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Abstract

Background: Otitis media (OM) is an inflammation of the middle ear which can be acute or chronic. Acute OM is caused by
Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa is a leading
cause of chronic suppurative otitis media (CSOM). CSOM is a chronic inflammatory disorder of the middle ear characterized
by infection and discharge. The survivors often suffer from hearing loss and neurological sequelae. However, no information
is available regarding the interaction of P. aeruginosa with human middle ear epithelial cells (HMEECs).

Methodology and Findings: In the present investigation, we demonstrate that P. aeruginosa is able to enter and survive
inside HMEECs via an uptake mechanism that is dependent on microtubule and actin microfilaments. The actin
microfilament disrupting agent as well as microtubule inhibitors exhibited significant decrease in invasion of HMEECs by P.
aeruginosa. Confocal microscopy demonstrated F-actin condensation associated with bacterial entry. This recruitment of F-
actin was transient and returned to normal distribution after bacterial internalization. Scanning electron microscopy
demonstrated the presence of bacteria on the surface of HMEECs, and transmission electron microscopy confirmed the
internalization of P. aeruginosa located in the plasma membrane-bound vacuoles. We observed a significant decrease in cell
invasion of OprF mutant compared to the wild-type strain. P. aeruginosa induced cytotoxicity, as demonstrated by the
determination of lactate dehydrogenase levels in culture supernatants of infected HMEECs and by a fluorescent dye-based
assay. Interestingly, OprF mutant showed little cell damage compared to wild-type P. aeruginosa.

Conclusions and Significance: This study deciphered the key events in the interaction of P. aeruginosa with HMEECs in vitro
and highlighted the role of bacterial outer membrane protein, OprF, in this process. Understanding the molecular
mechanisms in the pathogenesis of CSOM will help in identifying novel targets to design effective therapeutic strategies
and to prevent hearing loss.
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Introduction

Chronic suppurative otitis media (CSOM) is a frequently

encountered chronic inflammation of the middle ear and mastoid

process characterized by both tympanic membrane perforation

and discharge [1]. CSOM is one of the most common chronic

infectious diseases worldwide. CSOM affects diverse racial and

cultural groups in both developing and developed countries and

occurs frequently in children [2]. When it occurs during the first

two years of life, the consequent hearing loss is likely to have

serious effects on the critical period of a young child’s develop-

ment, and may have long term effects on language development,

early communication, auditory processing, psychosocial and

cognitive development, as well as educational progress and

achievement [3,4]. CSOM has been associated with considerable

morbidity and substantial healthcare costs [5]. Without treatment,

there is continuous or intermittent purulent ear discharge for

months or even years with destruction of the bones of the middle

ear and increasing hearing impairment [6]. The presence of

mucus prevents the transmission of sound waves from middle ear

to inner ear leading to conductive hearing loss. Chronic infection

of the middle ear leads to oedema of the middle-ear lining and

discharge, tympanic membrane perforation, and possibly ossicular

chain disruption that further aggravates the problem of hearing

loss in CSOM patients [7]. CSOM can also cause sensorineural

hearing loss [8–10]. It has been shown that inflammatory

mediators generated during CSOM can penetrate from the round

window into the inner ear causing loss of hair cells in the cochlea

leading to sensorineural hearing loss in animal models [11–13].

Human studies have also demonstrated the loss of outer and inner

hair cells in the basal turn of the cochlea in CSOM patients [14].
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The pathogenesis of CSOM is multifactorial including abnormal

function of the eustachian tube (resulting from small size, genetic

syndromes, viral respiratory infections, functional immaturity,

allergy, and environmental smoke exposure), invasion of the

middle ear by bacteria and/or viruses, and inflammation [15,16].

The bacterial infection of the middle ear is the most common

cause of CSOM. Antibiotics and surgery are the only treatment

options for CSOM, but have only moderate efficacy against the

disease. The excessive use of the antibiotics has led to the

emergence of resistant bacteria that has further complicated the

treatment of CSOM. Antibiotics can also have severe ototoxic

effects, especially in children, which should also be taken into

consideration [17,18]. In addition, antibiotics cause lysis of

bacteria with subsequent release of endotoxin and consequent

triggering of inflammatory processes that can further aggravate

inflammation. Therefore, alternative treatment strategies against

CSOM are warranted for which understanding the pathogenesis

of disease is of utmost importance.

The colonization of host mucosal surfaces is the first and

essential step in the infectious process [19]. The infection of a host

by a pathogenic microorganism triggers complex cascades of

events that influence the immediate and long-term outcome of this

interaction [20–22]. One of the most important initial signaling

events involves interaction of epithelial cells with the pathogen

[23,24]. The surface exposed moieties on pathogens like outer

membrane proteins (OMPs) have been shown to play an

important role in mediating this interaction [25,26]. The middle

ear is lined by a layer of epithelial cells which acts as a physical

barrier and forms an important line of host defense [27]. Human

middle ear epithelial cells (HMEECs) have been demonstrated to

secrete diverse molecules in response to stimulation like whole

bacteria, bacterial products or lipopolysaccharide (LPS), providing

efficient protection against infectious diseases [28–31]. This

interplay between HMEECs and bacteria can have a profound

influence on the ultimate outcome of infection during CSOM.

Pseudomonas aeruginosa is the most frequently isolated pathogen in

CSOM reported from different parts of the world [32–37]. P.

aeruginosa induced CSOM is characterized by the presence of

numerous bacteria, inflammatory cells, middle ear effusion, and

middle ear epithelial cell injury. P. aeruginosa possess a plethora of

virulence factors which facilitate the ability of this pathogen to

cause a diverse array of infections in humans [38]. However the

lack of OprF expression severely hampers the ability of P. aeruginosa

to cause infections. OprF is a general porin of P. aeruginosa which

facilitates the nonspecific diffusion of ionic particles and small

polar nutrients [39]. OprF belongs to a class of proteins which are

proposed to have a wide range of functions. This class includes

diverse proteins such as MotB, a cytoplasmic membrane protein

which is part of the flagellar rotation assembly in Escherichia coli and

Bacillus subtilis. OprF has also been demonstrated to play an

important role in adhesion of P. aeruginosa to human alveolar

epithelial cells, glial cells and Caco-2/TC7 cells [40,41]. OprF

mutant caused only limited necrosis when inoculated in the middle

veins of Cichorium intybus leaves, even after 8 days compared to

wild-type strain which caused significant necrosis [41]. OprF has

also been implicated in the ability of P. aeruginosa to form biofilms

under anaerobic conditions [42]. However the role of OprF in

CSOM is not known.

