limited RAM, we instructed
MICA to index chromosome 1 using the procedure that
would be followed if only 100 MB of RAM were available.
The indexing time for K = 6 was 126 sec, which should still
be adequate for most applications.

Searching performance

The subject sequences were chromosome 1 or the entire
human genome, and both DNA strands were searched.
With the entire genome, the relevant index elements for
each chromosome were loaded separately into memory
for each search, but these loading times (Table 2)
accounted for only a small fraction of the total search
times. A series of searches was performed with nondegen-
erate queries of various lengths and with several partially
degenerate queries.

Table 3 shows representative search times for K = 4. As
expected, searches for 4-mers were the fastest, with each
search requiring an average of 0.13 sec for chromosome 1
or 2.5 sec for the entire genome. Searches for 6- or 8-mers
took about three times as long. For 15-mers, the average
search times were 0.56 sec for chromosome 1 or 9.0 sec
for the entire genome, about 50% longer than for 8-mers.
As the query length increased further, the search times
actually decreased as MICA took advantage of rare 4-mers
within the queries.

Table 2: Representative sizes, creation times, and loading times for MICA indexes

K Index Size (GB) Index Creation Time (sec) Index Loading Time (sec)
Chromosome | 4 0.42 19.3 0.023
(2.46 x 108 bases)
6 0.44 27.1 0.024
Random Sequence 4 0.46 235 0.020
(2.46 x 108 bases)
6 0.49 320 0.025
Human Genome 4 533 262 0.49
(3.08 x 107 bases)
6 5.67 345 0.44

The sequences of chromosome | and the 25 chromosomes comprising the human genome were obtained from the Ensembl database. We also
tested a computer-generated random sequence of 246,000,000 bp containing equal proportions of G, A, T, and C. Index size refers to index
elements E — M of the MICA file (see Table 1), and does not include the Sequence Segment. The creation time for each index includes the time
needed to write the index to disk, but does not include the additional time needed to embed a copy of the sequence within the file; this additional
embedding time for chromosome | was 16.4 sec for K =4 or 19.6 sec for K = 6. Index loading refers to the reading of elements A — C and E —] of
an index from disk into memory. For the human genome, the values listed are the sums of the values for the individual chromosomes.

Page 7 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

Table 3: Representative search times for K= 4

http://www.biomedcentral.com/1471-2105/7/427

Query Chromosome | Human Genome
Time (sec) Hits Time (sec) Hits

Nondegenerate 3-mers 0.82 [0.51] 6.96 x 106 1.5 8.90 x 107
Nondegenerate 4-mers 0.13 [0.028] 1.69 x 108 2.5 2.17 x 107
Nondegenerate 6-mers 0.35[0.11] 160,702 5.8 2.05 x 108
Nondegenerate 8-mers 0.38 [0.11] 16,631 6.2 213,099
Nondegenerate |5-mers 0.56 [0.11] 1.39 9.0 5.8l
Nondegenerate 30-mers 0.54 [0.10] 1.03 83 1.24
Nondegenerate 100-mers 0.41 [0.069] 1.01 6.1 1.02
Nondegenerate 1000-mers 0.14 [0.019] 1.00 2.3 1.00
Alu 30-mer fragment 0.77 [0.095] 1,130 13.6 14,041
GDGCHC (Bsp1286l) 0.43[0.11] 398,999 6.9 4,776,086
GCCNNNNNGGC (Bgll) 0.37[0.12] 44,761 6.1 520,776
ACNNNNGTAYC (Bael) |.55 [0.34] 20,243 232 259,837

Both DNA strands were searched using K = 4. Results for the 3- to 1000-mer searches are average values obtained by searching with multiple
queries. For 3-mers, all 64 possible nondegenerate queries were tested by extending each 3-mer to a partially degenerate 4-mer. For 4-mers, all
256 possible nondegenerate queries were tested. For 6- and 8-mers, 100 randomly chosen nondegenerate queries were tested. In the case of |5-
to 1000-mers, each test involved 100 nondegenerate queries that were extracted randomly from chromosome | and checked to confirm that a
given query had no more than 10 matches in the genome. The Alu 30-mer fragment GGCCGGGCGCGGTGGCTCACGCCTGTAATC is a
conserved sequence found at the 5' ends of Alu repeat elements [14]. The three partially degenerate queries are the recognition sequences for the
restriction enzymes Bsp 12861, Bgll, and Bael. For chromosome 1, the search times without brackets were obtained after pre-loading only file
elements A — C and E - (see Table |) into memory, and the faster search times with brackets were obtained after pre-loading the entire file. For
the entire genome, the search times include the time needed to load elements A — C and E — of each file into memory. Thus, the data for
chromosome | reflect the time needed to search a file that is already open, whereas the data for the entire genome reflect the time needed to
search a set of unopened files. To ensure that the search times without brackets reflect MICA performance for newly opened indexes, each search
was preceded by a large number of extraneous reads, which flushed the main memory of any prior data from the relevant index.

