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Abstract: Cytokinins are multifaceted plant hormones that play crucial roles in plant interactions with
the environment. Modulations in cytokinin metabolism and signaling have been successfully used for
elevating plant tolerance to biotic and abiotic stressors. Here, we analyzed Arabidopsis thaliana response
to INhibitor of CYtokinin DEgradation (INCYDE), a potent inhibitor of cytokinin dehydrogenase.
We found that at low nanomolar concentration, the effect of INCYCE on seedling growth and
development was not significantly different from that of trans-Zeatin treatment. However, an alteration
in the spatial distribution of cytokinin signaling was found at low micromolar concentrations,
and proteomics analysis revealed a significant impact on the molecular level. An in-depth proteome
analysis of an early (24 h) response and a dose-dependent response after 168 h highlighted the effects
on primary and secondary metabolism, including alterations in ribosomal subunits, RNA metabolism,
modulations of proteins associated with chromatin, and the flavonoid and phenylpropanoid
biosynthetic pathway. The observed attenuation in stress-response mechanisms, including abscisic
acid signaling and the metabolism of jasmonates, could explain previously reported positive effects
of INCYDE under mild stress conditions.

Keywords: cytokinin; CKX; inhibitor of cytokinin degradation; proteome; Arabidopsis thaliana;
stress response attenuation

1. Introduction

Plants are sessile organisms that, in order to maintain growth and survival under harsh conditions,
have evolved unique mechanisms, enabling them to react rapidly to ever-changing ambient conditions.
A fundamental part of this mechanism is the plant hormone cytokinin, which is known to function in
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many different abiotic and biotic stress responses [1–3]. While cytokinin homeostasis is necessary for
optimal growth and development, it has been demonstrated that an increase in the cytokinin pool may
serve to improve crop yield [4–6]. A short period of stress has been shown to elevate levels of active
cytokinins [7]. However, this effect is only transient, and extended stress conditions usually result in a
significant reduction of the active cytokinin pool [8,9].

Plant cytokinin levels can be modulated by the application of exogenous hormones, and several
studies have found a positive effect of cytokinin treatment on crop production (e.g., [10,11]).
However, the intricacy of cytokinin’s effects has limited the use of such a technique in agriculture
to date [12]. Endogenous cytokinin content is known to be regulated by both novel biosynthesis
and reversible and irreversible conjugation into compounds with different levels of activity and
distribution within the plant, and by the ability to be degraded into inactive products [13,14].
Cytokinin dehydrogenase (CKX) is the main enzyme that catalyzes the inactivation by irreversible
degradation of cytokinins. In Arabidopsis, CKX is encoded by seven genes with different substrate
specificity, spatial and temporal expressions, and subcellular targeting into the cytosol (CKX7),
vacuole (CKX1, CKX3) and endoplasmic reticulum or apoplast (CKX2, CKX4-6) [15–18]. Manipulating
CKX activity presents a potentially useful tool for enhancing crop resistance against adverse
environmental conditions and improving plant production. The overexpression of CKX genes
leads to cytokinin-deficiency phenotype, such as an enlarged root system, reduced activity of the
vegetative and floral shoot apical meristem, and an earlier differentiation of plastids and reduction of
chlorophyll content in leaves [15,19]. On the other hand, CKX-deficient mutants showed an increased
number of reproductive organs and higher seed yield in Arabidopsis, rice, barley or wheat [5,6,20,21].

Pharmacological treatment is a suitable and GMO-free approach for inhibiting CKX activity;
INCYDE [2-chloro-6-(3-methoxyphenyl)aminopurine] is one of the compounds with a high affinity
for the CKX enzyme and only a low-level activation of AHK cytokinin receptors [22]. The INCYDE
inhibition of CKX has been successfully demonstrated, both under controlled conditions and in
field studies, and it reportedly improved plant resistance to diverse biotic and abiotic stresses,
including salinity, heat stress recovery, heavy metal toxicity and Verticillium longisporum infection [23–26].
It is believed that this positive effect on plant resilience is predominantly the result of cytokinin
accumulation, but the exact molecular mechanisms are far from being understood. In this study,
the impact of INCYDE treatment on the model plant Arabidopsis thaliana was analyzed. We compared
its effect to that of a major active cytokinin base trans-Zeatin (tZ) and provide insights into the proteome
response to short- and long-term INCYDE exposure.

