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Simple Summary: In this study, we propose a copy number variation (CNV) detection method
called CIRCNV, which is based on a circular profile of the read depth from sequencing data. The
proposed method is an extended version of our previously developed method CNV-LOF. The main
difference of CIRCNV from CNV-LOF lies in its two new features: (1) it transfers the read depth
profile from a line shape to a circular shape via a polar coordinate transformation to generate a
meaningful two-dimensional dataset for CNV analysis and promote fairness between the ends and
middle part of the genome, and (2) it performs two rounds of CNV declaration via estimating tumor
purity and recovering the truth circular RD profile. We test and evaluate the performance of CIRCNV
via conducting simulation studies and real sequencing tumor sample applications. The experimental
results show that CIRCNV outperforms peer methods with respect to sensitivity, precision, and the
F1-score. The experiments prove that the proposed method is a reliable and effective tool in the field
of variation analysis of tumor genomes.

Abstract: Copy number variation (CNV) is a common type of structural variation in the human
genome. Accurate detection of CNVs from tumor genomes can provide crucial information for
the study of tumor genesis and cancer precision diagnosis. However, the contamination of normal
genomes in tumor genomes and the crude profiles of the read depth make such a task difficult. In
this paper, we propose an alternative approach, called CIRCNV, for the detection of CNVs from
sequencing data. CIRCNV is an extension of our previously developed method CNV-LOF, which
uses local outlier factors to predict CNVs. Comparatively, CIRCNV can be performed on individual
tumor samples and has the following two new features: (1) it transfers the read depth profile from a
line shape to a circular shape via a polar coordinate transformation, in order to improve the efficiency
of the read depth (RD) profile for the detection of CNVs; and (2) it performs a second round of CNV
declaration based on the truth circular RD profile, which is recovered by estimating tumor purity. We
test and validate the performance of CIRCNV based on simulation and real sequencing data and
perform comparisons with several peer methods. The results demonstrate that CIRCNV can obtain
superior performance in terms of sensitivity and precision. We expect that our proposed method will
be a supplement to existing methods and become a routine tool in the field of variation analysis of
tumor genomes.

Keywords: copy number variations; next-generation sequencing; tumor purity; polar coordinate
transformation; local outlier factor
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1. Introduction

Copy number variation (CNV), as a category of structural variations ranging from
several K base pairs (bp) to several M bp or more long, is very common in human tumor
genomes. Systematic analysis of CNVs plays an important role in the study of tumor
evolution and genesis, as well as cancer treatment and precision diagnosis [1,2]. Accurate
detection of CNVs from tumor genomes is the central procedure for this task. The rapid
development of next-generation sequencing technologies (NGS) facilitates and promotes
the detection of CNVs by providing extremely high-resolution data, and a lot of computa-
tional methods have been proposed in recent years. These methods are designed to detect
CNVs from individual or multiple samples at the scale of individual chromosomes, whole
genomes, or whole exomes [3–7]. By far, a great number of CNV events associated with
human cancers have been discovered and are used for deep analysis of cancer mechanisms
and treatment. However, in medical practice, accurate detection of CNVs is still challeng-
ing due to many factors such as contamination of normal genomes in tumor genomes,
absence of normal matched samples, low level of coverage depth, and noisy sequencing
data. Currently, there are no existing methods that are versatile enough to detect CNVs
accurately when these factors exist at the same time.