Table 4 shows representative search times for K = 6. As
expected, searches for 6-mers were the fastest. For 8- to
100-mers, the K = 6 searches were approximately five
times as fast as the corresponding K = 4 searches. The rea-
son for this difference is that read operations are the slow-
est step for most searches, and an average 6-mer occupies
much less index space than an average 4-mer.

Table 4: Representative search times for K= 6

When the query length is less than K, the search times are
relatively long because multiple K-mer lists must be
merged. As an example for K = 4, the positions of each 3-
mer were found by merging four 4-mer lists, so the 3-mer
searches were much slower than the 4-mer searches (Table
3). For K = 6, the 4-mer searches were much slower than
the 6-mer searches, and the 3-mer searches were slower

Query Chromosome | Human Genome
Time (sec) Hits Time (sec) Hits

Nondegenerate 3-mers 1.1 [0.80] 6.96 x 106 14.8 8.90 x 107
Nondegenerate 4-mers 0.28 [0.16] 1.69 x 106 42 2.17 x 107
Nondegenerate 6-mers 0.043 [0.0032] 160,702 0.96 2.05 x 10¢
Nondegenerate 8-mers 0.079 [0.011] 16,631 1.6 213,099
Nondegenerate |5-mers 0.088 [0.0074] 1.39 1.8 5.81
Nondegenerate 30-mers 0.13 [0.0076] 1.03 1.8 1.24
Nondegenerate 100-mers 0.12 [0.0050] 1.01 1.7 1.02
Nondegenerate 1000-mers 0.094 [0.0023] 1.00 1.3 1.00
Alu 30-mer fragment 0.12 [0.0055] 1,130 2.5 14,041
GDGCHC (Bsp1286l) 0.13[0.031] 398,999 25 4,776,086
GCCNNNNNGGC (Bgll) 0.44[0.15] 44,761 6.2 520,776
ACNNNNGTAYC (Bael) 1.40 [0.37] 20,243 21.1 259,837

Both DNA strands were searched using K = 6. The queries and the procedure were as described in Table 3, except that each 3- or 4-mer was
extended to a partially degenerate 6-mer.

Page 8 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

still (Table 4). Multiway merges are naturally suited to
parallel processing [13], and we are exploring the possibil-
ity of accelerating merges by harnessing the enhanced
multithreading capacity of newer desktop computers.

For a given query length, searches are fast if there are very
few matches to the query, and somewhat slower if multi-
ple matches are distributed throughout the subject
sequence. As a test case of a query with many matches, we
used a conserved 30-base fragment of the Alu repeat ele-
ment [14]. This Alu fragment was found 1,130 times in
chromosome 1 and 14,041 times in the entire genome.
The searches for the Alu fragment took only slightly longer
than the searches for rare 30-mers (Tables 3 and 4). Thus,
MICA delivers strong performance even with repeated
sequences, which are challenging for some other search
algorithms [5].

To test partially degenerate queries, we searched for the
recognition sequences of the restriction enzymes
Bsp12861 (GDGCHC), Bgll (GCCNNNNNGGC), and Bael
(ACNNNNGTAYC). In the case of Bgll, the search
involved generating lists of positions for the 3-mers GCC
and GGC, and then finding the intersection of those lists.
As described above, 3-mer searches are expensive because
of the merges, so MICA defers such merges until after the
intersection operations. This approach made searching for
the Bgll recognition sequence about twice as fast as search-
ing for a single 3-mer (Tables 3 and 4). The searches for
the non-palindromic Bael recognition sequence were rel-
atively slow because MICA needed to process the data for
the 2-mers AC and GT. In general, the most time-consum-
ing searches are those involving K-mers with substantial
degeneracy, because multiple individual K-mer lists need
to be read from disk and then examined.

