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Podocyte injury and loss critically contribute to the pathogenesis of proteinuric kidney dis-
eases including diabetic nephropathy. Deregulated lipid metabolism with disturbed free
fatty acid (FFA) metabolism is a characteristic of metabolically unhealthy obesity and type
2 diabetes and likely contributes to end-stage kidney disease irrespective of the underly-
ing kidney disease. In the current review, we summarize recent findings related to FFAs
and altered renal FFA metabolism with a special focus on podocytes. We will outline the
opposing effects of saturated and monounsaturated FFAs and a particular emphasis will
be given to the underlying molecular mechanisms involving insulin resistance and endo-
plasmic reticulum homeostasis. Finally, recent data suggesting a critical role of renal FFA
metabolism to adapt to an altered lipid environment will be discussed.

Keywords: podocyte, diabetic nephropathy, saturated and monounsaturated free fatty acids, lipid metabolism,
lipotoxicity, endoplasmic reticulum stress, β-oxidation

INTRODUCTION
Diabetic nephropathy (DN) is the major cause of end-stage renal
disease, and most affected patients have type 2 diabetes (1, 2).
Injury and loss of the glomerular epithelial cells or podocytes are
critical in the pathogenesis of DN (3–6). Importantly, the epi-
demic of DN and type 2 diabetes parallels the obesity epidemic
(7, 8), which also drives other causes of chronic kidney disease
(CKD) including obesity-related glomerulopathy and secondary
focal segmental glomerulosclerosis [reviewed in Ref. (9)]. Obesity-
related glomerulopathy has been found to be more associated with

Abbreviations: ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein
kinase; ATF6, activating transcription factor 6; Bcl-2, B-cell lymphoma 2; BiP,
heavy chain binding protein; CHOP, C/EBP homologous protein; chREBP,
carbohydrate responsive element-binding protein; CKD, chronic kidney dis-
ease; CPT, carnitine palmitoyltransferase; DAG, diacylglycerol; DGAT, acyl-
CoA:diacylglycerolacyltransferase; DN, diabetic nephropathy; DR5, death receptor
5; ER, endoplasmic reticulum; ERO1, ER oxidoreductase 1; FFA, free fatty acid;
Gadd34, growth arrest and DNA damage-inducible protein 34; IRE1, inositol-
requiring enzyme 1; IRS, insulin receptor substrate; JNK, c-Jun NH2-terminal
kinase; mTORC1, mammalian target of rapamycin complex 1; MUFA, monoun-
saturated fatty acid; PERK, PKR(protein kinase RNA)-like ER kinase; PKC, protein
kinase C; ROS, reactive oxygen species; SCD, stearoyl-CoA desaturase; SFA, satu-
rated fatty acid; SREBP, sterol regulatory element-binding protein; TG, triglyceride;
TRAIL, tumor necrosis factor related apoptosis inducing ligand; UPR, unfolded
protein response; Xbp1, X-box binding protein.

serum triglyceride (TG) levels and ectopic lipid accumulation in
the kidney than with obesity per se (10). Lipid excess and deregu-
lated lipid metabolism in the kidney are increasingly recognized as
pathogenic factors not only in the development and progression of
obesity-related renal disease and DN but they may also contribute
to CKD irrespective of the underlying pathology (9). Excessive
lipid droplets can be found in different renal cell types including
podocytes (9, 11). Accumulation of lipids in non-adipose tissues
can contribute to cellular dysfunction and cell death, a phenom-
enon that is called lipotoxicity. Elevated plasma free fatty acids
(FFAs) and disturbed FFA metabolism critically contribute to lipo-
toxicity. However, to which extent and how the various FFAs and
their metabolites such as diacylglycerols (DAGs) and TGs are path-
ogenic or are even part of a protective, adaptive process is under
debate. Recent data also indicate that cholesterol accumulation in
podocytes plays a critical pathogenic role in DN and contributes
to lipotoxicity (12).

This review will highlight the potential consequences of altered
FFA levels and disturbed FFA metabolism with a special focus
on podocytes. If adaptation fails, lipotoxicity with insulin resis-
tance and endoplasmic reticulum (ER) stress may ultimately result
in podocyte death. Recent advances in the underlying cellular
processes will be summarized and may help to foster further
research to find and translate novel therapeutic strategies. In
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addition, a particular emphasis will be laid on discussing cel-
lular adaptive responses, which might be interesting targets in
supporting podocytes dealing with an altered lipid environment.