From the perspective of sample analysis mode, the existing methods for the detection
of CNVs from NGS data could be classified into three categories: multiple-sample-based
mode, tumor–normal matched samples-based mode, and single-sample-based mode. The
first category of modes is mainly used for the discovery of biologically significant CNV
events from human genomes. For example, recurrent CNVs across multiple tumor samples
usually confer biological functions to the foundation and progress of cancer cells [8–10].
Popular methods of such category include CODEX [11], panelcn.MOPS [12], DCC [7],
WaveDec [13], and HetRCNA [14]. The other two categories of modes are primarily
used for the detection of CNVs with the purpose of analyzing genetic diversity and seek-
ing out mutated genes in individuals. This could directly contribute to the treatment
of cancer patients in medical practice. Tumor–normal matched samples-based methods
mainly include GATK (https://gatk.broadinstitute.org, accessed on 10 June 2021), CNV-
seq [15], CoNVEX [16], m-HMM [17], CopywriteR [18], CNV-RF [19], EXCAVATOR2 [20],
CNVnorm [21], WaveCNV [22], and CNVkit [23]. Such methods have the merit of dis-
tinguishing somatic CNVs from germline ones in tumor genomes, but the sequencing
cost is relatively high. Single-sample-based methods mainly include CNVnator [24],
Control-FREEC [25], VisCap [26], CONDEL [6], CoNVaDING [27], CLImAT-HET [28],
iCopyDAV [29], CNV_IFTV [30], CNV-LOF [31], readDepth [32], and GROM-MD [33].
Such methods do not require normal matched samples and can save a piece of the sequenc-
ing cost. Moreover, normal matched samples are not usually available in medical practice.
Therefore, single-sample-based methods may be preferred in the treatment of patients.
Meanwhile, single-sample-based methods can be easily extended to analyze tumor–normal
matched samples when the matched samples are obtained. With these considerations, we
focus on the mode of single samples in the detection of CNVs from NGS data in this paper.

With the intrinsic characteristics of NGS data, the detection of CNVs based on the
depth of coverage usually goes through the following basic steps: (i) data preprocessing
(e.g., trimming low-quality reads), (ii) alignment of reads to the latest version of the human
genome reference, (iii) calculation of a read count (RC) for each genome position and
generation of a read depth (RD) profile for the genome to be analyzed, (iv) correction
of GC content bias on the RD profile, and (v) establishing statistical or computational
models for analyzing the RD profile in order to call CNVs. The main difference among the
existing methods is that they take different viewpoints on the RD profile and adopt different
measurements to assess the variance of RD values of genome bins. For example, Control-
FREEC [25] looks at the RD profile from a global perspective and takes advantage of the
difference between RD values to detect CNVs. Similar methods include readDepth [32],
CONDEL [6], and iCopyDAV [29]. One outstanding feature of Control-FREEC is that it is
able to utilize the GC content to normalize RD values if normal matched samples are not
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available. Meanwhile, some existing methods regard the whole RD profile as a Markov
process and predict copy number states based on Markov models, such as m-HMM [17],
PSE-HMM [34], and XHMM [35]. Considering the fact that CNV regions usually account
for a small part of the whole genome, CNV_IFTV generates an anomaly score to evaluate
RD values based on the isolation forest algorithm [30], i.e., it not only considers the variance
of RD values across the genome to be analyzed but also the density of RD values. Apart
from the global view on the RD profile, there exists one method developed by us previously
that looks at the RD profile from a local perspective, CNV-LOF [31]. CNV-LOF regards
CNVs as local outliers among all the RD values. Such an idea is helpful to detect less
significant CNVs. All in all, the existing methods have their own characteristics and
advantages under different applications. However, some realistic scenarios should be
further addressed for the improvement of CNV detection. For instance, the observed RD
profile is relatively crude due to the contamination of normal genomes in tumor genomes
and bias in sequencing reads. Moreover, almost all of the existing methods deal with the
RD profile in a line shape. This may lead to unfairness between the genome ends and the
middle part of the genome.

With careful consideration of the issues above, in this paper, we developed an alterna-
tive approach, called CIRCNV, for the detection of CNVs from NGS data. The CIRCNV
method is different from the existing methods. It transfers the read depth profile from
a line shape to a circular shape via a polar coordinate transformation. Such nonlinear
transformation can generate a meaningful two-dimensional dataset for CNV analysis and
can promote fairness between the ends and middle part of the genome to be analyzed.
For the evaluation of the transformed RD values, similar to the strategy of CNV-LOF,
CIRCNV takes a local view on the RD profile and calculates a local outlier factor score for
each genome region. To mitigate the influence of normal genome contamination, CIRCNV
estimates tumor purity for each analyzed sample based on first-round detected deletions
and then recovers the truth RD profile. With the truth RD profile, a second-round CNV
declaration is carried out for the improvement in performance. To test CIRCNV, we gener-
ated a great number of simulated datasets based on real sequencing data for conducting
experiments and performed comparisons with other peer methods in terms of sensitivity
and precision. Furthermore, we applied the CIRCNV method to a set of real sequencing
samples for the validation of the performance. The results indicate that CIRCNV is valuable
and can find out biologically relevant events.