Effects of varying K

We performed extensive tests with K chosen to be either 4
or 6. For K= 6 the individual K-mer reads were 16-fold
smaller on average than for K = 4, yet the K = 6 searches
for typical nondegenerate queries were faster by only
about five-fold (Tables 3 and 4). The reason for this dis-
crepancy is that the K = 6 reads are so small that disk seek
times become limiting. Thus, increasing K to 7 would only
marginally accelerate searches for typical nondegenerate
queries. Moreover, a larger value of K would be detrimen-
tal with very short queries and with some partially degen-
erate queries. For example, when searching for the Bgll
recognition sequence, MICA expands the 3-mer GCC to
the 4-fold degenerate GCCN for K = 4, but expands the
same 3-mer to the 64-fold degenerate GCCNNN for K = 6
or the 256-fold degenerate GCCNNNN for K = 7. The best
overall compromise for most purposes seems to be K = 6.

http://www.biomedcentral.com/1471-2105/7/427

In the case of DNA molecules such as plasmids for which
only a few KB are needed to store the DNA sequence, a K
= 6 index is excessively large because it requires 24 KB to
record how many times each nondegenerate K-mer is
present. By contrast, a K = 4 index requires only 1.5 KB to
store this information for a molecule of up to 65,535 bp.
Therefore, MICA uses K = 4 if the DNA sequence fits
within one chunk, or K = 6 if the DNA sequence occupies
two or more chunks.

Effects of memory usage

For the genome-wide searches listed in Table 4, the
amount of RAM used by MICA ranged from about 1.6 MB
for a rare 6-mer to 40 MB for Bael sites. These numbers are
small because the searches were performed one chromo-
some at a time. To determine how memory limitation
affects search times, we searched for Bael sites in chromo-
some 1 under conditions that simulated different
amounts of available RAM (Figure 2). The memory check
algorithm estimated conservatively that searching all of
chromosome 1 would require a maximum of 47.4 MB of
RAM. As a result, when the available RAM dropped below
this level, chromosome 1 was searched in segments. The
search speeds decreased accordingly, but this decrease was

25 |] 1

-t - ()]
o (&)} o
L)]]
1 1 1

Bael Site Search Time (sec)

9]
T
1

1 1 1
1 10 100 1000

Available RAM (MB)

Figure 2

Example of search times as a function of available
RAM. To simulate searching with various amounts of free
memory, we instructed MICA (K = 6) to search chromo-
some | for Bael sites (ACNNNNGTAYC) using the proce-
dures that would be followed if the indicated amounts of
RAM were available. For these measurements, each search
was preceded by a large number of extraneous reads, which
flushed the main memory of any prior data from the index.

Page 9 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

not severe until the available RAM dropped below about
10 MB. Thus, even when a database contains large chro-
mosomal sequence files, searching can be performed effi-
ciently using a computer with modest amounts of
memory.

Because all of the nuclear human chromosomes exceed 1
megabase in length, MICA does not load the full indexes
into memory, but instead loads only the elements that
describe the structure of the data arrays. The benefits of
this strategy are rapid index loading and low memory
usage. The disadvantage is that searches are slower than
they would be if the full indexes were pre-loaded into
memory. To quantify this effect, we repeated the test
searches after pre-loading into memory the full MICA file
for chromosome 1. The resulting values, listed in brackets
in Tables 3 and 4, show that pre-loading accelerated the
searches. This acceleration was dramatic with nondegen-
erate queries of length K or more. Yet the pre-loading
operation took approximately 18 sec, a prohibitively long
time if the goal is to do one or a few quick searches. By
avoiding a time-consuming preparatory stage, MICA ena-
bles users to search large sequences without delay.

Immediately after indexing, the entire index is typically
available in memory, so this time point is convenient for
doing any routine searches. As a model for such a routine
search, we indexed chromosome 1 using K = 6, and then
searched for the recognition sequences of the 236 restric-
tion enzymes sold by New England BioLabs. This search
was fast at just under 11 sec.

Relation to other approaches

The MICA index is hash-based but is actually related to
suffix-based indexes. Hunt [15] has defined the "suffix
sequoia" as a suffix tree derivative in which the entries are
truncated at a string length of K. The result is a lexico-
graphically-ordered K-mer array, which resembles the
Chunk Data Array in the MICA index (Table 1), except
that the suffix sequoia is about twice the size because
absolute positions are stored as 4-byte integers. Another
algorithm that resembles MICA is ACMES, which creates a
hash table of 8-mers and accesses only the relevant hash
bins during a search [16,17]. ACMES can find exact
matches for queries of any length, although the indexes
are large because this program was designed to search
both sequence and annotation data. Thus, a number of
researchers have converged on the same general strategy
for indexing DNA sequences.

