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Abstract

Some evidence suggests that edible insects could be used to treat malnutrition following

protein deficiency. However, additional studies are needed to better assess the potential of

edible insects as a therapeutic food supplement and their long-term impact on recovery

from malnutrition. The goals of this study were to investigate the effectiveness of a cricket-

based diet in recovery from protein-malnutrition in early life, and to compare cricket protein

to more traditional sources used for food fortification and supplementation. Protein-malnutri-

tion was induced by administration of an isocaloric hypoprotein diet (5% protein calories) in

young male mice for two weeks during puberty, followed by a six-week recovery period

using a cricket-, peanut- or milk-based diet. We examined the impact of protein-malnutrition

and subsequent recovery on body weight, growth and select biomarkers of inflammation

and metabolism. Protein-malnutrition resulted in growth retardation, downregulation of

inflammatory markers in spleen tissue, decreased levels of serum triglycerides, and ele-

vated serum levels of leptin and adiponectin. The cricket-based diet performed equally well

as the peanut- and milk-based diets in body weight recovery, but there were differences in

immune and metabolic markers among the different recovery diets. Results suggest edible

crickets may provide an alternative nutrient-dense protein source with relatively low environ-

mental demands for combating the effects of early-life malnutrition compared to more tradi-

tional supplementation and fortification sources. Additional investigations are needed to

examine the short and long term impacts of different recovery diets on metabolism and

immune function.
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Introduction

Malnutrition is a global health problem, especially among children. Over 5.9 million children

die annually due to malnutrition before their fifth birthday [1]. Malnutrition occurs in many

forms, from acute to chronic, and results from either insufficient caloric intake or insufficient

intake of select essential nutrients [2]. Undernutrition due to a lack of micronutrients and

macronutrients, including protein, increases the risk of immune deficiency [3]. This is a signif-

icant concern because infectious diseases are a leading cause of mortality among children liv-

ing in resource-poor countries [4]. Even in less severe cases, malnutrition can lead to serious

health consequences that persist over the life course [5, 6]. For example, early life malnutrition

is associated with cognitive deficits, obesity, type 2 diabetes and cardiovascular diseases in

adulthood [7–9]. Global malnutrition is a growing concern due to interactions between envi-

ronmental, economic and sociopolitical factors that affect the rapidly changing landscape of

regional and local food systems [10]. While much progress has been made in reducing pro-

tein-malnutrition, significant disparities exist on a global scale [10]. Moreover, the sustainabil-

ity of food systems worldwide faces pressure from increasing demands for protein, rising food

costs and climate change [11].

Novel solutions to alleviate global malnutrition are needed beyond conventional food sup-

plementation and fortification approaches [12–14]. Current malnutrition interventions pri-

marily rely on fortified flours or supplements with a high lipid content. While fortified flours

provide access to additional caloric energy, they are typically made from inexpensive sources

(e.g., cereals, legumes) that are not ideal for providing a rapid response to malnutrition [15].

The optimal nutritional characteristics for treating malnutrition are not fully known, but pro-

tein is a key factor—not only its quantity, but also its quality and digestibility [16–18].

Conventional livestock are often considered an ideal source of protein; however, they can be

difficult to produce in many places and expensive due to the resources required to rear them

[19].

The United Nations Food and Agricultural Organization, among others, has proposed that

edible insects could provide an alternative source to support efforts to combat global food inse-

curity [20–22]. Edible insects are increasingly considered a practical, nutrient-dense protein

source with relatively low environmental demands [23–25]. For example, some edible insects

can be reared on agricultural by-products that would not otherwise be put to use [26]. Addi-

tionally, producing edible crickets requires less water, feed and space than conventional live-

stock, while providing an equal amount of protein per kilogram [27]. Furthermore, thousands

of edible insect species are already incorporated in diets across the globe, and are consumed by

populations across the globe, including by groups in Southern Africa where rates of malnutri-

tion are disproportionally high [20, 28, 29]. Insects are a good source of protein, essential

amino-acids and micronutrients, which are often lacking in carbohydrate-based diets [24, 30,

31]. Some evidence suggests that edible insects could be used to treat malnutrition following

protein deficiency [32]. However, additional studies are needed to better assess the potential of

edible insects as a therapeutic food supplement and the long-term impacts of insects on recov-

ery from malnutrition.