The remainder of this paper is organized as follows. Section 2 describes the flowchart
of CIRCNV and its major principles. Section 3 presents the experimental results on simula-
tion and real sequencing datasets and discusses the performance of CIRCNV in comparison
with other methods. In Section 4, we conclude the proposed method and provide an outline
of future work.

2. Materials and Methods
2.1. Overview of CIRCNV

The flowchart of the CIRCNV method is depicted in Figure 1. It starts with the input
of an RD profile of one tumor sample and goes through three major steps to discover CNVs.
These steps are re-performed to improve the accuracy of CNV detection by carrying out
an estimation of tumor purity and a correction of the RD profile. These steps include:
(1) performing a segmentation process on the observed RD profile and constructing a
circular RD profile by using polar coordinate transformation; (2) calculating a local outlier
factor for each segment; (3) declaring CNVs and defining gains and homogeneous (homo-)
and heterogeneous (hemi-) losses. In the following text, we present a detailed description
of the input RD profile, the aforementioned four steps, estimation of tumor purity, and
correction of the RD profile.
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Figure 1. Flowchart of the CIRCNV method. It is composed of two parts: input and preprocessing,
and the algorithm of CIRCNV.

2.2. Input and Preprocessing

The input files include a reference sequence and a tumor sample to be analyzed. The
reference sequence could be selected from the commonly used version, human genome 19.
The sequencing reads of the tumor sample are aligned to the reference genome by using
one of the classic tools, BWA [36]. The resulting alignment file could be further handled by
using SAMtools [37] to obtain a read count (RC) profile. Due to the existence of the symbol
“N” in the reference genome, there will be no reads to be aligned on such positions. Zero
RC values on such positions may mislead the analysis of the whole RC profile, since such
values may be mistaken as deletion events from the perspective of fluctuation of RC values.
Thus, we skip the “N” positions before starting the detection of CNVs from the RC profile.

Subsequently, we divide the RC profile into non-overlapping and continuous genome
bins of the same size (e.g., 1000 base pairs) and then calculate a read depth (RD) value
for each genome bin by averaging the RC values among the positions with the genome
bin. Thus, an RD profile can be achieved. With this, we further carry out a GC content
bias correction process to generate reasonable input data for the detection of CNVs. This
process can be found in [24,38,39].

2.3. Performing Segmentation and Constructing a Circular RD Profile

With the preprocessed RD profile, we adopt the circular binary segmentation (CBS)
algorithm [39] to perform a segmentation process. The purpose of such segmentation is
to generate a segment-based unit (i.e., a genome region composed of a set of adjacent
genome bins) for the subsequent analysis of CNVs. The segment-based unit is generally
more reasonable than the genome bin-based unit since adjacent genome bins are usually
and intrinsically correlated [31]. Thereby, a segment-based RD profile can be obtained,
in which the RD value of each segment is the averaged RD value among the bins within
the segment.

For convenience, we denote the segment-based RD profile as S′ = {s′1, s′2, . . . , s′n},
where n represents the total number of segments and s′i represents the i-th segment. s′i
is composed of a two-tuple (p′i, r′i), where p′i represents the segment position (i.e., index)
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and r′i represents the RD value of the i-th segment. We then adopt a polar coordinate
transformation to transfer S′ from a line shape to a circular-shaped RD profile, denoted
as S = {s1, s2, . . . , sn}. Similarly, si is composed of a two-tuple (pi, ri). The transformation
formula is expressed as shown below.{

pi = r′i × cos θ
ri = r′i × sin θ

(1)

where θ is calculated for each segment by the following formula.

θ = 2π
p′i −min{p′1, p′2, . . . , p′n}

max{p′1, p′2, . . . , p′n} −min{p′1, p′2, . . . , p′n}
(2)

where max{.} and min{.} denote the maximum and minimum position indices, respectively.
For a clear understanding of the transformation, we provide an example in Figure 2,

where the outlier elements above the line are mapped to the outside of the circle and the
outlier elements under the line are mapped to the inside of the circle. This circular-shaped
transformation could lead to two aspects of effects. First, a meaningful two-dimensional
dataset can be obtained for the analysis of CNVs, since CNVs can be regarded as outliers
from the cluster of normal genome segments and can be reasonably observed on a two-
dimensional distributed space. Second, such transformation can promote fairness between
the ends and middle part of the genome, since the number of segments around the elements
towards the ends is less than that around the elements towards the middle part of the
genome in the line-shaped RD profile, while the circular-shaped RD profile can avoid
this issue.
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2.4. Calculating Local Outlier Factors for Each Segment

