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Abstract: Neurodegenerative disorders, namely Parkinson’s disease (PD), Huntington’s disease (HD),
Alzheimer’s disease (AD), and multiple sclerosis (MS), are increasingly major health concerns due
to the increasingly aged population worldwide. These conditions often share the same underlying
pathological mechanisms, including elevated oxidative stress, neuroinflammation, and the aggregation
of proteins. Several studies have highlighted the potential to diminish the clinical outcomes of these
disorders via the administration of herbal compounds, among which gintonin, a derivative of ginseng,
has shown promising results. Gintonin is a noncarbohydrate/saponin that has been characterized as a
lysophosphatidic acid receptor (LPA Receptor) ligand. Gintonin may cause a significant elevation
in calcium levels [Ca2+]i intracellularly, which promotes calcium-mediated cellular effects via the
modulation of ion channels and cell surface receptors, regulating the inflammatory effects. Years
of research have suggested that gintonin has antioxidant and anti-inflammatory effects against
different models of neurodegeneration, and these effects may be employed to tackle the neurological
changes. Therefore, we collected the main scientific findings and comprehensively presented
them, covering preparation, absorption, and receptor-mediated functions, including effects against
Alzheimer’s disease models, Parkinson’s disease models, anxiety and depression-like models, and
other neurological disorders, aiming to provide some insights for the possible usage of gintonin in
the management of neurodegenerative conditions.
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1. Introduction

With an increasingly aged population, the prevalence of neurodegenerative disorders is growing
proportionally. According to the World Health Organization, the population above the age of 60 will
double from 12% to 22% from 2015 to 2050, reaching almost 2 billion worldwide. In the developed
world, occurrences of neurodegenerative diseases have significantly increased, due to higher life
expectancies. In the case of Alzheimer’s disease, it is now more than 102 years since it was first
explored and described by Dr. Alzheimer (1906) [1].

Neurodegenerative disorders are categorized as a group of diseases which slowly bring about
the loss of neuronal cells [2]. The mechanisms behind the onset of neurodegenerative conditions
have not been fully explored; however, elevated reactive oxygen species has been suggested as one of
the potential factors in neurodegeneration [3]. Normally, oxygen is required for energy metabolism
and the functioning of all eukaryotic entities [4]. Along the respiratory chain, oxygen is moderately
reduced at a low ratio into superoxide, which can be converted into ROS. Cell metabolism may produce
another form of reagent, known as reactive nitrogen species (RNS). The ROS and RNS at normal
concentrations have been suggested to facilitate several activities, including signal transduction, the
induction of mutagenic response, and the induction of defense against pathogens [5]. Oxidative and the

Cells 2020, 9, 1464; doi:10.3390/cells9061464 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0001-5226-4081
http://dx.doi.org/10.3390/cells9061464
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/9/6/1464?type=check_update&version=2


Cells 2020, 9, 1464 2 of 16

anti-oxidative mechanisms are normally balanced by certain known elements, such as nuclear factor
erythroid-2 related factor-2 (Nrf2), and Heme-oxygenase-1 (HO-1). The overproduction of ROS and/or
suppression of the antioxidant defense mechanism may become harmful, and is known as oxidative
stress [6]. Under elevated ROS conditions, free radicals could pass through the plasma membrane,
destroying the cell membrane potentials via lipid peroxidation, causing structural protein misfolding
and aggregation, and may oxidize the RNA/DNA to intrude the transcription process and cause gene
mutation. Collectively, the elevated oxidative and nitrosative stress may induce cellular abnormalities,
impair the DNA repairing [7], and lead to dysfunction of mitochondrial energy production [8], all of
which may aid in the progression of aging processes and neurodegenerative disease [9].