Using a mouse model, the goal of this study was to investigate the effectiveness of using a

cricket-based diet to recover from protein-malnutrition in early life, and to assess how it com-

pares to protein sources traditionally used for food fortification and supplementation. Protein-

malnutrition was induced by administration of an isocaloric hypoprotein diet in young male

mice for two weeks during puberty, followed by a six-week recovery period on a cricket-, pea-

nut- or milk-based diet. We examined the impact of protein-malnutrition and subsequent

recovery on body weight, growth and select biomarkers of inflammation and metabolism.
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Material and methods

Animals

Three-week-old male mice (n = 65) were purchased from Charles River CD1-IGS (Wilming-

ton, MA, USA). Animals were housed in AAA-LAC accredited facilities under standard condi-

tions (12-hour light/dark cycle, food and water available ad libitum). All experiments were

conducted under protocol M005599 approved by the University of Wisconsin Institutional

Animal Care and Use Committee. After a 10-day acclimatization period, animals were divided

into experimental groups (n = 10–12). Animals’ wellbeing was monitored daily and body

weight was recorded three times per week. At the end of experiments, animals were euthanized

by the overdose of isoflurane followed by collection of blood via cardiac puncture and collec-

tion of spleen tissue. Blood was allowed to clot for 30–40 min at room temperature followed by

centrifugation for 10 minutes. Serum was immediately transferred to cryovials and frozen at

-80˚C until further use. Spleen tissues were frozen immediately on dry ice and stored at -80˚C

until further use. All animals were sacrificed between 11am and 1pm to minimize differences

in serum leptin and adiponectin due to diurnal rhythm [33–35].

Diet composition and regime

Diet composition. A total of five irradiated diets manufactured by Envigo (Madison,

USA) were used throughout the study: an initial weaning diet (2020 diet); a hypoprotein diet;

standard adult diet (2018 diet); and, 3 intervention diets (milk, peanut, cricket protein).

Table 1 presents the specific composition and caloric content for each diet. All diets had a sim-

ilar energy density ranging from 3.1 to 3.7 kcal/g. The 2020 weaning diet was used on all pups

and was formulated to include 24% protein with wheat and cornmeal (soy protein-free). The

hypoprotein diet used to induce malnutrition was isocaloric and contained only 5% protein

derived from corn gluten meal. Compared to the standard diet, the hypoprotein diet also had

reduced calories from fat and increased calories from carbohydrates in order to keep the diet

isocaloric. A control diet (2018) containing wheat, corn gluten meal and soybean meal served

as a standard adult mouse diet. The three intervention diets used in the recovery phase were

designed by a nutritionist at the Teklad Diets Envigo to vary based on primary protein sources

inlcuding 1) cricket (Gryllodes sigillatus), 2) cow skim milk powder and 3) peanut flour. For

the cricket diet, ready-to-use cricket powder was obtained from Entomo Farms (Norwood,

Canada). For the peanut diet, peanut flour was obtained from Golden Peanut and Tree Nuts

(Alpharetta, USA). Envigo provided the cow milk powder. The three intervention diets were

formulated to meet minimum mouse dietary needs for minerals and vitamins.

Diet regime. Fig 1 illustrates the three phases of the diet regime. All mice were weaned

(phase 1) for a period of ten days using the 2020 control diet. Protein-malnutrition was

induced in three experimental groups for two weeks using the hypoprotein diet (phase 2). A

Table 1. Diet composition.