Although P. aeruginosa accounts for the majority of cases of

CSOM, no information is available regarding the interaction of

this pathogen with HMEECs. In the present study, we examined

the interaction of P. aeruginosa with HMEECs. We observed that P.

aeruginosa invades HMEECs and ultimately causes cell damage for

which OprF expression is required.

Materials and Methods

Bacterial strains
The bacterial strains used in this study were P. aeruginosa H103

(PAO1 wild-type prototroph), an oprF mutant of H103 strain

(H636), and pOprF (H636O) which corresponds to H636 strain

complemented by plasmid pRW5 consisting of the functional oprF

gene from P. aeruginosa H103 cloned into pUCP19 [41,43].

Bacteria were grown at 37uC in a rotary shaker in the presence of

appropriate antibiotics, as described earlier [41,43]. oprF mutant

and pOprF (H636O) were grown in the presence of streptomycin

and carbenicillin, respectively.

Cell Culture
Human middle ear epithelial cells (HMEECs) (kindly provided

by Dr. David Lim) were generated from human middle ear

mucosa as described earlier [27]. HMEECs used in our studies

were no more than six passages. HMEECs were cultured and

maintained as described earlier [27–31]. Briefly, HMEECs were

cultured in a 1:1 mixture of Bronchial Epithelial Cell Basal

Medium (Lonza, Allendale, NJ) and Dulbecco’s Modified Eagle

Medium (Cellgro, Manassas, VA) supplemented with bronchial

epithelial growth medium (BEGM) Singlequots (Lonza, Allendale,

NJ) and 10% fetal bovine serum (Life Technologies, Carlsbad,

CA).

Invasion assays
Gentamicin protection assays were used to quantify the extent

of bacterial invasion of HMEECs. Briefly, HMEECs were infected

with bacteria at various multiplicity of infection (MOI) and for

different time-periods. After incubation, the cells were washed 5

times with warm RPMI followed by addition of medium

containing gentamicin (200 mg/ml) and further incubated for 1

h at 37uC. The cells were washed 3 times with RPMI and then

lysed with 1% saponin to release intracellular bacteria. Serial

dilutions were then plated on blood agar plates and bacterial

colonies were counted the next day. The binding of bacteria to

HMEECs was determined by lysing the cells without adding

gentamicin. In some experiments, bacteria were pretreated with

monoclonal anti-OprF antibody (kindly provided by Dr. Hancock)

and then used in the invasion assay. The monoclonal antibody

(mAb) was specific to surface epitopes of OprF and was generated

as described previously [44,45]. HMEECs were also pretreated

with different concentrations of purified exogenous OprF. OprF

was purified from P. aeruginosa as described earlier and purity was

confirmed by western blotting [40]. To determine the effect of

cytoskeletal inhibitors, HMEECs were pretreated with different

concentrations of cytochalasin D, vinblastine, nocodazole or

colchicine for 30 min before infecting with bacteria and

maintained in the medium for the entire infection period.

Scanning electron Microscopy (SEM)
HMEECs were cultured on glass cover slips and were infected

with bacteria for varying time periods. After incubation, the cells

were washed 5 times with warm phosphate buffer saline (PBS)

buffer to remove unbound bacteria and were then processed for

SEM. Samples were fixed in 2% glutaraldehyde in PBS buffer

followed by three changes of PBS buffer for 10 min each. The

samples were then post–fixed in 1% osmium tetroxide in PBS

buffer for 45 min and rinsed in three changes of PBS buffer for 10

min each. The samples were dehydrated in a graded series of

ethanol, dried in hexamethyldisilazane (HMDS) and mounted on

carbon adhesive tabs fixed to metal stubs. The samples were
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coated with palladium in a plasma sputter coater and viewed in a

scanning electron microscope (FEI, ESEM-FEG XL-30).

Transmission electron Microscopy (TEM)
HMEECs were infected with bacteria for varying time periods.

After incubation, the cells were washed with PBS and fixed using

2% glutaraldehyde. The samples were rinsed in three washes of

PBS buffer then post-fixed in 1% osmium tetroxide in 0.1 M

phosphate buffer for 1 hour. After buffer rinses, specimens were

dehydrated through a series of graded ethanol, placed in two rinses

of propylene oxide for 5 minutes each and then put in a 1:1

mixture of propylene oxide: EMbed/Araldite resin (Electron

Microscopy Sciences, Fort Washington, PA) for overnight at room

temperature. Next day, the pellets were placed in fresh EMbed/

Araldite and put in a vacuum desiccator for 2–4 hours. The

samples were changed to fresh EMbed/Araldite and polymerized

overnight. Silver/gold sections were then cut on a Leica Ultracut

E (Leica, Buffalo Grove, IL), stained in uranyl acetate and lead

citrate, and viewed in a JEOL 1400 electron microscope (JEOL,

Peabody, MA) with Gatan Orius SC1000 camera (Gatan,

Pleasanton, CA).

Immunofluorescence
For staining of bacteria and actin, HMEECs were cultured in 8-

well chamber slides and infected with P. aeruginosa for varying time

periods. After incubation, cells were washed three times with PBS

buffer and then fixed and permeabilized with BD cytofix and

cytoperm reagent (BD Biosciences, San Jose, CA) for 30 min. After

washing, the cells were blocked with 3% normal goat serum (NGS)

for 20 min and then incubated with anti-Pseudomonas aeruginosa

antibody (Abcam, Cambridge, MA) for 45 min followed by Alexa

Fluor 488 antibody (Life Technologies, Carlsbad, CA). After

washing, cells were counterstained for actin with rhodamine

phalloidin (Life Technologies, Carlsbad, CA) for 45 min, washed

and mounted in an antifade Vectashield solution containing 4, 6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories, Burlin-

game, CA). The cells were viewed with a Zeiss LSM 710

microscope (Carl Zeiss, Germany) and images were assembled

using Adobe photoshop 7.0.