The roots, leaves, and stems of ginseng have been used as a medicine for the last 2000 years in Japan,
Korea, and China, and are among the most accepted herbal medicines. The antidepressive, anxiolytic,
memory-enhancing effects of ginseng have been fully addressed in Ben Cao Gang Mu, written by
Shi-Zhen Li, which is a well-known text on herbal medicine, published during the Ming dynasty in
China. The Panax ginseng is cultivated in Korea, China (northeast), and the coastal region of Siberia.
The Panax quinquefolium (American ginseng) is cultivated in Canadian and American coastal areas, and
Panax notoginseng is cultivated in China. Panax means “cure-all” in Greek. Ginseng has been shown
to produce different effects, such as antioxidant, antiaging, immunomodulatory, anti-inflammatory,
vasodilatory, adaptogenic, anticancer, antifatigue, and antidepressive, in experiments on rodents [10].
The main ingredients of P. ginseng are acidic polysaccharide and ginsenoside. The effects of its
ingredients have been elucidated in different disease models, but more efforts are needed to explore
the underlying mechanisms responsible for these effects. Recently, an ingredient from P. ginseng was
successfully isolated, called gintonin, which is a noncarbohydrate/nonsaponin polymer that was found
to be a ligand of G protein-coupled LPARs [11]. Gintonin has been shown to elicit a robust elevation
in the intracellular calcium level [Ca2+]i, which may further induce calcium-dependent cellular
processes via cell surface receptors and ion channels, thereby inducing anti-inflammatory activities,
mainly by preventing the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B
(NF-κB) signaling in lipopolysaccharide-induced RAW 264.7 cells. Similarly, it has been suggested
that gintonin triggers the release of different neurotransmitters such as dopamine, catecholamine,
and gliotransmitter in primary astrocytes and PC12 cells; after intraperitoneal (i.p.) injections of
gintonin, mice showed markedly elevated dopamine levels in serum [12]. In this comprehensive
review, we have summarized all the current research works conducted on gintonin in the management
of neurodegenerative diseases. Regarding our literature search, the inclusion and exclusion criteria are
given in the methodology section. All papers have been summarized, covering the effects of gintonin
against neurodegenerative disorders. A simple illustration has been given, showing the process of
neuronal cell loss in neurodegenerative conditions (Figure 1).
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Figure 1. Neuronal cell loss in neurodegenerative conditions. Neurodegeneration can be induced by 
several stimuli; the activation of microglia and astrocytes results in the release of inflammatory 
mediator progression of apoptotic degeneration. Elevation in oxidative stress and the 
downregulation of Nrf2/HO-1 may also contribute to the process of aging. IL-1β: Interleukin-1, AD: 
Alzheimer's disease, PD: Parkinson's disease, ROS: Reactive oxygen species, Nrf2: Nuclear factor-2 
related factor-2, HO-1, Heme oxygenase-1. TNF-α: Tissue necrosis factor-alpha, Cox-2: 
Cyclo-oxygenase-2, NOS-2: Nitric oxide synthase-2. 

2. Methods 

2.1. Search Strategy 

We extensively searched for and reviewed articles discussing the protective activities of 
gintonin in animal models. The papers were collected from different independent databases, e.g., 
PubMed (https://pubmed.ncbi.nlm.nih.gov), Google Scholar (https://scholar.google.co.kr), and Web 
of Science (https://apps.webofknowledge.com). We used the keywords “Neuroprotection”, 
“Neuroprotective”, and “gintonin” in our literature search. One reviewer (Muhammad Ikram) 
analyzed the animal and cellular studies by screening the abstracts of the searched articles. 

2.2. Inclusion and Exclusion Criteria 

a. Laboratory rodents of any species and age, used as neurodegeneration models, were covered. 
b. Comparisons among the control, toxin-treated, and toxin + gintonin cotreated groups were 
included. The control group was injected with a physiological saline/placebo or a similar vehicle. 
The toxin-injected group was used as a model group. Drug administration, route of administration, 
and duration of the dose were not considered. Only experimental studies which highlighted the 
effects of gintonin on animal models of neurodegeneration were included. No review articles, 
duplicate references, or studies with incomplete and incorrect data were included. 

3. Isolation of Gintonin 

Gintonin was first isolated by Pyo, Mi-Kyung [13]; red ginseng roots were ground (>3 mm) and 
refluxed with 80% methanol (MeOH) three times for almost 8 h at 80 °C. The methanolic extract (6.2 
kg) was concentrated in vacuo and separated into water and n-butanol (n-BuOH, 908 g). After 
concentration, the extract was run in a silica gel column and eluted with chloroform (CHCl3): MeOH: 
water (H2O) = 13:7:2. The effect of each isolate was analyzed on endogenous Ca2+-triggered Cl- 
channel (CaCC) in oocytes (Xenopus sp.). The fraction which activated the CaCC was further 

Figure 1. Neuronal cell loss in neurodegenerative conditions. Neurodegeneration can be induced
by several stimuli; the activation of microglia and astrocytes results in the release of inflammatory
mediator progression of apoptotic degeneration. Elevation in oxidative stress and the downregulation
of Nrf2/HO-1 may also contribute to the process of aging. IL-1β: Interleukin-1, AD: Alzheimer’s
disease, PD: Parkinson’s disease, ROS: Reactive oxygen species, Nrf2: Nuclear factor-2 related factor-2,
HO-1, Heme oxygenase-1. TNF-α: Tissue necrosis factor-alpha, Cox-2: Cyclo-oxygenase-2, NOS-2:
Nitric oxide synthase-2.