PLASMA FREE FATTY ACIDS
A main source of lipids is plasma FFAs, which are hydrolyzed and
relieved from adipocyte TG stores and carried by plasma albumin
to provide energy for tissues during fasting (13). In addition, fatty
acids hydrolyzed from liver-derived low density lipoprotein TG by
lipoprotein lipases are also contributing to the FFA pool in tissues
(14). FFA levels are underlying diurnal fluctuations with low post-
prandial levels where most FFAs are taken up by the adipose tissue
and increased levels during states of fasting (15). In contrast to the
general belief, obesity is not generally associated with increased
fasting FFA levels, and this association only exists in certain groups
of obese and type 2 diabetic patients (16). Elevated FFA levels
are associated with and may result from insulin resistance and
increased lipolysis (15, 17–19). Vice versa, insulin resistance can be
the result of elevated FFAs (20). In addition, adipocytes of obese
individuals can become defective in FFA uptake, which contributes
to elevated FFA levels and promotes ectopic fat deposition (21).
This might be of interest as plasma FFA composition partially
reflects dietary fatty acid composition (22) and saturated FFAs
(SFAs), and monounsaturated FFAs (MUFAs) have distinct effects
on cell metabolism and function. In this context, a recent interven-
tion trial is of interest, which demonstrated that a Mediterranean
diet enriched with extra-virgin olive oil is effective in the primary
prevention of cardiovascular diseases and diabetes (23, 24), and it
has been suggested that this beneficial effect at least in part results
from the high content of MUFAs in olive oil (24). Further inter-
ventional studies are warranted to test whether dietary shifting of
the FFA balance toward unsaturated FFAs can prevent and delay
the progression of obesity-related renal diseases and DN.

OPPOSING EFFECTS OF SFAs AND MUFAs
The SFAs, palmitic and stearic acid, together with the MUFA oleic
acid account for 70–80% of plasma FFAs (25, 26). Interestingly,
in most cell types including podocytes mainly SFAs are inducing
lipotoxicity such as insulin resistance and cell death (27, 28). By
contrast, MUFAs can prevent SFA induced lipotoxicity (Table 1),
i.e., an equimolar combination of palmitic and oleic acid does not
lead to podocytes death (28). Most of the current understand-
ing of the opposing effects has been derived from studies with
hepatocytes, muscle cells, and pancreatic β-cells linking the detri-
mental actions of SFAs to SFA-derived metabolites such as DAGs
and ceramide (29). DAG-mediated activation of protein kinase C
(PKC) δ and increased levels of ceramide are associated with the
intrinsic mitochondrial apoptotic pathway, e.g., increased mito-
chondrial membrane permeability and cytochrome c release (30–
32). Cytochrome c release is also observed in palmitic acid treated
podocytes (preliminary data). Of note, some studies show partially
conflicting findings in the light of the effects of increased ceramide
synthesis, TG accumulation, and β-oxidation with its associated
reactive oxygen species (ROS) (33–36). In human podocytes,
ceramide accumulation has been linked to palmitic acid-induced
insulin resistance (27); however, the ceramide synthase inhibitor
fumonisin B1 is not ameliorating survival of murine podocytes

Table 1 | Beneficial effects of MUFAs on podocytes treated with

palmitic acid.

Action of MUFAs (e.g., oleic acid) in

podocytes treated with palmitic acid

Reference

Cell viability Prevention of podocyte death (28)

ER stress/

UPR

Induction of the adaptive UPR (e.g., BiP) (28)

Prevention of CHOP induction (28)

Insulin

resistance

Improved insulin sensitivity Unpublished

observation

Lipid

metabolism

Increased fatty acid β-oxidation (37)

Reduced accumulation of palmitic acid in

DAG

Figure 1A

(37)

Preferential incorporation of palmitic acid

into TG

Figure 1A

(37)

Increased DGAT gene expression Unpublished

observation

Reduced accumulation of palmitic acid

derived metabolites in the total lipid fraction

Figure 1B

(37)

exposed to palmitic acid (37). Of note, tracing studies with
tritium-labeled palmitic acid could show that MUFAs, such as oleic
acid, slightly but significantly reduce the total amount of intra-
cellular [3H]palmitic acid containing DAG and TG (Figure 1A).
More importantly, oleic acid leads to preferential incorporation of
[3H]palmitic acid derived metabolites into TGs, which is accom-
panied by a reduction of the [H3]palmitic acid containing DAG
fraction [Figure 1A, adapted from Sieber et al. (37)]. Further-
more, oleic acid stimulates β-oxidation of palmitic acid (37) and
may be beneficial simply by reducing the levels of palmitic acid and
its toxic metabolites (38), which might be reflected by the overall
decreased recovery of tritium derived from labeled palmitic acid in
the total cellular lipid fraction (Figure 1B). In summary, although
the beneficial effects of MUFAs are not completely understood,
recent work including studies in podocytes points toward facili-
tated incorporation of palmitic and its metabolites into TGs and
increased palmitic acid β-oxidation, which have been postulated to
prevent from accumulation of toxic SFA metabolites (29, 35, 37).