Figure 1. Invasion of P. aeruginosa in HMEECs is dose and time
dependent. HMEECs were infected with at
different MOI for 2h and invasion was determined by
gentamicin protection assay (A). In separate experiments, HMEECs
were infected with P. aeruginosa at an MOI of 10 for varying time
periods and bacterial invasion was determined by gentamicin
protection assay (B). Data represents mean 6 SD. Results are
representative of five independent experiments carried out in triplicate.
doi:10.1371/journal.pone.0091885.g001

Figure 2. Confocal Microscopy of HMEECs infected with P.
aeruginosa. HMEECs were infected with P. aeruginosa at an MOI of 10
for 2h and then bacteria were stained with anti-P. aeruginosa antibody
followed by a secondary Alexa FluorH 488 antibody. The slides were
counterstained with 4’,6-diamidino-2-phenylindole (DAPI) and visual-
ized by confocal laser fluorescence microscope (A). The analytical
sectioning was performed from top to bottom of cells and orthogonal
panels were prepared demonstrating bacterial invasion of HMEECs (B).
Results are representative of four independent experiments carried out
in triplicate. Scale bars 10 mm.
doi:10.1371/journal.pone.0091885.g002
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Lactate dehydrogenase (LDH) determination
The extent of cell damage upon P. aeruginosa infection was

assessed by measurement of LDH release by eukaryotic cells upon

cytoplasmic membrane destabilization. LDH is a stable cytosolic

enzyme and has been used as an indicator of cell damage [46–48].

HMEECs were infected with bacteria at various MOI and for

different time periods. LDH was then determined in culture

supernatants of HMEECs using LDH kit as per manufacturer’s

instructions (Cayman Chemical, Ann Arbor, MI). Uninfected

monolayers were included as negative control. Maximum LDH

release induced by treatment of cells with 1% Triton X-100 was

used as positive control. Results were expressed as percentage

LDH release compared to the positive control.

Live/Dead Assay
HMEECs grown in 8-well chamber slides were infected with

bacteria at various MOI and for different time-periods. Uninfected

cells served as negative control. After incubation, the cells were

washed with PBS buffer and then stained with LIVE/DEAD

viability kit (Life Technologies, Carlsbad, CA) according to the

manufacturer’s instructions. The fluorescent staining was viewed

under a Zeiss LSM-710 laser scanning microscope (Carl Zeiss,

Germany) and images were assembled using Adobe photoshop

7.0.

Statistical analysis
Statistical significance was determined by a paired, two-tailed

Student’s t test using SPSS software. Values of p , 0.05 were

considered to be statistically significant.

Results

P. aeruginosa invades HMEECs
To determine whether P. aeruginosa invades HMEECs, the cells

were infected with bacteria at different MOI and gentamicin

protection assay was performed. First, we examined the effect of

inoculum size on bacterial invasion of HMEECs. By 2h post-

infection, log 1.51 colony forming unit (cfu) bacteria were

recoverable from HMEECs at an MOI of 1 (Figure 1A). With

increase in MOI from 1 to 5, log 2.98 cfu bacteria invaded

HMEECs. At an MOI of 10, log 3.64 cfu bacteria were

demonstrable inside HMEECs. Further increase in MOI to 25

and 50 caused marginal increase in number of bacteria inside

HMEECs. At higher MOI of 100, log 4.32 cfu bacteria were

recoverable from the cells. We then examined whether increasing

incubation time had any effect on bacterial cell invasion. At an

MOI of 1, the number of bacteria inside HMEECs increased from

log 1.15 cfu at 1h post-infection to 2.27 cfu by 8h post-infection

whereas it increased from 2.38 cfu at 1h post-infection to 4.49 cfu

at 8h post-infection at an MOI of 5 (Figure 1B). With increase in

MOI to 10, the number of bacteria recoverable from HMEECs

increased from 3.26 cfu at 1h post-infection to 5.80 cfu at 8h post-

infection. Further increase in MOI to 25 and 50 caused marginal

Figure 3. Scanning electron micrographs demonstrating inter-
action of P. aeruginosa with HMEECs. Epithelial cells were infected
with P. aeruginosa for 30 min (A), 1h (B), 1.5h (C), 2h (D), 4h (E) and 8h (F)
and then subjected to SEM. Large number of bacteria were seen on the
surface of HMEECs at 8h post-infection. Results are representative of
four independent experiments carried out in triplicate. Scale bars 2 mm.
doi:10.1371/journal.pone.0091885.g003

Figure 4. Transmission electron micrographs demonstrating
internalization of P. aeruginosa in HMEECs. Epithelial cells were
infected with P. aeruginosa for 15 min (A), 30 min (B-E), 1 h (F and G), 8h
(H and I), 16h (J), and then subjected to TEM. Results are representative
of four independent experiments carried out in triplicate. Arrows
indicate bacteria. N: Nucleus. Scale bars 2 mm.
doi:10.1371/journal.pone.0091885.g004
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increase in bacteria at 8h post-infection compared to an MOI of

10. At higher MOI of 100, the number of bacteria increased from

4.56 cfu at 1h post-infection to 6.48 cfu by 8h post-infection.

These results suggest that P. aeruginosa is able to enter and survive

inside HMEECs.

To further confirm the invasion data, we performed confocal

microscopy of infected HMEECs. By 2h post-infection, the

bacteria were observed closer to the nuclei of the cells indicating

internalization (Figure 2A). Z-sectioning and 3-dimensional

imaging of the cells infected with P. aeruginosa provided direct

evidence of localization of bacteria inside cells (Figure 2B and

Video S1).

Electron Microscopy
The ultrastructural interaction of P. aeruginosa with HMEECs

was characterized by electron microscopy. HMEECs were

infected with P. aeruginosa at an MOI of 10 for varying time

periods and subjected to electron microscopy examinations.

Scanning electron microscopy (SEM) exhibited the intimate

association of P. aeruginosa with epithelial cells (Figure 3). There

was increase in the numbers of adherent bacteria with increase in

post-infection time period (Figure 3A-F). Few bacteria were visible

on the surface of HMEECs at 30 min post-infection, but by 8h

large clusters of adherent P. aeruginosa were demonstrable on the

cell surface. Transmission electron microscopy revealed the

sequential cell invasion of P. aeruginosa. At 15 min post-infection,

bacteria were observed in close proximity to HMEECs followed by

adhesion to cell surface at 30 min post-infection (Figure 4A and B).

HMEECs extended appendages around the adherent bacteria

with the formation of pseudopod-like structures (Figure 4C and D).

Some of the bacteria were observable in HMEECs cell invagina-

tions (Figure 4E). After internalization, bacteria were observed in

the membrane bound vacuoles at 1h post-infection (Figure 4F). In

the majority of the cells, one bacterium per vacuole was observed

(Figure 4G). However at 8h post-infection, bacteria were observed

to disrupt the membrane and exit the vacuoles (Figure 4H and I).