2. Methods

2.1. Search Strategy

We extensively searched for and reviewed articles discussing the protective activities of gintonin
in animal models. The papers were collected from different independent databases, e.g., PubMed
(https://pubmed.ncbi.nlm.nih.gov), Google Scholar (https://scholar.google.co.kr), and Web of Science
(https://apps.webofknowledge.com). We used the keywords “Neuroprotection”, “Neuroprotective”,
and “gintonin” in our literature search. One reviewer (Muhammad Ikram) analyzed the animal and
cellular studies by screening the abstracts of the searched articles.

2.2. Inclusion and Exclusion Criteria

a. Laboratory rodents of any species and age, used as neurodegeneration models, were covered.
b. Comparisons among the control, toxin-treated, and toxin + gintonin cotreated groups were
included. The control group was injected with a physiological saline/placebo or a similar vehicle.
The toxin-injected group was used as a model group. Drug administration, route of administration,
and duration of the dose were not considered. Only experimental studies which highlighted the effects
of gintonin on animal models of neurodegeneration were included. No review articles, duplicate
references, or studies with incomplete and incorrect data were included.

3. Isolation of Gintonin

Gintonin was first isolated by Pyo, Mi-Kyung [13]; red ginseng roots were ground (>3 mm) and
refluxed with 80% methanol (MeOH) three times for almost 8 h at 80 ◦C. The methanolic extract
(6.2 kg) was concentrated in vacuo and separated into water and n-butanol (n-BuOH, 908 g). After
concentration, the extract was run in a silica gel column and eluted with chloroform (CHCl3): MeOH:
water (H2O) = 13:7:2. The effect of each isolate was analyzed on endogenous Ca2+-triggered Cl– channel
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(CaCC) in oocytes (Xenopus sp.). The fraction which activated the CaCC was further fragmented via
a column and eluted with ethyl acetate (EtOAc): ethanol (EtOH):H2O = 1:3:0.5. To filter the mini
parts, the isolate which activated the CaCC was dialyzed at 4 ◦C for 8 h with a 1000-fold excess of
distilled water using a spectra/pore dialysis membrane (molecular weight cut off 6000–8000) (Spectrum
Laboratories Inc., Rancho Dominguez, CA, USA). The remaining material was named “crude gintonin”,
which was further refined into pure gintonin through a series of processes (Figure 2).
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[17] and impaired spatial working memory and cognitive dysfunction [18,19]. It has been suggested 
that gintonin may potentiate the LPA receptor with a significantly higher affinity. The methanolic 
extract of gintonin caused LPAs to be moved from the protein compartment of gintonin. The LPA 
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Figure 2. Methods for the preparation of gintonin-enriched fraction (GEF) from ginseng. (A) A
method for gintonin fraction preparation using ethanol extraction and diethylaminoethyl (DEAE)
anion exchange chromatography. Gintonin fraction was prepared from eluate of anion exchange
chromatography. (B) A simple method for GEF using only ethanol and water. Ethanol extract is
dissolved in water, leading to the formation of a precipitate, and centrifuge is used to separate the
supernatant and precipitate. The precipitate from water fractionation is designated GEF with a yield
of 1.3%.

4. Absorption of Gintonin

For almost all systemic treatments, the choice of route for drug administration is oral administration,
because of its advantages and safety compared to other routes; herbal medicinal preparations are no
exception, since the majority are decocted with water to extract the active ingredient(s) and for ease of
usage. Orally administered medicines are normally absorbed by the gastrointestinal layer. Lee et al.
showed that gintonin is significantly absorbed by the intestine [14].

5. Lysophosphatidic Acid Receptor, Gintonin, and Neurological Disorders

For the synthesis of phosphatidic acid, lysophosphatidic acid (LPA) acts as a precursor, which
is widely present in the brains of mammals. LPA, which is a phospholipid, yields different types
of effects in the peripheral and central nervous system [15]. These functions are accomplished via
LPA receptors [16]. The prominent function of the LPA receptor is to elicit intracellular calcium
[Ca2+]i) transients via different mechanisms. The intracellular calcium transient is combined with
different cellular effects in the growth of the brain. Moreover, LPA receptors play a prominent role in
the neurogenic processes of the hippocampal region, cognitive, and memory processes. It has been
suggested that LPA1 receptor-deficient mice showed reduced neurogenesis at the hippocampal level [17]
and impaired spatial working memory and cognitive dysfunction [18,19]. It has been suggested that
gintonin may potentiate the LPA receptor with a significantly higher affinity. The methanolic extract of
gintonin caused LPAs to be moved from the protein compartment of gintonin. The LPA complexes
making up gintonin have different affinities for LPA receptors, and the various proteins in gintonin
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triggered activations. It was hypothesized that the coexistence of LPAs with different proteins in
ginseng may be valuable for the development of new chemical entities targeting LPA receptors [20]
(Figure 3).
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6. Effects of Gintonin in Animal Models of Parkinson’s Disease