2. Results

2.1. Root Growth in Response to tZ and INCYDE Treatment was not Significantly Different

First, to compare the effects of exogenously applied tZ and INCYDE on Arabidopsis physiology,
we monitored the primary root growth. Root growth inhibition is a well-known response to cytokinin
(e.g., [27]). Seedlings were cultivated as described in Materials and Methods, and after seven days,
the length of primary roots was evaluated (Figure 1a). The inhibition of root growth was already
observed at the lowest applied concentration (10 nM), and both substances fully retarded seedling
growth at 10 µM, which was also accompanied by cotyledon coloring due to the accumulation of
anthocyanin (a cytokinin response described in previous studies, e.g., [28]). The INCYDE treatment had
a slightly lower effect at 10 nM, but the saturating concentration was lower than that of tZ (Figure 1b).

2.2. INCYDE Treatment Elicited Distinct Spatial Distribution of Cytokinin Signaling

Next, the effect of INCYDE and exogenously supplied tZ on cytokinin signaling was compared.
Transgenic Arabidopsis lines bearing ARR5::GUS reporter were grown within the concentration range
of INCYDE, and after seven days, the ARR5 promoter activity was visualized by histochemical staining
and compared to that of tZ (Figure 2a,b). The observed differences between tZ and INCYDE were
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concentration-dependent. The analysis revealed that the growth of seedlings in the presence of
INCYDE led to a higher increase in the ARR5 promoter activity in cotyledons (100–500 nM) but a lower
cytokinin signaling in the roots (10–100 nM). The most promising response was found for seedlings
grown in the presence of 500 nM tZ and INCYDE, with a similar increase in the ARR5 promoter activity
in the roots, but a strikingly different pattern in cotyledons (Figure 2). A similar effect was observed in
14-day-old plants (Figure S1).Plants 2020, 9, x FOR PEER REVIEW 3 of 16 

 

  

(a) (b) 

Figure 1. INCYDE and tZ showed a similar effect on seedling development. (a) Images of two 
representative seven-day-old seedlings and (b) the comparison of root elongation in the presence of 
INCYDE (green), tZ (blue) or mock (white). Results represent means and standard deviation (n = 30), 
different letters indicate significant differences (Kruskal-Wallis, p < 0.05). 
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Figure 2. INCYDE induced strong cytokinin signaling response in cotyledons. (a) The comparison of 
normalized ARR5 promoter activity visualized by histochemical staining and (b) representative 
images of seven-day-old ARR5::GUS reporter line cultivated on the medium supplemented with 

Figure 1. INCYDE and tZ showed a similar effect on seedling development. (a) Images of two
representative seven-day-old seedlings and (b) the comparison of root elongation in the presence of
INCYDE (green), tZ (blue) or mock (white). Results represent means and standard deviation (n = 30),
different letters indicate significant differences (Kruskal-Wallis, p < 0.05).
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Figure 2. INCYDE induced strong cytokinin signaling response in cotyledons. (a) The comparison of
normalized ARR5 promoter activity visualized by histochemical staining and (b) representative images
of seven-day-old ARR5::GUS reporter line cultivated on the medium supplemented with trans-Zeatin
(tZ, blue; n = 16), INCYDE (green; n=20) or DMSO (mock, white; n = 16). Results represent means and
standard error, different letters indicate significant differences (Kruskal-Wallis, p < 0.05; see Table S1
for details).
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2.3. Early INCYDE Response Proteins of Arabidopsis Seedlings Highlight Similarity to Exogenous
tZ Treatment