Weaning diet Standard adult Diet Intervention—Recovery diets

2020 2018 Hypoprotein Cricket Milk Peanut

Proteins (% calories) 24 24 5.0 19.8 21.3 21.0

Carbohydrates (% calories) 60.0 58 84.2 56.1 59.9 59.7

Fat (% calories) 16.0 18 10.8 24.1 19.8 19.3

Energy density

kcal/g 3.1 3.1 3.5 3.7 3.6 3.5

kJ/g 13.0 13.0 14.6 15.5 15.1 14.6

https://doi.org/10.1371/journal.pone.0234559.t001
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normal control group fed the 2018 diet was also included to model healthy growth and devel-

opment without protein malnutrition. At the end of two weeks, a portion of mice from all

groups was euthanized for tissue harvest. For the next six weeks (phase 3), mice previously fed

the hypoportein diet were assigned to one of three protein-based recovery diets (i.e. cricket,

milk, or peanut) and the control group continued to receive the 2018 diet. All mice were then

euthanized for tissue harvest.

Triglyceride and adipokine assays

Serum triglycerides levels were analyzed using EnzyChrom Triglyceride Assay kit (BioAssay

Systems). Serum samples were diluted 1:5 with water and assayed in duplicates according to

manufacturer’s protocol. Results were calculated from an 8-point standard curve.

Serum leptin and adiponectin were analyzed using Quantikine ELISAs (both from R&D

Systems). Samples for leptin assay were diluted 20x with RD5-3 buffer provided in the kit.

Samples for adiponectin assay were diluted 2000x with RD2-26 buffer provided in the kit. All

samples were assayed in duplicates and results were calculated from 8-point standard curves.

RNA extraction and qRT-PCR

To determine gene expression for TLR4, TNFα, IL-1β, IFNγ and IL-4 total RNA was extracted

from the spleens for a subset of mice from each diet group using Tri-Reagents (Sigma) accord-

ing to the manufacturer’s protocol. For the PCR analysis, total RNA was first transcribed to

cDNA using MMLV reverse transcriptase kit (Invitrogen) according to the manufacturer’s

protocol followed by quantitative PCR using SYBR green master solution (Applied Biosys-

tems). The PCR was run on QuantStudio 7 Flex for 40 cycles. Primer sequences are provided

in Table 2. Results were normalized to 18S levels and relative gene expression was calculated

using the ΔΔCt method [36]. Data are expressed as fold change relative to the control diet

group.

Statistical analysis

Two-way ANOVA followed by Holm-Sidak test was used to determine statistically significant

differences in body weight across time and between different diets. Serum biomarkers and

Fig 1. Experimental design. At the age of 3 weeks, male mice started on the 2020 diet for 10 days. After then, animals

were divided into control and low protein diet groups. Control group received 2018 diet (control) whereas animals in

the hypoprotein group received low protein diet for 2 weeks. After this period, a portion of mice from each group was

euthanized for tissue harvest. Remaining mice in the control group continued on 2018 diet. Mice in hypoprotein group

were divided into three groups receiving intervention diets with different source of protein (either milk, peanut or

cricket). After 6 weeks on the control or intervention diets, mice were euthanized followed by a tissue harvest.

https://doi.org/10.1371/journal.pone.0234559.g001
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mRNA levels were analyzed by one-way ANOVA followed by Dunn’s test when appropriate.

All results are expressed as means ± SE. Differences between groups were considered statisti-

cally significant if p< 0.05. Number of animals/group is indicated in figure legends.

Results

Body weight and growth

Protein-malnutrition. Protein-malnutrition induced by an isocaloric hypoprotein diet

(5% protein calories) administered for two weeks in young male mice resulted in growth retar-

dation but without body weight loss (Fig 2A). Mice on the 2018 control diet gained on average

6.2 grams, representing a 24% increase in their body weight, during the 2-week period (Fig

2B). In contrast, mice on low protein diet gained only 0.7 g in the same time period, corre-

sponding to less than a 2% increase in their body weight (Fig 2B). After 2 weeks, malnourished

mice had significantly lower body weight (28.9 g) compared to mice on the 2018 control diet

(35.2 g; p< 0.001).