For segment si denoted by (pi, ri), we calculate a local outlier factor LOF(si) as the
anomaly score. This calculation involves a distance parameter k, which is explained as the
k-distance neighborhood of segment si to segment o. In other words, segment o represents
the k-th nearest segment to si among all the segments in S, except si itself [40]. The value of
this parameter can explain how isolated si is from its surrounding neighborhoods and thus
can be used to find local CNVs [31]. Local CNVs are also called focal CNVs and are very
common in the human tumor genome. Accurate identification of such CNVs is a crucial
step in the analysis of tumor mechanisms and finding target cancer drugs. Thus, using the
anomaly score LOF(si) with a suitable parameter value of k can facilitate the identification
of local CNVs. The formulas related to the calculation of LOF(si) can be found in [31] and
are not re-listed here. In our experiments, the parameter value of k was empirically set
to 10.
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2.5. Declaring CNVs and Defining Gains and Homo- and Hemi-Losses

With the anomaly score LOF(si) for segment si, how to determine whether si is a CNV
or not is a crucial step. Generally, the larger the value of LOF(si), the more likely segment
si is a CNV. However, setting a cutoff threshold for the LOF(si) is not an easy task since
different samples may produce different distributions of LOF values and there is no prior
knowledge to supervise us to choose a suitable value for the cutoff threshold. Based on the
viewpoint that most segments in the tumor genome are normal, i.e., most of the LOF values
are at a limited range, it is meaningful and feasible to find out the abnormal LOF values via
analyzing the distribution of LOF values. Here, we choose the boxplot procedure for this
analysis [31], since it can produce a reasonable representation of the LOF value distribution
and can use a general cutoff threshold for the extraction of abnormal LOF values. Then, the
segments with the abnormal LOF values are regarded as CNVs. For related details, readers
are suggested to refer to [31].

Subsequently, we classify the CNVs into gains and losses by comparing their RD
values to the mode of them. Specifically, if si has been declared as a CNV and its RD value
ri is larger than the mode, then it is defined as a gain; otherwise, it is a loss. For the losses,
we further perform a classification into hemi-losses and homo-losses. Hemi-loss means
that one of the diploids (two copies) is deleted, and homo-loss means that both copies are
deleted. Here, it is not easy to define a threshold for this classification, since many artifacts
such as noises and mapping errors can pose a significant influence. Instead, we adopt the
k-means algorithm for this classification. For convenience, the classified losses are denoted
by X = {x1, x2, . . . , xk1} for hemi-losses and Y = {y1, y2, . . . , yk2} for homo-losses, where
k1 is the number of hemi-losses and k2 is the number of homo-losses.

2.6. Estimating Tumor Purity and Correcting the RD Profile

Since the tumor tissues to be sequenced usually contain a fraction of normal cells and
such contamination can pose a great influence on the detection of variations [41], making a
reasonable estimation of tumor purity can help to correct the observed signals from tumor
samples to be analyzed. Therefore, in this section, we use the observed RD profile and
losses from the tumor sample to estimate tumor purity and then perform a correction
to the RD profile. The purpose of this step is to provide a relative truth RD profile for
CNV detection. Specifically, we can use the two types of losses to establish equations
between tumor purity (α), observed RD values, and absolute RD values. The equations are
expressed as below. {

r(xi) =
r
2 α + r(1− α)

r(yi) = r(1− α)
(3)

where r(xi) and r(yi) represent the observed RD values of the hemi-loss segment xi and
homo-loss segment yi, respectively, r represents the RD value corresponding to a normal
segment, and r

2 can be explained as the absolute RD value of hemi-loss.
With the above equations, the tumor purity (α) can be calculated given r(xi), r(yi), and

r. Then, each hemi-loss or homo-loss can produce a value for α, and a total of (k1+k2) values
can be derived. Considering that the observed RD values can be affected by sequencing
and mapping uncertainties, there exist some differences between the derived values for
α. To obtain a relatively reasonable estimation value, we average all the (k1+k2) derived
values and determine a final value of α.