Despite these similarities, MICA has the following unu-
sual features that make it advantageous, especially for
desktop applications.

http://www.biomedcentral.com/1471-2105/7/427

(1) A MICA index occupies only about 2L bytes, and a
mammalian genome can be indexed in a few minutes. The
previously described indexes that support comprehensive
searching are either substantially larger or require much
longer to generate.

(2) Rapid searching is accomplished without loading
large amounts of data into main memory, because only a
small fraction of each index is typically read from disk.
Even if memory is quite limited, the search operations are
still fast.

(3) Because MICA indexes 4- to 6-mers, very short queries
can be matched quickly. This functionality is particularly
useful for finding restriction sites. By comparison, ACMES
indexes 8-mers and is therefore slower at matching very
short queries [17].

(4) MICA can recognize and index all 15 characters of the
standard DNA alphabet. By comparison, degenerate base
characters are read as A's by SSAHA [5] and are excluded
from the index by BLAT [6]. ACMES expands degenerate
base characters by adding index entries for all of the corre-
sponding nondegenerate 8-mers [17], but this approach
has the disadvantage of indexing possible sequences as if
they were actually present. With MICA, the index precisely
captures the information in the original sequence, and the
searches find all matches to any nondegenerate or par-
tially degenerate query.

Conclusion

MICA is designed to be a core indexing and search engine.
Because the underlying approach is very simple, we were
able to optimize the algorithms extensively to take advan-
tage of the properties of modern desktop computers [18].
The end result meets our goal of enabling users to open
and search large DNA databases rapidly on computers
with limited RAM.

In its present form, MICA is ideally suited to comprehen-
sive searching for exact matches in a DNA database. Such
a database might represent, e.g., a genome or a collection
of plasmid vectors. Potential applications include: in silico
restriction enzyme digestion, which can be used to type
organisms by amplified fragment length polymorphism
(AFLP) analysis or pulsed field gel electrophoresis [19,20];
"virtual PCR" to predict the specificity of PCR amplifica-
tion from complex templates [21,22]; and the automated
definition of oligonucleotide-flanked sequence-tagged
sites (STSs) in genomic sequences [23,24]. We are incor-
porating MICA into desktop software that allows for ver-
satile browsing and manipulation of chromosome-sized
DNA sequences. For example, a MICA-based PCR simula-
tor allows us to simulate a PCR amplification from
human genomic DNA in 2-3 sec.

Page 10 of 11

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:427

MICA could be extended by adding alignment algorithms
for identifying sequences that are similar but not identical
to the query. Such algorithms have been widely studied
and implemented [1,7-9,15,25,26], and they can benefit
greatly from using an index to find "seeds" for the align-
ments [6,27,28]. In addition, MICA could easily be mod-
ified to operate in server mode. For this purpose, faster
searching of large sequences would be achieved by load-
ing the complete indexes into memory, as illustrated in
Tables 3 and 4.

Awvailability and requirements
Project name: MICA - Desktop Software for Comprehen-
sive Searching of DNA Databases

Project home page: MICA binaries for Macintosh OS X
(mica_mac.dmg) and Windows (mica_1.0_win.exe) are
available at http://www.ibridgenetwork.org/technol
ogy.asp?Page=FB2310FB.

Operating systems: Macintosh OS X (10.3.9 or higher)
and Windows (NT, 2000, XP)

Programming language: C++
Other requirements: None

License: Freely available for academic and non-profit use.
Researchers can request assistance with obtaining the
MICA source code and integrating it with other software.

Any restrictions to use by non-academics: Commercial
users require a license. For questions regarding commer-
cial uses, please contact the University of Chicago's Office
of Technology and Intellectual Property, UCTech, at (773)
702-1692 or www.uctech.uchicago.edu.

Authors' contributions
WAS generated the code, and BSG guided the project.
Both authors contributed to the algorithm design.

Both authors read and approved the final manuscript.

Acknowledgements

Thanks to Michael Scott and Eugene Losev for helpful comments on the
manuscript. This work was supported by The University of Chicago and by
GSL Biotech, LLC. Both organizations approved the design and conclusions
of the study, and the decision to submit this manuscript for publication.

References

I. Gusfield D: Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge,
Cambridge University Press; 1997:534.

2. Kurtz S, Philippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL: Versatile and open software for comparing large
genomes. Genome Biol 2004, 5:R12.

3. Abouelhoda MI, Kurtz S, Ohlebusch E: Replacing suffix trees with
enhanced suffix arrays. | Discrete Algorithms 2004, 2:53-86.