A large number of free bacteria were demonstrable in the

cytoplasm of cells at 16h post-infection (Figure 4J).

Figure 5. P. aeruginosa invasion of HMEECs is dependent on both microfilament and microtubule dependent uptake mechanisms.
HMEECs were pretreated with different concentrations of cytochalasin D (A), vinblastine (B), nocodazole (C), or colchicine (D) for 30 min and then
infected with P. aeruginosa at an MOI of 10 for 2h. Bacterial invasion was determined by gentamicin protection assay and results were expressed as
percentage compared to the bacterial invasion in control cells. Data represents mean 6 SD and is representative of five individual experiments
carried out in triplicate. # P,0.05 or *P,0.001 compared to control.
doi:10.1371/journal.pone.0091885.g005
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Invasion of P. aeruginosa into HMEECs requires both
microtubules and microfilaments

To determine the role of microfilaments and microtubules in

the invasion of HMEECs by P. aeruginosa, epithelial cells were

pretreated with cytoskeleton dynamics inhibitors, cytochalasin D

for microfilaments, and vinblastine, colchicine and nocodazole for

microtubules. Cells were pretreated with various concentrations of

cytochalasin D which causes microfilament depolymerization, and

then infected with bacteria at an MOI of 10 for 2h. As these

inhibitors were dissolved in dimethylsulfoxide (DMSO), therefore,

HMEECs treated with DMSO alone served as control. With

increase in concentration of cytochalasin D, there was a significant

decrease in the bacterial invasion compared to control cells.

HMEECs pretreated with 1 mM of cytochalasin D showed 55%

decrease in bacterial invasion whereas cells pretreated with 10 mM

showed .98% inhibition compared to control cells (P,0.001)

(Figure 5A). Similar decrease in cell invasion was observed

following pretreatment of HMEECs with vinblastine, colchicine

and nocodazole, each of which cause microtubule disruption.

Pretreatment of HMEECs with 1 mM of colchicine resulted in

34% decrease in bacterial invasion, whereas there was 92%

decrease in invasion as compared to control when cells were

pretreated with 20 mM of colchicine (P,0.001) (Figure 5B).

Nocodazole pretreated cells demonstrated .85% decrease in P.

aeruginosa invasion as compared to control at concentrations

between 10–20 mM (P,0.001) (Figure 5C). Vinblastine was

effective in inhibiting cell invasion of P. aeruginosa by 90–95% at

concentrations of 40 to 50 mM (Figure 5D). We observed that

there were no toxic effects of these reagents on bacteria or on cells

at the tested concentrations (data not shown). These results

suggests that P. aeruginosa invades HMEECs through both

microfilament and microtubule dependent uptake mechanisms.

P. aeruginosa induces actin cytoskeleton changes in
HMEECs

Pathogens have been demonstrated to manipulate host cell

cytoskeleton to facilitate their entry inside host cells [49,50].

Therefore, we examined whether P. aeruginosa causes cytoskeletal

rearrangement during cell invasion through direct observation of

bacteria and microfilaments in HMEECs by confocal laser

microscopy. The cells were stained with rhodamine-phalloidin to

visualize actin. Uninfected cells showed bright staining of actin

cortical filaments and abundant stress fibers (Figure 6). However,

within 15 minutes of infection with P. aeruginosa, microfilament

redistribution was demonstrable as indicated by rounding of cells

and small actin aggregates in conjunction with the adherent

bacteria (Figure 6). With increase in post-infection time-period to

30 minutes there was further increase in actin condensation

associated with bacterial binding sites (Figure 6). Bacteria were

attached to HMEECs in groups, but individual adhered bacterium

was also observable. Actin condensation was observable directly

beneath the adherent bacteria. After 60 min post-infection, the

actin cytoskeleton was observed to regain its original state despite

the presence of intracellular bacteria. Interestingly, after internal-

ization at 120 min post-infection, the bacteria were not

surrounded by polymerized actin, suggesting that microfilament

aggregation is required only during the initial stages of infection.

OprF expression is required for invasion of HMEECs by
P. aeruginosa

Bacterial outer membrane proteins (OMPs) have been demon-

strated to play an important role in interaction of pathogen with

host cells [26]. Therefore, we investigated the role of OprF which

is the most important OMP of P. aeruginosa in its ability to invade

HMEECs. To test this, HMEECs were infected with wild-type

(WT), DOprF mutant and OprF complemented (pOprF) strains of

P. aeruginosa and cell invasion was assessed by gentamicin

protection assay. There was 95% decrease in cell invasion of

OprF mutant compared to WT strain (P,0.001) (Figure 7A).

Interestingly, OprF complemented strain showed similar levels of

cell invasion as the WT strain, suggesting that OprF plays an

important role in invasion of HMEECs by P. aeruginosa. This

inability of OprF mutant to invade HMEECs was not due to

inefficient binding as no significant difference was observed

between binding of WT, DOprF mutant and pOprF strains of P.

aeruginosa (P.0.05) (Figure 7B).

To further confirm the role of OprF in cell invasion, we pre-

treated HMEECs with different concentrations of exogenous

purified OprF. There was a concentration dependent decrease in

invasion of HMEECs by P. aeruginosa. Pretreatment of HMEECs

with 1 mg/ml of exogenous OprF resulted in 17% decrease in

bacterial invasion, whereas there was 75% decrease in invasion

when cells were pretreated with 50 mg/ml of OprF compared to

untreated cells (Figure 7C). Similarly, pretreatment of P. aeruginosa

with anti-OprF monoclonal antibody (mAb) significantly

decreased bacterial cell invasion compared to non-immune mouse

IgG treated or untreated cells (P,0.001) (Figure 7D). These results

suggest that OprF contributes to invasion of HMEECs by P.

aeruginosa.

Figure 6. P. aeruginosa induces cytoskeletal rearrangements
during invasion of HMEECs. Cells were either left uninfected or
infected with P. aeruginosa at an MOI of 10 for 15 min, 30 min, 60 min
and 120 min. Bacteria were stained with anti-P. aeruginosa antibody
followed by a secondary Alexa FluorH 488 antibody. Actin was stained
with rhodamine phalloidin and then mounted in medium containing
DAPI. Results are representative of four independent experiments
carried out in triplicate. Arrows indicate actin accumulation. Scale bars
10 mm.
doi:10.1371/journal.pone.0091885.g006
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Infection with P. aeruginosa causes cell damage
Next, we determined whether P. aeruginosa infection of

HMEECs causes cell damage. Cells were infected with bacteria

for different time periods at different MOI and cell damage was

assessed by a fluorescent dye based cell viability assay [51].