Parkinson’s disease is categorized by the degeneration of the dopaminergic neurons and the
accumulation of a-synuclein into Lewy bodies and neuritis in various brain areas, such as the substantia
nigra (SNpc) of the midbrain, and reduced dopamine levels in the striatum [12]. The most well-known
and prominent symptom of PD is impaired movement, such as muscle stiffness, involuntary tremors,
and postural instability. Apart from motor dysfunctions, some nonmotor symptoms may also appear,
including executive dysfunction, sluggishness of cognition, genitourinary problems, and emotional
disturbances. Multiple factors may be involved in the progression of PD, including mitochondrial
dysfunction, glutamate toxicity, apoptotic cell death, elevated oxidant stress, proteasomal dysfunction,
and environmental factors [21].

PD is the second most common neurodegenerative disease after AD; many studies have been
conducted to explore the basic pathology of the disease. One study targeted the lysophosphatidic acid
receptor agonist in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injected mouse model of
PD. According to the findings of the authors, gintonin significantly restored the expression of tyrosine
hydroxylase (TH), upregulated the expression of Nrf2, and downregulated the elevated levels of
MAP kinases. Phospho- C-Jun N-terminal kinase (p-JNK), for example, reduced the expression of
activated microglial cells and regulated the motor function of the mice in the experiment [21]. Similarly,
recently, we conducted a comprehensive study of gintonin in an MPTP-injected, PD mouse model.
We showed that gintonin significantly improved locomotory function, improved TH level, reduced
elevated oxidative stress, inhibited inflammatory mediators, and overall conferred neuroprotection to
the mouse brain against MPTP-induced dopaminergic neurodegeneration [3] (Figure 4).
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Figure 4. Effects of gintonin against Parkinson’s disease. A simple illustration, showing the
rescuing effects of gintonin against MPTP-induced dopaminergic neurodegeneration and motor
dysfunctions, covering the antioxidant, anti-inflammatory, and anti-apoptotic effects of gintonin.
MPTP: 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine), Nrf2: nuclear factor erythroid 2-related factor 2,
HO-1: Heme oxygenase-1, BAX: (BCL2 Associated X, Apoptosis Regulator, Bcl-2: B-cell lymphoma 2,
MPP+: 1-methyl-4-phenylpyridinium.

7. Effects of Gintonin Against Alzheimer Disease Pathology

Alzheimer’s disease (AD), for which the prime clinical symptoms include memory dysfunction
and progressive behavioral alterations, is one of the most common neurodegenerative disorders [22].
Since the last century, AD has become a threat to the health of the elderly worldwide. AD has two
main features, i.e., extracellular senile plaque caused by the deposition of amyloid β-peptide (Aβ),
and intracellular neurofibrillary tangles (NFTs) formation composed of hyperphosphorylated tau [23].
Aβ may induce toxicity in the central nervous system, which eventually leads to neuronal cell loss;
the neurotoxicity may result in the hyperphosphorylation of tau and the subsequent accumulation
and establishment of NFTs, which affects the structure of the microtubules of the neuronal system,
and disturbs the transportation of axons, causing neurodegeneration and memory dysfunction [24].
Several studies have sought to find a therapeutic strategy against AD, but there is presently no
effective strategy against the disease [25]. Multiple factors are involved in brain development and
the processing of information, one of which is acetylcholine, which is openly found in the brain, and
which plays a prominent role in cerebral development, cortical function, regulation of cerebral blood
flow, and regulation of overall cognitive and memory performance. It also regulates the functional and
structural remodeling of cortical circuits by establishing synaptic contacts in networks of cells [26].
In AD cases, it has been suggested that the level of brain acetylcholine is significantly reduced,
affecting cognitive and memory processing; the reduction in acetylcholine occurs mainly because of
dysfunction of the cholinergic system [27]. Recently, a study was conducted on the role of gintonin
against cholinergic dysfunction in AD cases, both in animal and cellular models of AD. According to
the findings, the oral administration of gintonin triggered [Ca2+]i transient in mouse hippocampal
neural progenitor cells (NPCs), which subsequently regulated the release of acetylcholine through
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LPA receptors. Gintonin significantly regulated scopolamine-prompted memory dysfunction and
modulated amyloid-β (Aβ)-induced cholinergic impairment, reduced the acetylcholine concentration,
decreased choline acetyltransferase (ChAT) function, and upregulated the acetylcholine esterase (AChE)
in mouse brain. The same phenomenon was evaluated in a transgenic AD mouse model; it was shown
that gintonin regulated cholinergic impairment [28]. Collectively, these findings suggest that the
activation of the LPA receptor by gintonin is responsible for the regulation of cholinergic functions.
The effects of gintonin on cholinergic functions in an animal model of AD are depicted in Figure 5.
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Figure 5. Graphical representation of the effects of gintonin against cholinergic dysfunction in AD
models, possibly by regulating the LPA receptor. It has been suggested that gintonin mediates
cholinergic systems by acetylcholine release and the increase of ChAT expression and protective effects
against Aβ-induced and transgenic AD animal models. Gintonin-mediated activation of LPA receptors
may confer neuroprotection by regulating the amyloidogenic pathway and cholinergic dysfunction
in the brain. DAG: diacylglycerol, IP3: Inositol trisphosphate, LPA receptor: Lysophosphatidic acid
receptors, PLC: Phospholipase C.