21.
22.

23.
24.

25.

26.
27.

28.

http://www.biomedcentral.com/1471-2105/7/427

Lippert RA, Mobarry CM, Walenz BP: A space-efficient construc-
tion of the Burrows-Wheeler transform for genomic data. |
Comp Biol 2005, 12:943-951.

Ning A, Cox AJ, Mullikin JC: SSAHA: a fast search method for
large DNA databases. Genome Res 2001, 11:1725-1729.

Kent WJ: BLAT-The BLAST-like alignment tool. Genome Res
2002, 12:656-664.

Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA 1988, 85:2444-2448.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. | Mol Biol 1990, 215:403-410.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25:3389-3402.

FASTA format description [http://www.ncbi.nlm.nih.gov/
BLAST /fasta.shtml]. .

Knuth DE: The Art of Computer Programming. Volume 3:
Sorting and Searching. 2nd edition. , Addison-Wesley; 1998:800.
Ensembl Genome Browser [http://www.ensembl.org/
index.html]. .

Greene WA: k-way merging and k-ary sorts: ; Birmingham,
AL. 3]st Annual ACM Southeast Conference 1993:127-135.

Price AL, Eskin E, Pevzner PA: Whole-genome analysis of Alu
repeat elements reveals complex evolutionary history.
Genome Res 2004, 14:2245-2252.

Hunt E: The suffix sequioa index for approximate string
matching. DCS Tech Report, Dept of Computing Science, University of
Glasgow, http:/lwwwdcsglaacuk/publications/PAPERS/7 1 85/TR-2003-
135pdf 2003:1-26.

Reneker], Shyu CR, Zeng P, Polacco JC, Gassmann W: ACMES: fast
multiple-genome searches for short repeat sequences with
concurrent cross-species information retrieval. Nucleic Acids
Res 2004, 32:W649-W653.

Reneker], Shyu CR: Refined repetitive sequence searches uti-
lizing a fast hash function and cross species information
retrievals. BMC Bioinformatics 2005, 3:111.

Crawford I, Wadleigh K: Software Optimization for High Per-
formance Computing: Creating Faster Applications. , Pren-
tice Hall; 2000:377.

Rombauts S, Van de Peer Y, Rouzé P: AFLPinSilico, simulating
AFLP fingerprints. Bioinformatics 2003, 19:776-777.

Bikandi], San Millan R, Rementeria A, Garaizar J: In silico analysis
of complete bacterial genomes: PCR, AFLP-PCR and endo-
nuclease restriction. Bioinformatics 2004, 5:798-799.

Lexa M, Horak J, Brzobohaty B: Virtual PCR. Bioinformatics 2001,
17:192-193.

Boutros PC, Okey AB: PUNS: transcriptomic- and genomic-in
silico PCR for enhanced primer design. Bioinformatics 2004,
20:2399-2400.

Rotmistrovsky K, Jang W, Schuler GD: A web server for perform-
ing electronic PCR. Nucleic Acids Res 2004, 32:W108-W 1 12.
Murphy K, Raj T, Winters RS, White PS: me-PCR: a refined ultra-
fast algorithm for identifying sequence-defined genomic ele-
ments. Bioinformatics 2004, 20:588-590.

Li M, Ma B, Kisman D, Tromp J: Patternhunter ll: highly sensitive
and fast homology search. | Bioinform Comput Biol 2004,
2:417-439.

Noé L, Kucherov G: Improved hit criteria for DNA local align-
ment. BMC Bioinformatics 2004, 5:149.

Ning Z, Spooner W, Spargo A, Leonard S, Rae M, Cox A: The
SSAHA trace server. Proceedings of the 2004 IEEE Computational
Systems Bioinformatics Conference (CSB 2004) 2004:544-545.

Wu TD, Watanabe CK: GMAP: a genomic mapping and align-
ment program for mRNA and EST sequences. Bioinformatics
2005, 21:1859-1875.

Page 11 of 11

(page number not for citation purposes)

http://www.ibridgenetwork.org/technology.asp?Page=FB2310FB
http://www.ibridgenetwork.org/technology.asp?Page=FB2310FB
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14759262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14759262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15359419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15359419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15728110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15728110

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Index structure
	Choice of K
	Index creation
	General search strategy
	Searching with partially degenerate queries
	Memory management during searches

	Results and discussion
	Indexing performance
	Searching performance
	Effects of varying K
	Effects of memory usage
	Relation to other approaches

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