Examination of HMEECs by confocal microscopy showed

significant differences in the interaction of dye with HMEECs.

We observed that there was minimal cell damage up to 8h post-

infection as indicated by the uptake of green dye and no red

staining at an MOI of 1 and 10 in HMEECs infected with WT P.

aeruginosa (Figure 8A-D and Figure S1A-D). However, HMECCs

stained red and green after 8h post-infection, thereby suggesting

significant cell damage after this time point (Figure 8E-G and

Figure S1E-G). At higher MOI of 100, the cells stained green by

6h post-infection (Figure S2A-C). However, the cells stained red

and green by 8h and 16h post-infection suggesting cell damage

(Figure S2D-F). By 24h, complete destruction of the monolayers

was observed with the predominant uptake of red dye by the cells

(Figure S2G). Interestingly HMEECs took up the green dye with

little or no evidence of cell death when infected with OprF mutant

of P. aeruginosa at an MOI of 1 and 10 at all post-infection time

periods (Figure 8H-N and Figure S1H-N). Even at higher MOI of

100 and 24h post-infection, the majority of the cells stained green

demonstrating little or no cell death when infected with DOprF P.

aeruginosa (Figure S2H-N). However, pOprF strain showed similar

pattern of cell damage as WT strain at all MOIs and different time

periods (Figure 8O-U and Figures S1O-U and S2O-U). HMEECs

infected with pOprF strain of P. aeruginosa showed green staining

by 8h post-infection followed by red and green staining at 10h, 16h

and 24h post-infection.

To further confirm these findings we determined LDH release

in cell culture supernatants of HMEECs infected with P. aeruginosa.

LDH release has been demonstrated to be a reliable biochemical

indicator of cell damage in previous studies [46–48]. In agreement

with confocal microscopy results, HMEECs infected with WT P.

aeruginosa demonstrated minimal LDH release by 8h post-infection

at an MOI of 1 and 10 (Figure 9 and Figure S3). However, by 10h

post-infection, WT P. aeruginosa induced 8% LDH release by

HMEECs at an MOI of 1, which reached to 20% and 39% by 16h

and 24h post-infection, respectively (Figure S3). At an MOI of 10,

Figure 7. OprF expression in P. aeruginosa is required for HMEECs invasion. HMEECs were infected with P. aeruginosa strains at an MOI of 10
for 2h and bacterial invasion was determined by gentamicin protection assay (A). The binding of P. aeruginosa to HMEECs was also determined (B). In
separate experiments HMEECs were pretreated with exogenous OprF (C) or bacteria were pretreated with anti-OprF monoclonal antibody (mAb) (D)
and then performed invasion assay. Data represents mean 6 SD. Results were expressed as percentage compared to the invasion or binding of the
wild-type strain. # P,0.05 or * P,0.01 or ** P,0.001 or { P.0.05 compared to WT or pOprF.
doi:10.1371/journal.pone.0091885.g007
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LDH release was 12%, 29% and 55% at 10, 16 and 24h post-

infection (Figure 9). At higher MOI of 100, LDH release was 30%

and 58% at 10h and 16h respectively which increased to 75% by

24h post-infection (Figure S4). By contrast, DOprF mutant did not

induce any significant LDH release above the baseline with any

MOI tested and all post-infection time periods. However, pOprF

strain induced similar levels of LDH release as WT bacteria. These

results suggest that OprF expression in P. aeruginosa is required to

cause cell damage.

Discussion

P. aeruginosa is the most common pathogen causing CSOM [32–

37]. CSOM is an important cause of hearing loss and is of serious

concern, particularly in children, as it can cause developmental

delays in speech and learning [4]. CSOM can also cause extra and

intracranial complications [52]. The most frequent extracranial

complications are subperiosteal abscess, facial paralysis, mastoid-

itis, and labyrinthitis [53]. The most common intracranial

complications of CSOM are lateral sinus thrombosis, meningitis,

cerebral abscess, otic hydrocephalus, extradural abscess, and

encephalitis [54]. Since epithelium has been demonstrated to

interact with pathogens [55,56], it is likely that P. aeruginosa

interacts with HMEECs in its ability to cause CSOM. However

the specific nature of the interactions of P. aeruginosa with

HMEECs has been unknown. In this study, we established an in

vitro cell culture model using HMEECs to better understand the

pathogenetic mechanisms utilized by P. aeruginosa during cell

invasion.

The ability of pathogens to invade and persist in host cells is an

important factor in their ability to cause disease [57]. The entry of

pathogens into host cells provides a mechanism to evade immune

defense mechanisms and cause infection [58]. We observed that P.

aeruginosa is able to enter and survive inside HMEECs. SEM

showed increase in bacterial number on the surface of HMEECs

with increase in post-infection time. TEM demonstrated the

sequence of events following interaction of P. aeruginosa with

HMEECs including adherence of bacteria to the epithelial cell

surface, formation of pseudopod-like structures around the

adherent bacteria and subsequent internalization. In summary,

the gentamicin protection assay and electron micrographs support

the observations on the ability of P. aeruginosa to invade HMEECs.

This may provide a safe niche to bacteria where it can persist,

multiply, and potentially cause chronic infections like CSOM.

Pathogens harness cytoskeletal components to gain entry to, and

to propel themselves within, host cells [49,50]. In this study, we

observed that P. aeruginosa induce a local bacterium-associated

accumulation of polymerized actin during the invasion of

HMEECs. This actin accumulation correlated with initial

bacterial entry, after which point the cytoskeleton appears to

assume its normal pattern of distribution. In addition, the entry of

P. aeruginosa was inhibited by treatment of HMEECs with

cytochalasin D, an inhibitor of actin polymerization and micro-

filament formation. Interestingly, there was a decrease in invasion

following pretreatment with colchicine, nocodazole and vinblas-

tine, each of which is an agent that blocks microtubule formation.