8. Effects of Gintonin Against Huntington’s Disease

Huntington’s disease (HD) is a congenital condition which is characterized by involuntary
movements, cognitive dysfunction, and psychiatric illness. It is instigated by an irregular expansion
of CAG (glutamine) trinucleotide repeats in exon 1 of the huntingtin gene at the 4p16.9 location [29].
The aggregation of the mutant huntingtin-protein leads to different pathogenic effects, including
deadly neuronal accumulation, transcriptional dysfunction, mitochondrial malfunction, metabolic
dysfunction, altered axonal transport, and synaptic dysfunction in the striatal and cortical region of
the brain [30]. Tetrabenazine is the only US Food and Drug Administration-approved drug for the
management of HD, while antipsychotic drugs including aripiprazole and olanzapine are thought to
be possible candidate drugs for the management of psychotic disorders. However, there is a risk of
serious side-effects including dizziness, depression, fatigue, or Parkinson’s like symptoms, with the
administration of Tetrabenazine. To analyze the effects of gintonin against HD, Jang et al. conducted a
comprehensive study, showing that gintonin has significant protective effects with a wide range of
therapeutic potential in 3-nitropropionic acid (3-NPA)-induced striatal toxicity by reducing oxidative
stress and neuroinflammation, possibly by upregulating the level of LPA. Furthermore, gintonin
showed protective effects in STHdh cells and in an adeno-associated viral (AAV) vector-infected model
of HD [31]. Thus, gintonin may be a novel therapeutic drug to treat HD-like symptoms.
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9. Effects of Gintonin against Multiple Sclerosis

Multiple sclerosis (MS) is a demyelinating and inflammatory disorder of the CNS, affecting a large
number of individuals globally [32,33]. There have been many hypotheses regarding the pathogenesis
of the disease. It has been suggested that the penetration of immune cells, including autoreactive
T cells and interleukin (IL)-17-producing Th17 subsets, into the central nervous system (CNS) via
the blood-brain barrier is the main factor involved in the pathogenesis of MS. The triggered immune
cells can cause the secretion of the inflammatory reagents, which may induce inflammatory and
demyelinating effects in the cerebrospinal region [34]. To study the possible effects of gintonin, mice
was administered 100 mg/kg, orally, for 10 days before immunizing with myelin basic protein (MBP)
68–82 peptide. According to their findings, gintonin provided protection to the spinal cord by inhibiting
the activation of microglial cells, decreasing the concentration of mRNA expression of the inflammatory
mediators, such as interferon-γ, IL-6, and cyclooxygenase-2, and inducing the expression of protective
mediators, including insulin-like growth factor-1, and vascular endothelial growth factor-1. The study
suggested that there was a significant inhibition in the levels of p38 mitogen-activated protein kinase
and nuclear factor-kB signaling genes in the immune cells. Collectively, it was suggested that gintonin
improves the demyelination in autoimmune encephalomyelitis via the inhibition of MAPK and NF-kB,
suggesting gintonin as a therapeutic candidate for the management of autoimmune disorders, although
further studies should be conducted to explore its mechanisms.