The dose-dependent growth response to INCYDE indicated that the most interesting comparison
between tZ and INCYDE treatment was within the 100–1000 nM range (Figure 1). To provide an insight
into the molecular mechanisms behind the observed contrasting response, seven-day-old seedlings were
treated for 24 h with 500 nM tZ, INCYDE, or 0.1% (v/v) dimethylsulphoxide (DMSO, mock), as described
in Materials and Methods, to determine an early response. In total, 3273 Arabidopsis proteins were
identified with reliable quantitative data for more than 2100 of these. Higher biological variability for
tZ was observed within the set of four biological replicates (each pooled from at least 20 seedlings),
but statistically significant (p < 0.05) separation between tZ, INCYDE and mock-treated samples was
apparent (Figure 3a). A detailed analysis revealed 89 and 99 tZ and INCYDE early-response proteins
as compared to mock-treatment, respectively, and 69 proteins that showed statistically significant and
reproducible differences between INCYDE- and tZ-treated samples (Figure 3b).
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secondary metabolism. The comparison with tZ-responsive proteins showed only 48 shared proteins, 
but all with a similar responsiveness. Repressed proteins included an enzyme of anthocyanin 
metabolism leucoanthocyanidin dioxygenase (AT4G22880), senescence-associated protein SAG24 
(AT1G66580) and a protein reportedly involved in the regulation of gravitropic response and auxin 
transport in roots ROSY1 (AT2G16005, [29]). Significantly accumulated proteins included those 
required for chloroplast biogenesis and development (chorismate mutase 3, AT3G29200; CPP1, 
AT5G23040, [30]), enzymes involved in cell wall formation (AT5G15490, AT4G37800; [31]), 

Figure 3. Early INCYDE- and tZ-responsive proteins in Arabidopsis. (a) The proteome profile
separation after 24 h incubation with 500 nM INCYDE or tZ. Principal component analysis based
on quantitative data of 178 differentially abundant proteins. Results of four biological replicates,
including means and standard deviation; (b) Differentially abundant proteins accumulated (blue)
and decreased (orange) compared to mock (tZ—tZ vs. mock; INCYDE—INCYDE vs. mock) or
tZ-treated samples (INCYDE:tZ); (c) Overlap between tZ and INCYDE-responsive proteins. For details,
see Supplementary Table S2.

As illustrated in Figure 4, early INCYDE response proteins were functionally enriched in amino
acid and carbohydrate metabolism, but the set encompassed diverse processes of both primary
and secondary metabolism. The comparison with tZ-responsive proteins showed only 48 shared
proteins, but all with a similar responsiveness. Repressed proteins included an enzyme of anthocyanin
metabolism leucoanthocyanidin dioxygenase (AT4G22880), senescence-associated protein SAG24
(AT1G66580) and a protein reportedly involved in the regulation of gravitropic response and auxin
transport in roots ROSY1 (AT2G16005, [29]). Significantly accumulated proteins included those required
for chloroplast biogenesis and development (chorismate mutase 3, AT3G29200; CPP1, AT5G23040, [30]),
enzymes involved in cell wall formation (AT5G15490, AT4G37800; [31]), chloroplastic and cytosolic
isoform of glutamine synthetase (AT5G35630, AT1G66200), and extracellular protein with a putative
role in circadian rhythm and abiotic stress GER3 (AT5G20630).
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based on hypergeometric distribution followed by FDR correction. Two pathways are connected if they
share 20% or more proteins. Darker and bigger nodes are more significantly enriched and larger sets,
respectively. Analyzed by ShinyGO 0.61 [32].

The set of 33 INCYDE-repressed proteins contained eight enzymes involved in secondary
metabolism, including phenylalanine ammonia-lyase 1 (AT2G37040), chalcone-flavanone isomerase
(AT5G05270) and an enzyme of jasmonic acid biosynthesis (allene oxide cyclase; AT3G25770).
INCYDE elicited accumulation of 18 proteins, including a zinc metalloprotease FTSH4 (AT2G26140)
involved in assembly and stability of the mitochondrial complex V, a protein of retrograde signaling
PRIN2 (AT1G10522), and two proteins associated with intracellular protein trafficking and endocytosis
(RABG3c, AT3G16100; AGD8, AT4G17890).