Figure 8. P. aeruginosa causes epithelial cell damage. HMEECs
were infected with P. aeruginosa at an MOI of 10 for varying time
periods. Cell damage was examined using the LIVE/DEAD fluorescent
assay where uptake of green dye indicates live cells and red staining
corresponds to dead cells. Results are representative of four indepen-
dent experiments carried out in triplicate. Scale bars 10 mm.
doi:10.1371/journal.pone.0091885.g008

Figure 9. LDH release by HMEECs infected with P. aeruginosa.
HMEECs were infected with P. aeruginosa at an MOI of 10 for varying
time periods and LDH levels were determined in the culture
supernatants of infected cells. Results were expressed as the
percentage compared with maximum LDH release by lysed cells. Data
represents mean 6 SD and is representative of five individual
experiments carried out in triplicate. # P,0.05 or *P,0.001 compared
to WT or pOprF.
doi:10.1371/journal.pone.0091885.g009
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This suggests that invasion of P. aeruginosa inside HMEECs

involves both microfilament and microtubule dependent path-

ways. Utilization of host cell cytoskeleton is a common theme in

microbial pathogenesis. Many invasive bacteria have common

approaches of host cell interaction, but each species has evolved a

subset of unique tactics that exploit normal host cell function,

promoting survival and enhancing virulence. Some bacteria such

as Porphyromonas gingivalis, Edwardsiella spp., Neiserria gonorrhoeae,

enteropathogenic Escherichia coli, Haemophilus influenzae, and Vibrio

hollisae, utilize both microfilaments and microtubules for entry [59–

64]. The actin microfilaments have been shown to direct the

engulfment of the bacteria by the host cell in Salmonella and Shigella

infections [65,66]. Listeria and vaccinia virus have also been shown

to nucleate host cell actin on their surfaces to propel themselves

through the host cell cytoplasm [67,68]. However, this is the first

study demonstrating P. aeruginosa induced cytoskeletal rearrange-

ments during invasion of HMEECs.

Bacterial structures like outer membrane proteins (OMPs) play

a crucial role in interaction of pathogens with host cells [26]. A

significant finding of this study was that OprF is a critical

microbial component responsible for the invasion of P. aeruginosa in

epithelial cells. The cell invasion of OprF mutant was decreased by

95% in comparison to wild-type strain. Complementation with

OprF restored the invasion property of P. aeruginosa, indicating the

importance of OprF in cell invasion. However we observed no

significant difference between binding of WT, DOprF and pOprF

strains of P. aeruginosa to HMEECs suggesting OprF plays a little

role in binding to these cells. In addition, pretreatment of

HMEECs with exogenous OprF or pretreatment of P. aeruginosa

with anti-OprF mAb significantly reduced bacterial cell invasion.

These findings clearly implicate the role of OprF in invasion of

HMEECs by P. aeruginosa. These results are in agreement with the

observations reported with OprF homologue OmpA. OmpA has

been shown to mediate invasion of meningitis causing Escherichia

coli K1 and Cronobacter sakazakii inside human brain microvascular

endothelial cells (HBMECs) [69,70]. OmpA has also been

implicated in astrocyte colonization by E. coli and cell invasion

of Acinetobacter baumanii [71,72]. All these studies, together with the

results of the present investigation, highlight the crucial role of

OMPs in the pathobiology of Gram-negative bacterial pathogens.

Pathogenic bacteria have the arduous task of interacting with

host cells and reprogramming the complex molecular and cellular

networks of these cells to allow bacterial replication and spread,

while countering host-defense strategies. In this context, the

interaction of pathogens with host cells has been demonstrated to

induce cell damage [73]. Many pathogenic bacteria are equipped

with a wide range of virulence determinants that interact with vital

components of the host leading to cell damage [74,75]. This causes

release of intracellular bacteria and subsequent infection of

neighboring cells. We observed that the interaction of OprF with

HMEECs induces cell damage. Evidence for this role was

provided by the findings that wild-type bacteria induced cell

death whereas OprF mutant failed to cause cell damage. The OprF

complemented strain showed similar levels of cell damage as the

wild-type strain suggesting that OprF expression plays a crucial

role in HMEECs damage.

In summary, our study shows that P. aeruginosa invades HMEECs

that is dependent on both bacterial OprF expression as well as host

microfilament and microtubule uptake mechanisms. The entry of P.

aeruginosa subsequently causes cell damage in vitro that is similar to

the in vivo damage observed in human patients. This in vitro cell

culture model can be of immense importance in the characteriza-

tion of the signal transduction pathways that lead to mucin

overproduction and hence clinical manifestations of CSOM. This

model can be used to identify host genes that are differentially

expressed upon P. aeruginosa infection such as Toll–like receptors

(TLRs). Microarray analysis of HMEECs infected with bacteria will

provide novel information about key gene expression which might

influence P. aeruginosa infection process. Our data provide novel

insights in the pathogenesis of P. aeruginosa induced CSOM, and

contribute to our understanding of invasion of HMEECs by

bacteria. Understanding these host-pathogen interactions will

enable the development of novel and effective therapeutic strategies

to more efficiently treat CSOM and its sequelae.

Supporting Information

Figure S1 P. aeruginosa causes cell damage even at
lower MOI. HMEECs were infected with P. aeruginosa at an MOI

of 1 for varying time periods and cell damage was assessed by

fluorescent dye assay. The green color identifies viable cells

whereas red color corresponds to dead cells. Results are

representative of four independent experiments carried out in

triplicate. Scale bars 10 mM.

(TIF)

Figure S2 Epithelial damage infected with higher MOI
of P. aeruginosa. HMEECs infected with P. aeruginosa at an

MOI of 100 for varying time-periods were subjected to LIVE/

DEAD assay to examine cell damage. The viable cells uptake

green dye whereas dead cells stain red. Results are representative

of four independent experiments carried out in triplicate. Scale

bars 10 mM.

(TIF)

Figure S3 LDH release by HMEECs infected with P.
aeruginosa at lower MOI. LDH levels were determined in the

culture supernatants of HMEECs infected with P. aeruginosa at an

MOI of 1 for varying time periods. Data represents mean 6 SD.

Results are representative of four independent experiments carried

out in triplicate. # P,0.05 or *P,0.001 compared to WT or

pOprF.

(TIF)

Figure S4 HMEECs infected with P. aeruginosa at
higher MOI release substantial amounts of LDH. LDH

release by HMEECs infected with P. aeruginosa at an MOI of 100

was determined and expressed as percentage compared with

maximum LDH release by lysed cells. Data represents mean 6 SD

and is representative of five individual experiments carried out in

triplicate. # P,0.05 or *P,0.001 compared to WT or pOprF.