Protein-malnutrition recovery. During the protein-malnutrition recovery phase, all

intervention diets performed equally regarding weight gain (Fig 2A and 2C). During the

6-week period, mice in the control group increased their body weight by 28%, mice in the milk

group by 32%, in the peanut group by 39% and in the cricket group by 34% (Fig 2C). These dif-

ferences were not statistically significant. However, during the 6-week recovery period, mal-

nourished animals did not reach the body weight of the control group (45.5 g by the end of the

study) and remained significantly smaller with average weight of 38.7 g (p<0.0001; Fig 2A).

Triglycerides, leptin and adiponectin

Protein-malnutrition. Analyses of samples taken after two weeks of hypoprotein diet dis-

played significant shifts in select metabolic biomarkers including triglycerides and adipokines.

There was a 41% decrease in serum triglyceride levels (1.01 vs 0.59 mmol/l; p< 0.003) (Fig

3A). At the same time, serum leptin was increased by 78% (7885 vs 14042 pg/ml; p< 0.0032)

and adiponectin was increased by 106% (6169 vs 12752 ng/ml; p< 0.001) compared to control

mice (Fig 3B).

Protein-malnutrition recovery. Among samples analyzed after the six-week recovery

period, the serum levels of the same metabolic biomarkers were also differentially regulated

Table 2. Primer sequences for PCR.

Primer sequences

18S F: 50-CGG GTG CTC TTA GCT GAG TGT CCC G-30

R: 50-CTC GGG CCT GCT TTG AAC AC-30

INFγ F: 5’-TGG CAT AGA TGT GGA AGA AAA GAG-3’

R: 5’-TGC AGG ATT TTC ATG TCA CCA T-3’

IL-1β F: 5’-TCA AAG TGC CAG TGA ACC CC-3’

R: 5’-GGT CAC AGC CAG TCC TCT TAC-3’

IL-4 F: 5’-CTC GAA TGT ACC AGG AGC CA-3’

R: 5’- GTG GTG TTC TTC GTT GCT GTG-3’

TLR4 F: 5’-GAG GCA GCA GGT GGA ATT GTA T-3’

R: 5’-TTC GAG GCT TTT CCA TCC AA-3’

TNFα F: 50- TGT AGC CCA CGT CGT AGC AA-30

R: 50- AGG TAC AAC CCA TCG GCT GG-30

https://doi.org/10.1371/journal.pone.0234559.t002
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Fig 2. Body weight and growth. A) Body weight was measured three times per week throughout the experiment. Mice

were on 2020 weaning diet starting at age of 3 weeks for 10 days. Control mice group continued on 2018 diet, whereas

mice in experimental group were put on hypoprotein diet for 2 weeks. Next, three intervention diets (milk, peanut and

cricket protein) were administered for 6 weeks. Two-way ANOVA revealed significant differences between control

and hypoprotein groups during a two-week period and control and intervention groups during the 6-week period.

There were no statistically significant differences among interventions groups. N = 12/group. B) Body weight of the

control group on 2018 diet and low protein group after two weeks of malnutrition. C) Percentage of body weight

increase during 6-week period from the beginning of intervention diet after malnutrition (100%) to the end of the

experiment. Results are expressed as means ± SE. ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0234559.g002
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depending on recovery diet (Fig 3D, 3E and 3F). When compared to the control diet, levels of

adiponectin were lower for mice on the milk diet (by 15%, p< 0.001) and the peanut diet (by

16%, p< 0.001). Mice on the milk diet also had lower levels of leptin compared to the control

diet (by 57%, p<0.01). For triglycerides, only mice on the cricket diet had lower levels than

controls (by 47%, p< 0.001).