A comparison between INCYDE-responsive and tZ-responsive proteins highlighted an
INCYDE-induced elevation of several ribosomal proteins and enzymes of ROS-metabolism (superoxide
dismutase AT2G28190; alcohol dehydrogenase AT1G77120; ascorbate peroxidase AT1G07890;
glutathione S-transferase AT2G29450; thioredoxin M4, AT3G15360; peroxidase AT4G30170). Changes
in ROS-metabolism could imply higher INCYDE toxicity.

2.4. Correlation between INCYDE Concentration and Protein Abundance

Next, an INCYDE dose-response was evaluated at a proteome-wide scale. Seven-day-old
seedlings cultivated on textile meshes were transferred onto new medium supplemented with
10-1000 nM INCYDE or 0.1% (v/v) DMSO (mock), as described in Materials and Methods. After seven
days, shoots were collected for proteome and metabolome analyses. The effect of INCYDE on
the growth of fully established seedling was significantly lower than that observed at the early
developmental stage (Supplementary Figure S2), but its effect was well-manifested at the proteome
level. In total, 29,530 peptide groups were identified, providing sufficient quantitative data for more than
2400 proteins. Independent component analysis (Figure 5a) showed significant separation of INCYDE-
and mock-treated samples, and indicated a high level of similarity between 100 and 1000 nM INCYDE
treatments. A detailed comparison of differentially abundant proteins (absolute fold-change 1.4, p < 0.05)
confirmed the expected overlap between the INCYDE treatments, and revealed that the highest response
was elicited at an INCYDE concentration of 100 nM. The correlation analysis identified 25 and 11
statistically significant positive and negative correlations, respectively (absolute Pearson’s correlation
coefficients >0.7, p < 0.01). These INCYDE-responsive proteins are involved in signaling, primary and
secondary metabolism, including γ-aminobutyric acid biosynthesis, glucosinolate degradation and
processes of chloroplast biogenesis and development (Table 1).
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AT1G53310 Nutrition, anaplerotic reaction Phosphoenolpyruvate carboxylase 1 0.68 9.6 × 10−4

AT5G43830 Other DUF3700 domain-containing protein 0.67 1.3 × 10−3

AT5G14910 Other Heavy metal transport/detoxification
superfamily protein −0.67 1.3 × 10−3

AT5G44130 Other Fasciclin-like arabinogalactan protein 13 0.79 3.8 × 10−5

AT1G48600 Phospholipid metabolism Phosphomethylethanolamine N-methyltransferase 0.67 1.2 × 10−3

AT5G13120 Photosynthesis Photosynthetic NDH subunit of lumenal location 5 0.67 1.2 × 10−3

AT1G34000 Photosynthesis Light-harvesting complex-like protein OHP2 −0.68 9.9 × 10−4

AT4G38630 Protein degradation 26S proteasome non-ATPase regulatory subunit 4 0.73 2.3 × 10−4

AT1G07320 Proteosynthesis 50S ribosomal protein L4, chloroplastic 0.72 3.9 × 10−4

AT1G09620 Proteosynthesis Leucine–tRNA ligase 0.66 1.4 × 10−3

AT2G40290 Proteosynthesis Translation initiation factor eIF-2a 0.65 1.9 × 10−3

AT4G29060 Proteosynthesis Polyprotein of EF-Ts 0.67 1.2 × 10−3

AT2G19870 RNA metabolism tRNA/rRNA methyltransferase 0.93 4.4 × 10−9

AT3G55460 RNA metabolism Serine/arginine-rich SC35-like splicing factor 0.80 2.1 × 10−5

AT1G80670 RNA metabolism Protein RAE1 (RNA export factor 1) −0.65 2.1 × 10−3

AT3G57150 RNA metabolism H/ACA ribonucleoprotein complex subunit 4 0.67 1.3 × 10−3