INSULIN RESISTANCE
In human (27) and murine (preliminary data) podocytes, palmitic
acid induces insulin resistance. Studies in hepatocytes and skele-
tal muscle cells linked palmitic acid-induced insulin resistance
to alternate serine/threonine phosphorylation of insulin recep-
tor substrate (IRS) 1, 2, and AKT by either ROS-mediated JNK
(c-Jun NH2-terminal kinase) activation or by DAG activation of
PKC (39–41). In podocytes, insulin signaling could be amelio-
rated by JNK inhibition (preliminary data). However, this was not
sufficient to ameliorate survival of podocytes chronically exposed
to palmitic acid (preliminary data). Of note, JNK activation is
also downstream of disturbed ER homeostasis referred to as ER
stress, which has been causatively linked to palmitic acid-induced
podocyte death (28) (see below). Reduced insulin sensitivity is
observed in glomeruli of obese and diabetic rats (42) and normal
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Sieber and Jehle FFAs affect podocyte function

FIGURE 1 | (A) Tracing studies with tritium-labeled palmitic acid reveal that
MUFAs such as oleic acid slightly reduce the total amount of [3H]palmitic
acid containing DAG +TG in the cellular lipid fraction. In addition, oleic acid
leads to a preferential incorporation of [3H]palmitic acid into TG vs. DAG.
(B) Total amount of tritium-labeled metabolites recovered in the total
cellular lipid fraction was decreased in the presence of oleic acid. Adapted
from Sieber et al. (37). n = 9; *p < 0.01, **p < 0.00001.

insulin signaling seems critical for podocyte function and survival
as podocyte-specific insulin receptor knockout mice develop albu-
minuria and glomerulosclerosis (43). In summary, these findings
point toward a potential FFA-mediated role of insulin resistance in
the development and progression of obesity-related renal disease
and DN.

ER STRESS
FFA mediated ER stress has been associated with the pathogene-
sis of obesity and type 2 diabetes where it is extensively studied
in the light of pancreatic β-cell failure and the onset of type 2
diabetes (44, 45). ER stress is also observed in the tubulointersti-
tial and glomerular compartment of renal biopsies obtained from
patients with DN (28, 46, 47). Importantly, ameliorating ER stress
has been shown to attenuate DN in a type 1 diabetes mouse model
(48, 49).

Disturbed ER homeostasis decreases the ER folding capacity
and thereby leads to accumulation of unfolded and misfolded pro-
teins, which in turn initiates the unfolded protein response (UPR).
The UPR is primarily an adaptive response to maintain proper ER
function (50, 51) and involves three signaling branches that are
mediated by the ER transmembrane receptors PERK (PKR-like
ER kinase), ATF6 (activating transcription factor 6), and IRE-1
(inositol-requiring enzyme 1), which ultimately lead to transla-
tional attenuation, ER-associated protein degradation, increased
ER chaperone expression, and ER membrane synthesis. If ER
stress persists, cells initiate apoptosis, which has been linked to
the proapoptotic transcription factor C/EBP homologous protein
(CHOP) (52–55). In podocytes, palmitic acid-induced ER stress
results in the induction of several UPR markers/effectors, includ-
ing the ER chaperone heavy chain binding protein (BiP), Gadd34
(Growth arrest and DNA damage-inducible protein), as well as
alternate splicing of X-box binding protein 1 (Xbp1), and upregu-
lation of CHOP [(28) and unpublished results]. Contrariwise, the
monounsaturated palmitoleic and oleic acids alone upregulated
BiP but not CHOP (28). As BiP is known to protect from palmitic
acid-induced apoptosis (56), the upregulation of the ER chaperone

BiP by MUFAs likely contributes to their beneficial effect. Further-
more, MUFAs attenuate palmitic acid-induced upregulation of
CHOP in podocytes, and gene silencing of CHOP protects against
palmitic acid-induced podocyte death, which points to a causative
role for CHOP (28). A recent study suggests that the detrimental
effects of SFAs are linked to activation of mTORC1 (mammalian
target of rapamycin complex 1) and subsequent CHOP upregula-
tion (57). Similarly,CHOP deficient mice are protected from DN as
well as age-related albuminuria (58). Surprisingly, however, CHOP
levels were either unchanged or significantly downregulated in
the tubulointerstitial (46) and glomerular (28) compartment of
renal biopsies obtained from patients with DN, which could indi-
cate that CHOP positive cells may die and be removed from the
tissue. An alternative explanation might be that during the pro-
gression of DN, there is a selection of podocytes adapted to the
altered environment. The apoptotic actions of CHOP are not com-
pletely understood (59); however, proapoptotic targets include
GADD34 (60), DR5 (TRAIL Receptor-2) (61), and ERO1α (ER
oxidoreductase-1α) (62). In addition, CHOP has been associated
with downregulation of anti-apoptotic Bcl-2 (63).