(TIF)

Video S1 HMEECs were infected with P. aeruginosa at
an MOI of 10 for 2h. After incubation, samples were washed,

fixed, and stained with anti-P. aeruginosa antibody followed by

Alexa FluorH 488 secondary antibody and subjected to confocal

microscopy. Z-sections of confocal images were taken and

generated a video using the ZEN software (Zeiss). The green

color indicates bacteria and blue color is due to DAPI.

(AVI)

Acknowledgments

We are thankful to Dr. David Lim, House Research Institute (HRI), Los

Angeles, CA for providing HMEECs. We are grateful to Drs. R.E.W.

Hancock and Sylvie Chevalier for kindly providing anti-OprF monoclonal

antibody and P. aeruginosa strains. We are thankful to Electron Microscopy

core facility at University of Miami-Miller School of Medicine for assisting

in electron microscopy experiments. We are thankful to Dr. Marcia

Boulina, University of Miami Analytical Imaging Core Facility, for help in

confocal microscopy experiments.

Otitis Media and Pseudomonas aeruginosa

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e91885



Author Contributions

Conceived and designed the experiments: RM MG RG PB DY JL XZL.

Performed the experiments: RM RG PB. Analyzed the data: RM XZL.

Contributed reagents/materials/analysis tools: PB JL. Wrote the paper:

RM MG RG PB DY JL XZL.

References

1. Qureishi A, Lee Y, Belfield K, Birchall JP, Daniel M (2014) Update on otitis
media-prevention and treatment. Infect Drug Resist 7: 15–24.

2. Morris PS, Leach AJ (2009) Acute and chronic otitis media. Pediatr Clin North
Am 56: 1383–1399.

3. Kral A, O’Donoghue GM (2010) Profound deafness in childhood. N Engl J Med

363: 1438–1450.

4. Olatoke F, Ologe FE, Nwawolo CC, Saka MJ (2008) The prevalence of hearing

loss among school children with chronic suppurative otitis media in Nigeria, and

its effect on academic performance. Ear Nose Throat J 87: E19.

5. Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brumatti L, et al.

(2012) Burden of Disease Caused by Otitis Media: Systematic Review and
Global Estimates. PLoS ONE 7: e36226.

6. Yorgancilar E, Akkus Z, Gun R, Yildirim M, Bakir S, et al. (2013) Temporal

bone erosion in patients with chronic suppurative otitis media. B-ENT 9: 17–22.

7. C.D Bluestone, S.E Stool, M.A Kenna (Eds.). (1996) Pediatric Otolaryngology

(third ed.), W.B. Saunders Company, Philadelphia, United States of America.

8. Jensen RG, Koch A, Homøe P (2013) The risk of hearing loss in a population

with a high prevalence of chronic suppurative otitis media. Int J Pediatr

Otorhinolaryngol 77: 1530–1535.

9. Kolo ES, Salisu AD, Yaro AM, Nwaorgu OG (2012) Sensorineural hearing loss

in patients with chronic suppurative otitis media. Indian J Otolaryngol Head
Neck Surg 64: 59–62.

10. da Costa SS, Rosito LP, Dornelles C (2009) Sensorineural hearing loss in

patients with chronic otitis media. Eur Arch Otorhinolaryngol 266: 221–224.

11. Morizono T, Tono T (1991) Middle ear inflammatory mediators and cochlear

function. Otolaryngol Clin North Am 24: 835–843.

12. Huang M, Dulon D, Schacht J (1990) Outer hair cells as potential targets of
inflammatory mediators. Ann Otol Rhinol Laryngol Suppl 148: 35–38.

13. Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, et al. (2008) The
role of inflammatory mediators in the pathogenesis of otitis media and sequelae.

Clin Exp Otorhinolaryngol 1: 117–138.

14. Cureoglu S, Schachern PA, Paparella MM, Lindgren BR (2004) Cochlear
changes in chronic otitis media. Laryngoscope 114: 622–626.

15. Morris P (2013) Chronic suppurative otitis media. Am Fam Physician 88: 694–
696.

16. Bluestone CD (1998) Epidemiology and pathogenesis of chronic suppurative

otitis media: implications for prevention and treatment. Int J Pediatr
Otorhinolaryngol 42: 207–223.

17. Guthrie OW (2008) Aminoglycoside induced ototoxicity. Toxicology 249: 91–
96.

18. Matz G, Rybak L, Roland PS, Hannley M, Friedman R, et al. (2004)

Ototoxicity of ototopical antibiotic drops in humans. Otolaryngol Head Neck
Surg 130: S79–82.

19. Oelschlaeger Tobias A, Hacker Jörg H. (Eds.) (2000) Bacterial Invasion into
Eukaryotic Cells. Springer US. 687 p. doi:10.1007/978-1-4757-4580-1.

20. Hicks SW, Galán JE (2013) Exploitation of eukaryotic subcellular targeting

mechanisms by bacterial effectors. Nat Rev Microbiol 11: 316–326.

21. Baxt LA, Garza-Mayers AC, Goldberg MB (2013) Bacterial subversion of host

innate immune pathways. Science 340: 697–701.

22. Alto NM, Orth K (2012) Subversion of cell signaling by pathogens. Cold Spring
Harb Perspect Biol 4: a006114.

23. Wu J, Xu S, Zhu Y (2013) Helicobacter pylori CagA: a critical destroyer of the
gastric epithelial barrier. Dig Dis Sci 58: 1830–1837.

24. Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD (2011) The airway

epithelium: more than just a structural barrier. Ther Adv Respir Dis 5: 255–273.

25. McClean S (2012) Eight stranded b -barrel and related outer membrane

proteins: role in bacterial pathogenesis. Protein Pept Lett 19: 1013–1025.

26. Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for
bacterial adaptation in host niches. Microbes Infect 4: 325–331.

27. Lim DJ, Moon SK (2011) Establishment of cell lines from the human middle and
inner ear epithelial cells. Adv Exp Med Biol 720: 15–25.

28. Kim BG, Kim JY, Kim M, Kim CH, Choi JY, et al. (2014) Gene regulation by

glucocorticoid in ENaC-mediated Na+ transport by middle ear epithelial cells.
Laryngoscope 124: E27–33.

29. Park HY, Song JW, Hong SP, In SM, Kim HJ (2012) Lipoteichoic acid from
Staphylococcus aureus induced expression of MMP-9 in human middle ear epithelial

cells. Int J Pediatr Otorhinolaryngol 76: 475–479.