AT4G09000 Signaling 14-3-3-like protein GF14 chi −0.65 2.1 × 10−3

AT3G44750 Transcription Histone deacetylase HDT1 0.72 3.3 × 10−4
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2.5. INCYDE Response Proteins Modulate Diverse Metabolic Processes

In total, 517 proteins representing an estimated 29% of the total protein extract were found to be
INCYDE-responsive (Figure 5b,c). A functional analysis revealed 199 enriched biological processes
(Gene Ontology; GO), covering 448 INCYDE-responsive proteins. The strongest response was detected
for 100 nM INCYDE treatment, and the GO enrichment (Figure 6) revealed that this response elicited
the highest similarity to annotated response to cytokinin. Other highly enriched categories compared
to 10 and 1000 nM treatments included ‘response to oxidative stress’, ‘photosynthesis’, ‘response to
light stimulus’ and ‘ribosome biogenesis’.
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of clarity, categories with at least 15 proteins were included in the final analysis, and only GO terms
with the most significant contribution to the separation in PC1 or PC2 are labeled. The separation of
individual treatments (represented by boxes) indicates a similarity between 10 and 1000 nM samples.

There were only 40 INCYDE-responsive proteins found exclusively for the 10 nM treatment.
Besides proteins associated with proteosynthesis (7), photosynthesis (5) and ubiquitin-mediated
degradation (6), two INCYDE-responsive proteins are reportedly involved in biotic stress response,
namely inhibitor of fungal polygalacturonase PGIP1 (AT5G06860; accumlated) and extracellular lectin,
whose expression is induced upon treatment with chitin oligomers (AT3G16530; repressed), and at least
three repressed proteins participate in intracellular trafficking (AT5G16880, AT5G05010, AT5G16880).
The lowest number of dose-specific proteins was found for 1000 nM treatment (Figure 5c). The notable
INCYDE-responsive proteins included fungal growth inhibitor PR4 (AT3G04720, repressed), an enzyme
of glucosinolate degradation (AT5G26000, positive correlation with INCYDE dosage, Table 1) and two
heat shock proteins HSP70 (AT3G12580, repressed; AT5G42020, accumulated).

Next, the proteins found with a similar INCYDE response in all three treatments were
analyzed. The dose-independent changes in the amounts of at least ten proteins involved in RNA
metabolism, and the accumulation of three proteins involved in chromatin remodeling (H2A.2,
AT3G20670, nucleosome assembly protein AT4G26110, a protein involved in histone modifications
VIP3, AT4G29830), clearly demonstrated an impact of INCYDE on expression and transcription
machinery. A significant portion of INCYDE-responsive proteins found in all three sets was
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involved in proteosynthesis, ribosome biogenesis, tRNA metabolism and protein folding (Figure 7).
The accumulation of phenylpropanoid and flavonoid biosynthetic enzymes was recently reported in
barley root proteome response to tZ [33]. Here, phenylalanine ammonia-lyase 1, flavonol synthase
and anthocyanidin 3-O-glucosyltransferase were significantly accumulated in response to INCYDE.
Cytokinin signaling is intertwined with other phytohormonal networks, and especially that of auxin.
It is thus not surprising that the INCYDE treatment resulted in the accumulation of auxin biosynthetic
enzyme (AMI1, AT1G08980) and a putative negative regulator of PIN auxin transport (APM1,
AT4G33090). All tested concentrations of INCYDE also elicited a depletion of abscisic acid (ABA)
signaling transcription factor NFYC4 (AT5G63470), and accumulations of ABA signaling repressor
phosphatase 2C (ABI1, AT4G26080) and protein CAR8 (AT1G23140). CAR8 is a putative mediator
of ABA receptor interaction with the plasma membrane and could regulate sensitivity to ABA [34].
Several proteins were also connected to photomorphogenesis and plastid biogenesis, including a
subunit of COP9 signalosome complex (AT4G14110, decreased), PTAC12 (AT2G34640, accumulated)
which is reportedly involved in the initiation of photomorphogenesis [35], epimerase participating
in plastid division AT2G21280 and protein CLMP1 (AT1G62390, accumulated), that is required for
plastid separation and partitioning during cell division [36]. Last but not least, farnesyl pyrophosphate
synthase 1 (AT5G47770) was significantly repressed, which may coincide with the expected repression
in the biosynthesis of isopentenyl pyrophosphate, a substrate of cytokinin biosynthetic enzyme
isopentenyl transferase.Plants 2020, 9, x FOR PEER REVIEW 9 of 16 
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Figure 7. Proteins with the dose-independent response to INCYDE. Interactions and functional clusters
of INCYDE-responsive proteins highlighted by String [37]; Color coding of proteins is denoted by
functional designation given by GO and KEGG pathway enrichments; only the nine most relevant
categories are highlighted. The line thickness indicates the strength of data support, the minimum
required interaction score is 0.4 (medium confidence).
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3. Discussion