Saturated FFA-mediated ER stress and subsequent UPR have
been associated with altered ER membrane composition and
disrupted ER integrity (64). In addition of being activated by
unfolded proteins, the ER stress sensor IRE-1 has been shown
to be sensitive to alterations in ER membrane lipid composition
(65). This is as in β-cells, palmitic acid-induced ER stress does
not correlate with unfolded proteins (66). Interestingly, in prelim-
inary experiments, specific IRE-1 inhibition with the small mole-
cule compound 4µ8C attenuates palmitic acid-induced podocyte
death, which is in accordance with the crucial role of IRE-1 in
determining cell fate (67, 68).

CELLULAR ADAPTIVE RESPONSES: REGULATION OF
β-OXIDATION
SFA lipotoxicity has been linked to lipid accumulation includ-
ing TGs (69, 70) and increased ROS derived from enhanced
β-oxidation (39). However, recent findings indicate that increased
FFA β-oxidation as well as TG synthesis may not have to be harmful
in any case, but may reflect a protective adaptive response helping
podocytes to deal with elevated FFA levels.

Specifically, increasing fatty acid oxidation reduces the suscep-
tibility of podocytes to palmitic acid (38). Fatty acid β-oxidation
can be enhanced by AICAR (5-Aminoimidazole-4-carboxamide
ribonucleotide), an agonist of the energy-sensor AMPK (AMP-
activated protein kinase), which inactivates the acetyl-CoA car-
boxylase (ACC) and thereby reduces levels of the natural carnitine
palmitoyltransferase 1 (CPT1) inhibitor malonyl-CoA. The pro-
tective effect of Aicar on palmitic acid could be reversed by inhibit-
ing CPT1, the rate-limiting enzyme of fatty acid β-oxidation. Simi-
larly,ACC-silenced podocytes were less susceptible to palmitic acid
(38). Importantly, several recent genome-wide association studies
in type 2 diabetic patients found a single-nucleotide polymor-
phism in a non-coding region of ACC2 to be strongly associated
with proteinuria (71–73). The polymorphism is associated with
increased ACC2 expression (71), which tends to increased levels
of the CPT1 inhibitor malonyl-CoA and diminished fatty acid
β-oxidation capacity.
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Of interest, the adipocyte-derived hormone adiponectin, a
physiological activator of AMPK signaling, slightly improves sur-
vival of podocytes treated with palmitic acid (38). However, the
protective effect could only be seen in the presence of high glu-
cose, which is known to reduce AMPK signaling (74) and thereby
allowed to uncover the effect of adiponectin (38). This observa-
tion is in line with and gives a further explanation for the known
renoprotective effect of adiponectin (74).

A recent study found an altered gene expression profile of key
enzymes of fatty acid metabolism in glomeruli of patients with
DN (37). Of note, an upregulation of all three CPT1 isoforms
and a downregulation of ACC2 were found (37), which both sug-
gest disposition for increased fatty oxidation. An increase in fatty
acid oxidation likely contributes to a protective, adaptive response
by decreasing the load of toxic SFAs (38). A second study, how-
ever, found a decreased expression of CPT1 in DN (11). However,
these results were obtained from whole kidneys (11) and not from
glomerular extracts (37), which may explain these discrepancies.

CELLULAR ADAPTIVE RESPONSES: SCD1 EXPRESSION AND
REGULATION OF TG SYNTHESIS
Both aforementioned gene expression analyses found an increased
expression of stearoyl-CoA desaturases (SCD) 1 in diabetic

kidneys (11, 37) and by immunohistochemistry the glomerular
upregulation of SCD1 could be mainly localized to podocytes
(37). SCDs desaturate SFAs to MUFAs and thereby provide acyl-
CoA:diacylglycerolacyltransferases (DGATs), which catalyze the
final step in TG synthesis, with their preferred substrates (75,
76). In glomeruli, the expression of DGAT1 was also found to be
increased (37), and together these results indicate not only facili-
tated conversion of toxic SFAs to MUFAs but also stimulation of
TG synthesis.