With the estimated tumor purity α above, we perform a correction to the observed
RD profile S′ = {s′1, s′2, . . . , s′n} in order to obtain a less biased RD profile for the tumor
samples to be analyzed. The correction formula is expressed as below.

r′i = r′′i α + r(1− α) (4)

where r′′i denotes the absolute RD value for the i-th segment s′i. Then, the value of r′′i can
be derived by changing the formula above. Thus, an updated RD profile can be achieved
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by using r′′i to replace r′i . With this updated RD profile, a second-round CNV detection
process will be carried out.

2.7. Core Algorithm of CIRCNV

For a clear understanding of the principle and procedure of the CIRCNV method, we
demonstrate its core algorithm using a set of steps in Algorithm 1.

Algorithm 1 The core algorithm of CIRCNV

(1) Input data: an observed RD profile;
(2) Performing segmentation on the input RD profile and obtaining a segment-based RD
profile S′;
(3) Performing the polar coordinate transformation and obtaining a circular-shaped RD
profile S;
(4) Calculating a LOF value for each segment si, si ∈ S;
(5) Declaring CNVs via boxplot procedure and defining gains, hemi-losses X, and
homo-losses Y;
(6) Estimating tumor purity α by using X and Y, and updating S′;
(7) Re-performing steps (3) to (5);
(8) Outputting the final results (gains and losses).

3. Results and Discussion

With the principle of CIRCNV described above, we used the Python language to
implement it and develop the corresponding software package. The software package is
freely available at (https://github.com/BDanalysis/CIRCNV, accessed on 10 June 2021)
and can be implemented easily by referring to its manual. To test the performance of the
CIRCNV method, we first carried out a large number of experiments via simulation studies,
since simulation studies can provide the absolute ground truth for the quantification of
performance [41,42], and then we applied the proposed method to analyze several real
tumor samples for showing its usefulness. In both simulation and real sequencing sample
experiments, we made comparisons between CIRCNV and several peer methods in terms
of sensitivity, precision, F1-score, or overlapping density score. For a fair comparison, we
used a constant parameter value in the CIRCNV algorithm and used the default parameter
values in the peer methods during the experiments of their algorithms and the reliability
of the proposed method. Aiming at this point, simulation and real experiments were
conducted. A simulation experiment is an effective and objective evaluation strategy, which
can provide a comparison criterion to quantify the performance of the proposed method.
In the simulation experiment, three popular published algorithms (BIC-seq2, SeqCNV, and
CNVkit) that can be used to effectively detect matched case–control samples were selected
for comparison with CBCNV. The performances of these methods are evaluated from three
perspectives. First, the sensitivity and false discovery rate (FDR) of the four methods are
evaluated at six CNV size levels. Then, the sensitivity and FDR of each method in the
CNV gain and loss regions are analyzed and discussed. Finally, three indicators (recall,
precision, and F1-score) are used to comprehensively evaluate the performance of each
method. In real data applications, the proposed algorithm was used to detect two pairs
of matched breast cancer WGS samples. As the ground truths of the real datasets are
unknown, the number of overlapping CNV events and the number of predicted CNV
events were adopted to evaluate the performance of each method. To further verify the
performance of the proposed method, we used the overlapping density score method
to quantify the performance of each method. The experimental results demonstrate that
CBCNV is a powerful CNV detection tool.

3.1. Simulation Studies

The first step of carrying out simulation studies is to produce simulation data. Cur-
rently, there are a number of simulation tools that can be used to generate NGS data and

https://github.com/BDanalysis/CIRCNV
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simulate genomic variations. Here, we adopted our previously developed simulation
algorithm IntSIM [41] to imitate CNVs and generate sequencing reads for tumor samples.
The tumor purity was set to range from 0.2 to 0.3 in our experiments since such small
tumor purity values are a frequent phenomenon in the real world and provide a challenge
for CNV detection methods. Thus, testing and comparing our method to peer methods
on the sequencing data with such small tumor purity are meaningful. For the sequencing
coverage depth, we set it to a moderate value of 6x. In each simulation configuration, we
generated fifty replications for testing the methods. A detailed description of the simulation
process can be found in [31,41].