Markers of inflammation

Protein-malnutrition. Fig 4A. presents the effects of acute protein-malnutrition induced

with a two-week hypoprotein diet on the expression of several inflammatory (TLR4, TNFα,

IL-1β, IFNγ) and anti-inflammatory (IL-4) markers in spleen tissue. TLR4 was downregulated

in malnourished mice by 32% (p = 0.056). The pro-inflammatory gene IL-1β was also

decreased by 44% (p< 0.002). The mRNA of two additional pro-inflammatory genes TNFα
and INFγ was also downregulated (by 22% and 43%, respectively) although these differences

did not reach statistical significance. Finally, mRNA levels of the anti-inflammatory cytokine

IL-4 were significantly upregulated by 1.82-fold (p< 0.01).

Protein-malnutrition recovery. After six weeks on recovery protein diets, there were no

differences observed between the expression of select inflammatory genes in the spleen among

control group and the cricket or milk diet recovery groups (Fig 4B). However, mice on the pea-

nut diet had a significantly higher expression of TLR4 (by 41%, p< 0.01) and TNFα(by 47%,

p< 0.04) compared to control group.

Fig 3. Metabolic markers. Serum levels of triglycerides (A, D), leptin (B, E) and adiponectin (C, F) after 2 weeks of protein malnutrition (A-C) and

after 6 weeks of the recovery period (D-F). Triglyceride were analyzed using EnzyChrom Triglyceride Assay kit. Leptin and adiponectin were assayed

using Quantikine ELISAs. One-way ANOVA analysis was used to determine difference between experimental groups (hypoprotein, milk, peanut, and

cricket diets) and controls group (2018 diet). Results are expressed as means ± SE. n = 10-12/group, � p< 0.05, ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0234559.g003
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Discussion

In this study we investigated the effectiveness of a cricket-based diet on body weight and select

metabolic and inflammatory markers in the recovery from protein malnutrition and compared

it to peanut- and milk-based diets. Findings showed that the cricket diet performed similarly,

but not exactly the same, as more traditional sources of proteins in recovery from malnutrition.

Fig 4. Inflammatory markers. Spleen gene expression assessed by quantitative PCR after two weeks of malnutrition

induced by hypoprotein diet (A) and after 6-weeks recovery on the intervention diets (B). One-way ANOVA analysis

was used to determine difference between experimental groups (hypoprotein, milk, peanut, and cricket diets) and

controls group (2018 diet). Results are expressed as means ± SE. n = 4–5 /group, + p = 0.056, � p� 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0234559.g004
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As a dense source of micronutrients, vitamins and fatty acids, edible insects, in this instance

crickets, may offer a viable alternative to protein sources that are traditionally used to treat

malnutrition [37, 38]. Furthermore, crickets alongside other types of edible insects, including

palm weevil larvae and termites, can provide a socially acceptable food source for communi-

ties, women and children who are at a high risk of undernutrition [29, 39, 40]. In this context,

edible insects may provide a novel approach to securing adequate food resources, while offer-

ing an opportunity to combat unsustainable food production made worse by the growing pres-

sures of climate change [10].

The impact of protein malnutrition

Protein-malnutrition was induced by an isocaloric low protein diet (5% protein calories) in

young male mice during puberty for two weeks followed by a six-week supplemental protein

diet intervention. Body weight gain was a primary outcome of interest throughout the study

because it is representative of normal growth and development traditionally used in studies of

chronic malnutrition. Administration of the hypoprotein diet for two weeks resulted in

stunted growth; however, the malnutrition was not severe enough to cause body weight loss or

wasting. Mice on the control diet gained on average 6.2 g of body weight during this period

whereas mice on the hypoprotein diet gained only 0.7 g. Puberty is an important developmen-

tal stage accompanied by hormonal and physiological changes; therefore, malnutrition during

this period may have lasting effects on brain development, sexual maturation, immune func-

tion and metabolism [41, 42].