30. Lee HY, Takeshita T, Shimada J, Akopyan A, Woo JI, et al. (2008) Induction of
beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-

p38MAPK signaling pathway in human middle ear epithelial cells. BMC Infect
Dis 8: 87.

31. Komatsu K, Lee JY, Miyata M, Hyang Lim J, Jono H, et al. (2013) Inhibition of

PDE4B suppresses inflammation by increasing expression of the deubiquitinase
CYLD. Nat Commun 4: 1684.

32. Afolabi OA, Salaudeen AG, Ologe FE, Nwabuisi C, Nwawolo CC (2012)
Pattern of bacterial isolates in the middle ear discharge of patients with chronic

suppurative otitis media in a tertiary hospital in North central Nigeria. Afr
Health Sci 12: 362–367.

33. Yeo SG, Park DC, Hong SM, Cha CI, Kim MG (2007) Bacteriology of chronic
suppurative otitis media-a multicentre study. Acta Otolaryngol 127: 1062–1067.

34. Madana J, Yolmo D, Kalaiarasi R, Gopalakrishnan S, Sujatha S (2011)

Microbiological profile with antibiotic sensitivity pattern of cholesteatomatous
chronic suppurative otitis media among children. Int J Pediatr Otorhinolaryngol

75: 1104–1108.

35. Dayasena R, Dayasiri M, Jayasuriya C, Perera D (2011) Aetiological agents in

chronic suppurative otitis media in Sri Lanka. Australas Med J 4: 101–104.

36. Saini S, Gupta N, Aparna Seema, Sachdeva OP (2005) Bacteriological study of
paediatric and adult chronic suppurative otitis media. Indian J Pathol Microbiol

48: 413–416.

37. Sattar A, Alamgir A, Hussain Z, Sarfraz S, Nasir J, et al. (2012) Bacterial

spectrum and their sensitivity pattern in patients of chronic suppurative otitis
media. J Coll Physicians Surg Pak 22: 128–129.

38. Ballok AE, O’Toole GA (2013) Pouring salt on a wound: Pseudomonas aeruginosa

virulence factors alter Na+ and Cl2 flux in the lung. J Bacteriol 195: 4013–4019.

39. Nestorovich EM, Sugawara E, Nikaido H, Bezrukov SM (2006) Pseudomonas

aeruginosa porin OprF: properties of the channel. J Biol Chem 281: 16230–16237.

40. Azghani AO, Idell S, Bains M, Hancock RE (2002) Pseudomonas aeruginosa outer
membrane protein F is an adhesin in bacterial binding to lung epithelial cells in

culture. Microb Pathog 33: 109–114.

41. Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, et

al. (2011) Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun
79: 1176–1186.

42. Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, et al. (2002)

Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in
chronically infected cystic fibrosis airways: rethinking antibiotic treatment

strategies and drug targets. Adv Drug Deliv Rev 54: 1425–1443.

43. Woodruff WA, Hancock RE (1988) Construction and characterization of

Pseudomonas aeruginosa protein F-deficient mutants after in vitro and in vivo
insertion mutagenesis of the cloned gene. J Bacteriol 170: 2592–2598.

44. Rawling EG, Martin NL, Hancock RE (1995) Epitope mapping of the

Pseudomonas aeruginosa major outer membrane porin protein OprF. Infect Immun
63: 38–42.

45. Finnen RL, Martin NL, Siehnel RJ, Woodruff WA, Rosok M, et al. (1992)
Analysis of the Pseudomonas aeruginosa major outer membrane protein OprF by use

of truncated OprF derivatives and monoclonal antibodies. J Bacteriol 174:
4977–4985.

46. Brauweiler AM, Bin L, Kim BE, Oyoshi MK, Geha RS, et al. (2013) Filaggrin-

dependent secretion of sphingomyelinase protects against staphylococcal a-

toxin-induced keratinocyte death. J Allergy Clin Immunol 131: 421–427.

47. Allen M, Millett P, Dawes E, Rushton N (1994) Lactate dehydrogenase activity
as a rapid and sensitive test for the quantification of cell numbers in vitro. Clin

Mater 16: 189–194.

48. Zou Y, Kim D, Yagi M, Yamasaki Y, Kurita J, et al. (2013) Application of LDH-

release assay to cellular-level evaluation of the toxic potential of harmful algal
species. Biosci Biotechnol Biochem 77: 345–352.

49. Haglund CM, Welch MD (2011) Pathogens and polymers: microbe-host

interactions illuminate the cytoskeleton. J Cell Biol 195: 7–17.

50. Carabeo R (2011) Bacterial subversion of host actin dynamics at the plasma
membrane. Cell Microbiol 13: 1460–1469.

51. Mujeeb A, Miller AF, Saiani A, Gough JE (2013) Self-assembled octapeptide
scaffolds for in vitro chondrocyte culture. Acta Biomater 9: 4609–4617.

52. Yorgancılar E, Yildirim M, Gun R, Bakir S, Tekin R, et al. (2013)

Complications of chronic suppurative otitis media: a retrospective review. Eur
Arch Otorhinolaryngol 270: 69–76.

53. Wu JF, Jin Z, Yang JM, Liu YH, Duan ML (2012) Extracranial and intracranial
complications of otitis media: 22-year clinical experience and analysis. Acta

Otolaryngol 132: 261–265.

54. Chew YK, Cheong JP, Khir A, Brito-Mutunayagam S, Prepageran N (2012)
Complications of chronic suppurative otitis media: a left otogenic brain abscess

and a right mastoid fistula. Ear Nose Throat J 91: 428–430.

55. Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter

pylori factors with gastric epithelial cells induces a multi-step process in
pathogenesis. Cell Commun Signal 11: 77–81.

56. Villenave R, Shields MD, Power UF (2013) Respiratory syncytial virus

interaction with human airway epithelium. Trends Microbiol 21: 238–244.

57. Alberts B, Johnson A, Lewis J (2002) Molecular Biology of the Cell. 4th edition.

New York: Garland Science.

58. Hornef MW, Wick MJ, Rhen M, Normark S (2002) Bacterial strategies for
overcoming host innate and adaptive immune responses. Nat Immunol 3: 1033–

1040.

59. Navarro-Garcia F, Serapio-Palacios A, Ugalde-Silva P, Tapia-Pastrana G,
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