With the simulation datasets above, we implemented the CIRCNV method and
four peer methods including FREEC [25,43], GROM-RD [33], iCopyDAV [29], and CNV-
LOF [31]. The comparisons between these five methods were made with respect to sensitiv-
ity, precision, and F1-score. The F1-score is the harmonic mean of sensitivity and precision
and can be explained as the tradeoff between them. The sensitivity is calculated as the
number of correctly declared CNVs divided by the total number of ground truth CNVs,
and the precision is calculated as the number of correctly declared CNVs divided by the
total number of declarations. Here, one correctly declared CNV is termed when it becomes
overlapped with markers from the region of one ground truth CNV. The performance
comparison results are shown in Figure 3, where the sensitivity and precision values are the
average values of the fifty simulation replications. From the comparative results, we can
notice that CIRCNV obtains the largest sensitivity value, followed by CNV-LOF, FREEC,
GROM-RD, and then iCopyDAV. As for the precision, GROM-RD ranks first, followed
by FREEC, CIRCNV, iCopyDAV, and then CNV-LOF. Generally, the values of sensitivity
and precision influence each other under a constant experimental situation. Thus, the
tradeoff between sensitivity and precision can account for the performance reasonabil-
ity. In terms of the F1-score, CIRCNV performs superiorly, and FREEC ranks second,
followed by CNV-LOF, GROM-RD, and then iCopyDAV. Therefore, we may conclude
that the CIRCNV method displays the best performance among the five methods in these
simulation experiments.
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Furthermore, we may note that the sensitivity, precision, and F1-score of almost all
five methods are improved when the tumor purity level in the simulation data is increased.
For example, the F1-score of CIRCNV is around 0.7 in the simulation configuration of
tumor purity of 0.2, and it reaches over 0.8 under tumor purity of 0.3. This is because a
large tumor purity value can increase the signal ratio of the tumor genome to the normal
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genome and thus facilitate the detection of CNVs. More analysis results about the tumor
purity influence on CNV detection can be found in [41].

The comparison of memory and running time of some of the simulation data and
the precision and sensitivity of the CIRCNV and CNV-LOF (1x simulation datasets) are
presented in the Supplementary Materials.

Considering that CIRCNV carried out two rounds of CNV detection based on the
original RD profile and corrected RD profile, it is necessary and meaningful to observe
how much improvement can be achieved in the second round compared to the first round.
For this purpose, we extended the simulation datasets by setting the configuration as
follows: tumor purity range from 0.2 to 0.8 and sequencing coverage depth range from 4x
to 6x. At the same time, in each of the configurations, fifty replications were produced for
demonstrating the stability of the performance. We ran the CIRCNV algorithm on these
datasets and made a comparison between the first round by using the original RD profile
and the second round by using the corrected RD profile in terms of sensitivity and precision.
The comparative results are shown in Figures 4 and 5. From the figures, we can observe
that the precision is undoubtedly improved in the second CNV detection round by using
the corrected RD profile relative to the first CNV detection round by using the original RD
profile, while the sensitivity is not changed obviously. This could be explained as follows.
The correction of the RD profile can enhance the difference between CNV regions and
normal copy number regions. Such differences can help in the discrimination of CNVs
from normal regions. From both Figures 4 and 5, we can note that the precision is obviously
improved when the sequencing coverage depth increases from 4× to 6×. Nevertheless, the
sensitivity is slightly decreased from 4× to 6×. Such phenomena might be explained as
follows. The larger coverage depth may bring about more data noise, while our proposed
method tends to regard the noise and the true CNVs with a similar RD to the noise from
normal events. Thus, CIRCNV can obtain a high precision value at the cost of sensitivity.

Biology 2021, 10, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 4. Performance comparisons between the first-round (using original RD profile) and the 
second-round (using corrected RD profile) CNV detected by the CIRCNV method with respect to 
sensitivity and precision. The simulation tumor purity ranges from 0.2 to 0.8, and the sequencing 
coverage depth is 4×. 

 
 
 
 

 
 
 

. 

Figure 5. Performance comparisons between the first-round (using original RD profile) and the 
second-round (using corrected RD profile) CNV detected by the CIRCNV method with respect to 
sensitivity and precision. The simulation tumor purity ranges from 0.2 to 0.8, and the sequencing 
coverage depth is 6×. 