Protein-malnutrition is often associated with dysregulated energy homeostasis and metabo-

lism including altered blood lipid levels [43–45]. In this study, protein-malnutrition resulted

in decreased levels of serum triglycerides likely due to lower availability of dietary fats, a find-

ing that was observed in other animal and clinical studies [44, 46]. We also examined the

impact of protein-malnutrition on two adipokines, leptin and adiponectin, produced by adi-

pose tissue that have pleiotropic effects from regulation of energy metabolism, energy storage

and food intake to hematopoiesis, modulation of the immune system and sexual maturation

[47]. We observed elevated blood levels of adiponectin, a finding consistent with a prior study

in suckling in rats [48]. On the other hand, the elevated blood levels of leptin during malnutri-

tion was an intriguing observation, since leptin production is usually proportional to body fat

mass while adiponectin levels are usually inversely correlated with adiposity [49–52]. In this

study, we measured weight gain but not body composition. It is possible that while the hypo-

protein diet resulted in decreased weight gain, it may have contributed to altered body compo-

sition including higher body fat percentage and thus increased leptin levels, however, further

investigations are warranted. Previous studies showed that a low protein diet may increase

total food intake in order to satisfy protein requirements, subsequently resulting in an

increased body fat percentage [53–55]. Additionally, it is possible that elevated levels of leptin

observed in our study might have been due to a higher proportion of calories (84%) from car-

bohydrates in the hypoprotein diet compared to 60–65%carbohydrate content in regular diet

as some studies found that high carbohydrate diet is associated with an increase of leptin levels

in humans [56]. However, the existing literature on leptin levels during malnutrition is mixed.

Studies of early postnatal protein-malnutrition in rats did not find changes in blood leptin lev-

els [48], whereas protein-malnutrition in young adult rats was associated with higher leptin

levels [53]. Another study showed higher leptin levels in early postnatal malnutrition whereas

malnutrition in two-month old rats was associated with decreased leptin blood levels [57].

Therefore, it is likely that metabolic adaptation, including adipokine production, will depend

on the severity and duration of malnutrition as well as age when malnutrition is experienced.
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Nevertheless, our results suggest a potential dysregulation of adipokine production associated

with protein-malnutrition in pubertal male mice. More studies are needed to better under-

stand the role and regulation of adipokines in protein-malnutrition together with short and

long-term consequences on metabolism and immunity.

Altered immune function is also a serious, life threatening consequence of malnutrition in

childhood that leads to increased morbidity and mortality from infectious diseases. Our find-

ings of downregulated pro-inflammatory genes and upregulated anti-inflammatory genes in

spleen during protein-malnutrition are consistent with other studies [58, 59]. Among the

genes we evaluated was Toll-like receptor 4 (TLR4) belonging to a Toll-like receptors super-

family of pathogen recognition receptors. TLRs are membrane proteins expressed by innate

immune cells that detect components of viruses, bacteria, fungus and protozoa [51]. Activation

of TLRs leads to production of cytokines and chemokines that orchestrate innate and adaptive

immune responses to infections [60]. As a gram-negative bacteria sensor, downregulation of

TLR4 during malnutrition suggests decreased ability to recognize and respond to infections,

including those caused by Escherichia coli. This idea is supported by a study of protein-malnu-

trition in adult mice that resulted in decreased expression of TLR4 in macrophages and defi-

cient response to Lipopolysaccharide (LPS), a lipoglycan from E. Coli [58]. Other studies also

observed impaired immune responses in malnutrition [61].