3.1. Cytokinin Dehydrogenase Isoforms Play a Key Role in the Contrasting Response between tZ and INCYDE

The effect of exogenously applied cytokinin strongly depends on its transport and metabolism. It is
thus not surprising that the direct tZ effect on the cytokinin signaling was predominantly constrained to
the root tissue (Figure 2). In contrast, the mechanisms of rapid cytokinin inactivation and degradation
did not affect INCYDE transport, and the INCYDE induced cytokinin response was determined by
the presence of CKX enzymes. Components of cytokinin metabolism and signaling are low abundant
proteins, and the quantitative data for CKX were not available in any of the INCYDE response datasets.
However, the recently published detailed characterization of Arabidopsis proteome [38] implied that
the amounts of cytokinin receptor in root, hypocotyl and cotyledon are comparable, and showed that
the observed activation of ARR5::GUS promoter (Figure 2) was similar to the expected profiles of
apoplastic isoforms CKX4 and CKX5 (Figure 8). The apoplastic CKX enzymes found in Arabidopsis
act mainly on cytokinin free bases and ribosides [16], and these are also the root-to-shoot long-distance
signaling forms of cytokinin [39]. It is thus possible that at a given developmental stage, the majority
of the INCYDE activity comprises the transport of active cytokinin in plants.
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ARR5 promoter activity at 0.5 µM INCYDE. Protein iBAQ data from Arabidopsis thaliana expression
atlas that correlate with protein abundances were visualized with an electronic fluorescent pictograph
(100% corresponds to the iBAQ value 25.0); Expected subcellular localizations are indicated [38,40].

3.2. Cytokinin Response Targets Ribosomal Proteins

Plant ribosomes are highly complex structures, with each ribosomal protein being encoded by
two to seven paralogs. The ribosome composition reflects external stimuli, and may have a significant
impact on plant responses [41]. Previous proteomics reports have indicated that ribosome could be
the target of cytokinin signaling [33,42,43]. Here, 122 and 167 ribosomal proteins were identified in
seedling and shoot proteome, respectively. First, 60S ribosomal proteins L4-1 and L4-2, previously
implicated in response to cytokinin [43], were quantified in both experiments, but there was not
any detectable difference compared to the mock-treated plants (Figure 9, L4e). The abundances of
only three ribosomal proteins were significantly altered in early INCYDE response. Interestingly,
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a decrease in protein abundance was observed for 60S ribosomal protein L10-3 involved in UV-B stress
response [44], and a previous analysis found expression profile similarities between UV-B receptor and
components of cytokinin signaling [2]. The experiment with the dose-dependent response to INCYDE
revealed a much higher response in ribosomal proteins. In total, 16 and 18 ribosomal proteins were
accumulated and decreased, respectively. Based on the KEGG (Kyoto Encyclopedia of Genes and
Genomes) annotations, these proteins represent 29 ribosomal subunits, but not all of these are major
paralogs; the most prominent paralogs form only 50% of the detected isoforms. This indicates that the
total ribosome population is not completely altered, or that the alteration is cell-specific, and that this
localized distribution was lost in the total shoot protein extracts used in this study. It is noteworthy
that the ribosomal subunits did not show mixed-mode response, and that all INCYDE-responsive
paralogs for the given subunit always showed the same response.
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Mapper [45]. Blue and red gradients indicate subunits with one or more INCYDE-responsive paralogs.
The contribution of the paralog to the subunit composition [%] is indicated; white—not detected;
grey—no significant difference compared to the mock-treated plants.