3.2. Detection of Copy Number Variants from Breast Cancer Sample 
To further validate the performance of the CIRCNV method, we applied it to analyze 

three real sequencing tumor samples on a whole genome. These samples were down-
loaded from the European Genome-phenome Archive (EGA) data project at (https://ega-
archive.org/, accessed on 9 June 2021). These samples were sequenced from ovarian cancer 
patients numbered with EGAR00001004802_2053_1 and EGAR00001004836_2561_1, and 
one lung cancer patient numbered with EGAD00001000144_LC. 

We performed the CIRCNV method on the whole genome including twenty-two au-
tosome chromosomes and compared it to three peer methods, FREEC, CNVnator, and 
CNV-LOF. The comparative results are shown in Figures 6 and 7 for the three samples. 
These figures show the number of declared CNVs in each of the autosome chromosomes. 
We can notice that CNVnator obtains the largest number of CNVs, followed by CIRCNV, 
CNV-LOF, and FREEC. However, the number of declarations cannot account for the mer-
its of the methods. Due to the lack of answers in real tumor samples, it is not easy to esti-
mate the sensitivities and precisions for the methods. Instead, we use Venn diagrams to 
describe the overlapping among different methods in Figures 6 and 7 for the two samples. 

Figure 4. Performance comparisons between the first-round (using original RD profile) and the
second-round (using corrected RD profile) CNV detected by the CIRCNV method with respect to
sensitivity and precision. The simulation tumor purity ranges from 0.2 to 0.8, and the sequencing
coverage depth is 4×.

3.2. Detection of Copy Number Variants from Breast Cancer Sample

To further validate the performance of the CIRCNV method, we applied it to analyze
three real sequencing tumor samples on a whole genome. These samples were downloaded
from the European Genome-phenome Archive (EGA) data project at (https://ega-archive.
org/, accessed on 9 June 2021). These samples were sequenced from ovarian cancer patients
numbered with EGAR00001004802_2053_1 and EGAR00001004836_2561_1, and one lung
cancer patient numbered with EGAD00001000144_LC.

We performed the CIRCNV method on the whole genome including twenty-two
autosome chromosomes and compared it to three peer methods, FREEC, CNVnator, and

https://ega-archive.org/
https://ega-archive.org/
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CNV-LOF. The comparative results are shown in Figures 6 and 7 for the three samples.
These figures show the number of declared CNVs in each of the autosome chromosomes.
We can notice that CNVnator obtains the largest number of CNVs, followed by CIRCNV,
CNV-LOF, and FREEC. However, the number of declarations cannot account for the
merits of the methods. Due to the lack of answers in real tumor samples, it is not easy to
estimate the sensitivities and precisions for the methods. Instead, we use Venn diagrams
to describe the overlapping among different methods in Figures 6 and 7 for the two
samples. From these figures, we may observe that CIRCNV obtains the largest number
of CNVs overlapped with other methods, although it does not obtain the largest number
of declarations. This means that CIRCNV might be more powerful than other methods
since such overlapped CNVs are generally more likely to be the actual CNVs than the
non-overlapping CNVs.
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Figure 6. Result comparison of the four methods on the whole-genome sequencing data from samples
of EGAR00001004802_2053_1 (I), EGAR00001004802_2053_1 (II), and EGAD00001000144_LC (III).
The distributions of the numbers of CNVs detected by the four methods and the numbers of detected
CNVs in each autosome chromosome.

To quantitatively evaluate the overlapped number of CNVs among different methods,
we adopted our previously proposed measurement overlapping density score (ODS) [6]
for this evaluation. The formula of calculating the ODS is described in detail in [6]
and is not listed here for simplicity. The larger the ODS value to be achieved by one
method, the better the performance of that method. For the three tumor samples of
EGAR00001004802_2053_1 (4802_2053_1), EGAR00001004836_2561_1 (4836_2561_1), and
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EGAD00001000144_LC (0144_LC), the ODS values for the four methods are listed in Table 1,
where we can see that CIRCNV and CNV-LOF obtained the largest ODS values. Here, it
should be noticed that the ODS value takes into account both the number of overlapped
CNVs and the number of called CNVs and is dependent on the samples to be analyzed.
For one sample, the larger the ODS value, the better the method. For different samples, the
ODS values obtained by one method are not comparable.
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each pair of methods for each of the three tumor samples, EGAR00001004802_2053_1 (I),
EGAR00001004836_2561_1 (II), and EGAD00001000144_LC (III).