10. Effects of Gintonin on Anxiety and Depressive Behavior in Mice

Depression is one of the leading causes of disability worldwide, with a prevalence of 14.6% in
developed countries [35]. Although significant efforts have been made to lighten the load of the
disease symptoms, only one-third of patients achieve remission after an adequate trial period with
first-line antidepressant treatment [36]. So, a novel, effective, and safe drug with antidepressant activity
is crucially needed [37]. Many mechanisms have been explored regarding the pathophysiology of
depression; some studies have suggested that the activation of immunity and neuroinflammation may
be associated with the development of the pathology of depression [38]. The current meta-analysis
data show that compared with normal individuals, the levels of various inflammatory mediators
(including tumor necrosis factor (TNF)-α, IL-6, and IL-1 receptor antagonists) in depression patients
are increased [39]. Moreover, there was a higher inflammation in half of resistant patients observed
in a study [40]. On the other hand, most antidepressants can regulate peripheral inflammatory
conditions, but remains to be determined whether these anti-inflammatory effects induce the
expected antidepressant effects [41]. Peripheral inflammation may contribute to the emergence
of depressive-like conditions via different mechanisms, such as kynurenine signaling [42], changes in
neuronal plasticity [43], activation of microglia [44], and the endocrine system. It has been suggested
that 95% of the serotonin in the body is produced in the gut, and then stored in gastrointestinal
enterochromaffin (EC) cells [45]. The activation of the gastric EC cells in the gastrointestinal tract
(GIT) causes the release of serotonin (5-HT) via the calcium-reliant mechanism [46] The 5-HT secreted
from intestinal EC cells promotes intestinal motility and the release of enzymes and juices in the
digestive system [47]. Currently, the effects of 5-HT released from the gastric systems on the CNS
have not been fully explored, but most recent findings have suggested that intestinal 5-HT affects
the vomiting center in the brain via a gastric afferent mechanism to the CNS [48]. Moreover, it
has been suggested that LPA1 receptor-null mice drink a higher amount of alcohol during alcohol
withdrawal tests, and show depressive effects [49]. Also, the concentration of 5-HT in the plasma
was substantially reduced in patients with depression [50]. The association between 5-HT from
gastric EC cells and alcohol withdrawal-induced anxiety-like effects has not yet been fully elucidated.
BON cells treated with gintonin increased the intracellular calcium level and the release of 5-HT in
a dose- and time-dependent manner via the activation of the LPA receptor. The administration of
the gintonin-enriched fraction (GEF) increased plasma serotonin, and decreased immobility times in
tests used for the evaluation of depression during alcohol withdrawal. The main idea was that the
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gintonin-induced release of catecholamine, acetylcholine and glutamate in the brain may alleviate
depression-like effects. The conclusion was that the regulation of depression induced by GEF-mediated
alcohol withdrawal may be regulated by the release of 5-HT from EC cells. It is therefore possible that
GEF of ginseng can regulate depression (Figure 6).
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gintonin against depressive behavior in mice by increasing the intracellular calcium level, increasing
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depression, but it has not been analyzed in the current studies. Gintonin may counteract depressive
symptoms in mice, possibly by regulating the inflammatory mediators, increasing the immobility time,
and increasing the release of serotonin and intracellular calcium levels.