In obesity, accumulation of TG has been linked to peripheral
lipotoxicity (69, 70); however, TG storage might not be pathogenic
per se as endurance-trained athletes show higher TG levels as well
as higher insulin sensitivity in skeletal muscle, a phenomenon
known as the “athletes’ paradox” (77, 78). Also, transgenic mice
overexpressing the TG-synthesizing enzyme DGAT1 in the heart
have an increased TG content, but improved cardiac function (79).
Moreover, mice overexpressing chREBP (carbohydrate response
element-binding protein) fed a high-fat diet have increased hepatic
levels of SCD1 and DGAT1 and show elevated insulin sensitiv-
ity despite increased hepatic steatosis (80). On the other hand,
at some point, renal lipid accumulation may become harmful
and a reduction in lipid overload by farnesoid X receptor ago-
nists, which reduce the lipid synthesis regulator SREBP-1 (sterol

FIGURE 2 | Working model for increased plasma FFA levels and/or a
shift toward SFAs on podocytes. In obesity and type 2 diabetes,
increased adipose tissue lipolysis and/or a FFA uptake defect of adipocytes
together with increased dietary FFA intake results in elevated plasma FFAs
and a “spillover” of FFAs to non-adipose tissues including the kidney and
podocytes. Podocytes may adapt to the altered lipid environment by

upregulating fatty acid β-oxidation, TG synthesis, and the adaptive branch
of the UPR. However, impaired adaptive capacity (e.g., genetic) or chronic
“overload” leading to accumulation of toxic FFA metabolites and/or
excessive TG storage may lead to diminished podocyte function and
ultimately podocyte death resulting in obesity-related glomerulopathy
and DN.

Frontiers in Endocrinology | Cellular Endocrinology October 2014 | Volume 5 | Article 186 | 4

http://www.frontiersin.org/Cellular_Endocrinology
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sieber and Jehle FFAs affect podocyte function

regulatory element-binding protein), has been shown to slow the
progression of DN (81) and obesity-induced nephropathy (82). It
can be hypothesized that the extent, location, and context of TG
deposition determine lipotoxicity, and specifically, if it prevents
accumulation of even more toxic SFA metabolites such as ceramide
and DAGs, the beneficial effects may outweigh [Figure 2 (35)].

Pharmacological stimulation of SCDs by liver X receptor ago-
nists protects podocytes from palmitic acid-induced cell death
and this protective effect is lost in podocytes deficient of SCD1
and 2. Also, SCD1 and 2 double deficient podocytes are more sus-
ceptible to palmitic acid, but genetic overexpression of SCD1 is
protective. These data suggest that the abovementioned increased
expression of SCD1 in podocytes likely is part of a protective,
adaptive response, which helps podocytes dealing with FFAs.

SUMMARY AND CONCLUSION
Disordered lipid metabolism and renal lipid accumulation are not
only associated with obesity-related renal disease and DN but there
is also growing insight that they contribute to the disease process.
Recent human and experimental studies suggest that disturbed
FFA metabolism plays a critical role in disordered lipid metabo-
lism. As podocytes are highly susceptible to the saturated palmitic
acid, but protected by MUFAs as well as increased expression of
SCDs, the upregulation of SCD1 in podocytes of diabetic kid-
neys likely is part of a protective mechanism against SFAs and
their toxic metabolites. The toxicity of SFAs in podocytes is par-
tially explained by induction of ER stress and insulin resistance.
Several mechanisms can explain the protective effect of MUFAs
in podocytes including attenuation of the palmitic acid-induced
CHOP upregulation and stimulation of fatty acid β-oxidation.
The potentially crucial importance of β-oxidation is supported by
genome-wide association studies in type 2 diabetic patients, which
found that a single-nucleotide polymorphism in ACC2 favoring
impairment of β-oxidation is associated with proteinuria. The
observation that the protective effect of MUFAs is associated with a
shift of palmitic acid from DAG to TG suggests that“limited”accu-
mulation of TGs in podocytes does not have to be deleterious, but
may prevent accumulation of even more toxic FFA metabolites. In
conclusion, recent data not only suggest that podocytes are highly
susceptible to FFAs, but they have also the potential to adapt to a
certain extent to an altered lipid environment (Figure 2). In light
of these findings, obese or type 2 diabetic patients with reduced
ability for an adaptive response to a disturbed lipid metabolism
are likely more prone to develop proteinuria and CKD (Figure 2).
Therefore, novel strategies supporting podocytes in their adaptive
responses may help to prevent and delay progression of CKD.
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