Table 1. Comparison of ODS values between the four methods on the two tumor samples.

CIRCNV CNVnator FREEC CNV-LOF

4802_2053_1 27.07 15.83 11.03 21.00
4836_2561_1 25.16 10.55 1.73 27.55

0144_LC 29.6 16.6 0.73 23.3

For the CNVs detected by the CIRCNV method, we further find that these CNVs con-
tain many biological genes associated with ovarian cancer. For instance, the CNVs detected
in sample EGAR00001004802_2053_1 contain cancer-associated genes such as ELOVL7 [10]
located at 5q12.1, IFNB1 [44] located at 9p21.3, BAG1 [45] located at 9p21.1, RECK [46] lo-
cated at 9p13.3, DAPK1 [47], CTSL [48], and CCRK [49] located at 9q21.33, SYK [50] located
at 9q22.2, and NR4A3 [51] and TMEFF1 [52] located at 9q22.33. Similarly, the CNVs detected
in sample EGAR00001004836_2561_1 also contain many cancer-associated genes, such as
CD80 [53], GSK3B [54], FSTL1 [55], CASR [56], PARP9 [57], and PARP15 [58] located at
3q13.33. Additionally, the CNVs detected in sample EGAD00001000144_LC(0144_LC) con-
tain a great number of cancer genes, including B3GALT6 [59] located at 1p36.33, DVL1 [60]
located at 1p36.33, and NOTCH2NL [61] located at 1q21.1. Thus, we can conclude that
CIRCNV is practical in the application to real sequencing samples for CNV detection.

4. Conclusions

In this paper, we proposed an alternative method, called CIRCNV, for the detection
of CNVs in sequencing data. This method is an extended version of our previously
developed method CNV-LOF. Both CIRCNV and CNV-LOF use the local outlier factor as
the measurement for the prediction of CNVs. The difference of CIRCNV from CNV-LOF
lies in its two new features: (1) it transfers the read depth profile from a line shape to a
circular shape via a polar coordinate transformation, in order to improve the efficiency
of the read depth (RD) profile; and (2) it performs two rounds of CNV declaration via
estimating tumor purity and recovering the truth circular RD profile.

We tested and evaluated the performance of CIRCNV via conducting simulation
studies and real sequencing tumor sample applications. The results from simulation
studies demonstrate that CIRCNV outperforms peer methods with respect to sensitivity,
precision, and the F1-score. We can also observe that the second round of CNV detection in
the CIRCNV algorithm is meaningful due to the obvious improvement in precision. The
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results from real sample applications illustrate that CIRCNV obtains the largest number
of consistent CNVs with peer methods and can detect biologically meaningful CNVs.
Therefore, CIRCNV can be expected to be a reliable tool in the field of analyzing CNVs in
tumor genomes.

In future work, we intend to extend the current version of the CIRCNV method from
the two following perspectives. First, we will integrate the detection of somatic nucleotide
variations (SNV) [62] into the CNV detection process, since both of these types of genomic
mutations frequently and concurrently appear in the human genome. The integrated
detection of multiple types of genomic mutations will be more efficient than a single type of
genomic mutation analysis. Second, we plan to combine the information of split reads into
the detection of CNV contents, in order to improve the detection of boundaries of CNVs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10070584/s1, Table S1: The comparison of running time and memory usage between
CIRCNV and CNV-LOF under the simulation configuration of tumor purity of 0.2 and coverage
depth of 4×. Table S2: The comparison of running time and memory usage between CIRCNV and
CNV-LOF under the simulation configuration of tumor purity of 0.2 and coverage depth of 6×.
Table S3: The comparison of running time and memory usage between CIRCNV and CNV-LOF
under the simulation configuration of tumor purity of 0.3 and coverage depth of 4×. Table S4:
The comparison of running time and memory usage between CIRCNV and CNV-LOF under the
simulation configuration of tumor purity of 0.3 and coverage depth of 6×. Table S5: The comparison
of precision and sensitivity between CIRCNV and CNV-LOF when running on sequencing data with
tumor purity of 0.8 and coverage depth of 1×.
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