11. Effects of Gintonin against Hypoxic and Re-Oxygenation Stress via the Activation of
Astrocytic Glycogenolysis

Cerebral hypoxia and reoxygenation (H/R) injury are the causes of several disorders, including
high altitude cerebral edema, traumatic injuries, mountain sickness, respiratory disorders, cardiac
arrest, obstructive sleep apnea, and ischemic stroke [51]. They are related to neuronal cell loss and
proteolytic cascade, characterized by the release of cytochrome c, caspase-3, and DNA disintegration [52].
As neuroinflammation and apoptosis become more severe, brain tissue and cells are affected. Similarly,
in ischemia-reperfusion injury, the main cause of neuronal injury is not the ischemia itself; the
destruction occurs after the recovery of the blood supply, possibly due to elevated reactive oxygen
species (ROS) [53]. Astrocytic cells are the most abundant cells in the CNS; they exhibit a variety
of functions, both in normal and abnormal situations [54]. The main characteristics of astrocytes
are its ability to reserve glycogen for the supply of energy to the brain and to support neurons and
cognitive functions [55] in pathological situations such as hypoxic ischemia [56]. According to the
astrocyte-neuron lactate shuttle hypothesis, astrocytes convert glycogens to lactate, which is secreted
into neuronal cells for metabolic processes [57]. So, the principal function of brain astrocytic glycogen
is as an energy reservoir for different conditions in which glucose is required, such as hypoxic ischemia
and hypoglycemia. Studies have suggested that brain injury can elevate the expression of LPA receptors
in mice cortex and spinal cord astrocytes. The LPA receptors found in astrocytes may play vital roles
in the metabolic processes of the brain under normal and pathological conditions. However, little
is known about LPA-mediated astrocytic glycogenolysis in disease and normal conditions. Since
astrocytes express LPA receptors [58], and gintonin acts as a ligand for LPA receptors [59], it follows
that gintonin mediated-[Ca2+]i transients may help in the regulation of the metabolic processes of
astrocytic cells. This hypothesis was confirmed in a study that analyzed whether gintonin mediates
Ca2+-dependent glycogenolysis in the astrocytes. The authors analyzed the effects of gintonin on
astrocytic glycogenolysis protecting the astrocytes against hypoxia injuries. They have found that
gintonin promotes astrocytic glycogenolysis via LPA receptor-mediated Ca2+-signaling, thereby
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modulating the key enzymes involved in glycogenolysis. Gintonin-mediated astrocytic glycogenolysis
stimulates adenosine triphosphate (ATP) production and glutamate uptake, and enhances cell viability
under hypoxic conditions. The production of ATP and the uptake of glutamate under hypoxic
conditions confers protection against hypoxic injury upon astrocytes. It has therefore been suggested
that gintonin-mediated [Ca2+]i transients regulated by LPA receptors may protect the astrocytes via
LPA receptors under hypoxia conditions (Figure 7).
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12. Effects of Gintonin against Synaptic Dysfunctions in Neurodegenerative Conditions

The basic units of cognitive performance and information sharing in the brain are called synapses,
which are made of post- and pre- synaptic parts. Various proteins have been implicated in the processing
of the synapses, such as SNAP-25 (synaptosomal-associated protein of 25), PSD-95 (postsynaptic
density protein 95), synapsin 1 and chromogranin B (synaptic vesicle proteins), all of which are
reduced in AD brain [60,61]. Previous findings have suggested that the cortex and hippocampus of
AD brains are drastically affected, i.e., in the form of synaptic dysfunction, while the occipital cortical
region is the least affected area [62,63]. Furthermore, an experimental AD model presents impaired
long-term potentiation (LTP) and long-term depression (LTD), and reduced synaptic functions [64].
These findings suggest that synaptic dysfunction occurs in AD at the early stages of disease progression.
However, neuronal cell death is not enough to show robust synaptic dysfunction, indicating that
synapses are gradually removed before cell death [64]. It has been suggested that some living
neurons lose synapses in neurodegenerative conditions [65]. Without causing neuronal cell loss, the
accumulation of Aβ and hyperphosphorylation of Tau can trigger synaptic loss [66,67]. Studies have
suggested that LPA receptor activation plays a pivotal role in the early stages, including synaptogenesis,
and the morphologies of hippocampal and cortical neurons [68]. LPA receptor-1-deficient mice
presented marked dysregulations in their behavioral functions, as shown in prepulse inhibition [69],
hippocampus-mediated spatial memory [70], and pain sensation tests [71]. It has been suggested that
in LPA receptor-deficient mice, there is reduced neurogenesis in the embryonic and adult cerebral
cortex and hippocampus [17]. Another study indicated that LPA receptor-1 deficient mice presented
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dysregulated fear extinction that was worsened with the administration of LPA receptor-1 antagonist,
suggesting that LPA receptor-1 plays a critical role in the expression of emotional [72]. The effects of LPA
receptor activation in the synaptogenic processes of central synapses after synapse maturation have
not been explored, but these effects may be due to the level of LPA receptors in the hippocampus being
reduced after growth. Moreover, no agonist of LPA receptors with a good affinity in the hippocampus
has been proposed. In one study, the authors showed that gintonin activated the LPA receptor,
thereby regulating the hippocampal synapses [73]. They suggested that the activation of LPA receptors
by gintonin markedly elevated inhibitory and excitatory neurotransmission in the central synapses
through different mechanisms. The gintonin-activated LPA receptor showed synaptic improvement and
increased neuronal excitability in a phospholipase C-dependent mechanism. The authors concluded
that gintonin acts as a LPA receptors agonist, enhancing synaptic transmission in the central synapses,
which may serve as a major entity to regulate the synaptic effects under pathological conditions,
including neurodegenerative diseases [73].