Recovery from protein malnutrition

Similar to growth-retardation during malnutrition, body weight recovery is an important indi-

cator in determining the efficacy of supplemental foods used to treat malnutrition early in life

[15, 62]. Underweight status is a primary global indicator of mortality in children under five

[63]. Recovery diets, after chronic malnutrition, therefore, should meet the needs for growth

and development [17]. We show here that for body weight recovery, the cricket-based diet per-

formed equally well when compared to the peanut- and milk-based diets. Body weight

increases during protein-malnutrition recovery were equal across all recovery diets, which

were also comparable to the control diet. However, after six weeks of recovery, mice fed the

cricket-, peanut- and milk-based diets remained smaller than mice fed the control diet who

were never exposed to protein-malnutrition. A prior study in protein-malnourished rats

observed that palm weevil- and cricket-based diets performed equally well to a control diet

when assessing weight gain, bone mineral content, lean and fat mass, and organ weights [32].

Additionally, diets fortified with spiders and termites improved weight gain among infants liv-

ing in resource poor regions [64]. Beyond adequate protein and protein quality for weight

gain, sufficient amounts of macro- and micronutrients and energy, are all important and nec-

essary components for treatment diets to combat malnutrition [17]. In this regard, insect diets,

in particular crickets may be a suitable and sustainable complete protein source because they

are not only able to support increased weight gain during recovery as shown in this study, but

previous investigations indicate they also contain adequate amounts of all essential amino

acids to meet treatment diet requirements.

We observed differential effect of the cricket diet on triglyceride levels compared to the

milk and peanut diets. After the recovery period, mice fed the milk and peanut diets had tri-

glyceride levels comparable to controls, whereas triglyceride levels remained significantly

lower in mice fed the cricket diet despite the fact that the percent of calories from total fat were

greater in the cricket diet (24%) than the milk (20%) or peanut (19%) diets. It is possible that

lower triglyceride levels following the cricket diet may have a positive health impact. Elevated

triglyceride levels can be a risk factor for poor cardiovascular health outcomes [65], and there

is currently no minimum recommendation for triglyceride levels. Even after recovery,
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malnutrition experienced during childhood is linked to increased risk of non-communicable

diseases including diabetes, obesity and cardiovascular diseases in adulthood [7]. Therefore,

further longitudinal investigations should be designed to determine whether treating malnu-

trition using crickets or other edible insects could decrease the risk of obesity or cardiovascular

morbidity into adulthood. There were also differences across the recovery diets when consid-

ering blood levels of adiponectin and leptin. Several studies showed a significant association

between serum levels of leucine and isoleucine, branched-chain amino acid (BCAA), with

serum triglyceride and adipokines that play a significant role in development of insulin resis-

tance and type 2 diabetes [66–68]. The recovery diets used in this study have likely different

amino acid composition including levels of BCCAs. Crickets provide a complete protein con-

taining all essential amino acids. Milk is also a rich source of BCAAs whereas wheat protein,

the main protein source in control diet, contains lower levels of BCAAs. We did not measure

BCAA levels in diets or serum levels of free BCAAs in this study, but such studies are needed

to provide insights into the relationship between dietary amino acids and metabolic outcomes

and specifically the role of BCAAs in the recovery from malnutrition.

The analysis of gene expression in spleen tissue revealed that mice on the cricket- and milk-

based diets had similar expression of inflammatory genes when compared to mice fed the con-

trol diet. On the other hand, the expression of TLR4 and TNFα remained lower in mice fed

the peanut-based diet, which suggests greater immune response dysfunction for this group.

Conclusions

Study findings provide important advances in the current knowledge regarding insects as one

potential option to combat global protein malnutrition, a significant and persistent cause of

global morbidity and mortality. Protein malnutrition is not only detrimental for child develop-

ment, it also has lasting health effects and increases population vulnerability and susceptibility

to acute and chronic disease across the life-course. In order to meet the important balance

between nutritional needs and food system sustainability, alternative protein sources in addi-

tion to conventional livestock may be needed. Findings add to the growing body of evidence

in support of edible insects and, more specifically, cricket protein as another possible option

available to combat the effects of chronic malnutrition in early-life.
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