13. Effects of Gintonin against Different Models of Neurodegeneration

Inflammation is the main characteristic of Alzheimer’s disease, Parkinson’s disease, and traumatic
brain injury [74]. Studies have suggested that multiple factors are involved in the pathophysiology
of neurodegenerative disorders, such as activated microglia; furthermore, astrocytosis (gliosis) play
a prominent function in the onset of neuroinflammation, which may induce the release of different
inflammatory cytokines, ultimately leading to neurodegeneration and cognitive dysfunction [2].
To show its possible effects against neurodegenerative diseases, gintonin has been used against
established models of neurodegeneration. Nam et al. analyzed the effects of gintonin against
d-galactose-induced neurodegeneration; they showed that gintonin significantly improved the
hippocampal LTP, and improved neurogenesis and cognitive performance in mice [75]. Similarly, in
another study, it was suggested that gintonin reduced scopolamine-induced memory dysfunction
in mice. The authors indicated that gintonin markedly regulated amyloid-β-induced cholinergic
impairment, e.g., through reduced acetylcholine level and diminished ChAT activity, and increased
the level of AChE [28]. Moreover, it was shown that gintonin regulates the expression of VEGF in
astrocytes, which might provide protection against hypoxic injury [76]. It has been suggested that
gintonin is able to protect mouse brain against methylmercury-induced neurotoxicity and learning
processes [77]. One of the most common mechanisms, which has been extensively highlighted in a
study of gintonin, is its antioxidant effects; a simple diagram is given here (Figure 8). The diagram
suggests that gintonin markedly upregulates the expression of Nrf2/HO-1, thereby enhancing the
expression of some major enzymes, e.g., glutamate cysteine ligase (GCL), superoxide dismutase 1
(SOD1), glutathione (GSH) and glutathione peroxidase (GPx).
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Oxygen Species, LPO: Lipid peroxidation, RNS: Reactive nitrosative species, GSH: Glutathione, GPx:
Glutathione peroxidase.
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14. Conclusions and Future Considerations

The ability of gintonin to modulate multiple aspects of neurodegenerative conditions, including
antioxidant mechanisms, calcium regulation, antineuroinflammation, and the regulation of survival
and apoptotic mechanisms, makes it suitable for the treatment of neurodegenerative conditions.
Moreover, it has been suggested that it can potentiate LTP and regulate hippocampal neurogenesis.
Its safety, efficacy, low cost and wide availability make it a candidate drug for the management of
neurodegenerative disorders which merits further study, including in preclinical and clinical studies.

Several things must be considered to elucidate the efficacy and safety of gintonin for clinical use.
The majority of the reports with gintonin studies were conducted either in preclinical disease models
or in cellular models. Here, animal or cellular models of disease were pre-/post- treated with gintonin,
and the onset of disease was evaluated. Only one study, with many shortcomings, described the
beneficial effects of gintonin in humans [78]. The potential neuroprotective effects of gintonin need
further elucidation in terms of clinical aspects.

More work is needed to fully address the question of whether gintonin is protective or
restorative; several studies have shown that gintonin can be cotreated with toxic compounds. More
comprehensive pharmacokinetic and pharmacodynamics studies should be conducted to better
elucidate its mechanisms of action and absorption. More effort is needed to develop new methods to
prepare pure gintonin on an industrial scale, especially for long-term in vivo and human studies, due to
the complex nature of the purification processes. Efforts may be made to synthesize gintonin chemically,
which will save costs and facilitate the large-scale production of the compound. The isolation and
purification of gintonin from plants has advanced rapidly in recent years, but current protocols need
more accuracy and precision.

Moreover, the current use of gintonin against neurodegenerative disorders is quite generalized,
and a deeper understanding of its mechanisms is needed. The current findings indicate its beneficial
effects on AD, but the exact mechanisms are still not clear. For example, does it affect the enzymes
responsible for the production of Aβ? If so, which specific enzyme is involved in its mechanism
of action? These and related questions remain unanswered. Similarly, it has been suggested that
gintonin may protect dopaminergic neurons, but the mechanism remains unclear. Before gintonin
becomes a protective compound, these questions must be investigated. If such deep study is successful,
it might be a miracle. In most studies, gintonin was taken orally. Although gintonin has a significant
protective effect in different neurodegenerative models, its bioavailability has not yet been analyzed. If
its bioavailability is not significant, then how could it be improved? Notably, the encapsulation of
gintonin in poly(lactide-coglycolide) (PLGA) or gold nanoparticles conjugated to polyethylene glycol
(PEG) has not been presented to date. A lot of research is needed to explore parameters related to safety,
bioavailability, and efficacy. Collectively, the current findings suggest that gintonin is an effective
drug against different kinds of neurodegenerative conditions, signifying the role of gintonin in the
management of neurodegenerative conditions.
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