3.3. Positive Effect of INCYDE Could Coincide with Attenuated Stress Response

The response to an exogenous stimuli has been seen to change over time, and it is, thus,
not surprising that an early response may be only transient and could significantly differ to that found
after prolonged exposure. In the experiment reported here, only 13 early INCYDE response proteins
were found to be differentially abundant after 168 h of INCYDE treatment, and only six showed
a similar response, including 12-oxo-phytodienoic acid biosynthetic enzyme (AOC2, AT3G25770,
repressed) and microsomal prostaglandin E synthase 2 (AT5G42150, repressed). These two enzymes
produce substances that trigger plant defense and detoxification response. It has been hypothesized
that plants reduce their growth as a primary adaptation response to stress, regardless of the severity
of the threat [46], and it is tempting to speculate that the reported INCYDE-promoted growth under
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suboptimal conditions [23–26] could coincide with the attenuated stress response. This theory could be
supported by an INCYDE-induced attenuation of ABA signaling and repression of at least 21 additional
stress-responsive proteins, including UDP-glycosyltransferase 79B2 (AT4G27560, response to cold,
drought and salinity; [47]), protein disulfide-isomerase (AT2G32920, response to endoplasmic reticulum
stress; [48]) or MD-2-related lipid-recognition protein 3 (AT5G23820, biotic stress, [49]). The comparison
of INCYDE response proteins with the database of previously identified phytohormone-responsive
proteins [50] found the highest overlap for cytokinin-responsive proteins (representing 18 and
79 proteins for 24 and 168 h treatments, respectively), but the proteins responsive to stress-associated
phytohormones ABA and jasmonic acid represented the second and the third most numerous categories,
with 82 ABA-responsive proteins and 55 jasmonic acid-responsive proteins, respectively. The INCYDE
response was opposite to that of jasmonic acid or ABA treatment for more than 50% of these proteins,
supporting the theory that the INCYDE-repressed degradation of cytokinin inhibits stress perception
in plants. Further, this fact indicates a higher level of cytokinin interaction with ABA and jasmonic
acid than previously reported.

4. Materials and Methods

4.1. Plant Material

Seeds of Arabidopsis thaliana ecotype Col-0 and transgenic promoter line ARR5::GUS were used
for all experiments. Seeds were surface-sterilized and sown on Petri dishes containing half-strength
Murashige and Skoog medium with 1% (w/v) agar with the corresponding concentration of INCYDE
or tZ (10 nM, 100 nM, 1 µM, 10 µM) or 0.1% dimethylsulfoxide (DMSO, mock). Seeds were stratified at
4 ◦C for three days, and cultivated at 21 ◦C/19 ◦C day/night temperatures, with a 16 h photoperiod
(100 µmol m–2 s–1 photosynthetic photon flux density) for up to 14 days in a growth chamber (AR36LX,
Percival). For proteomics experiments, seeds were sown on Uhelon 120T (Silk & Progress, Brněnec,
Czech Republic) and cultivated as described for mock. After seven days of cultivation, the Uhelon mesh
with the seedlings was transferred onto fresh liquid Murashige and Skoog medium supplemented
with 0.1% (v/v) DMSO (mock), tZ or INCYDE in DMSO (final concentration, as for the mock) for five
minutes and then transferred onto solidified Murashige and Skoog medium supplemented with the
same substance. Plant tissues were harvested after 24 h (whole seedling) and 168 h (shoot tissue) for
the analysis of early and prolonged INCYDE response proteins, respectively. The length of the primary
root of seven-day-old seedlings was measured using the analysis software ImageJ.

4.2. Histochemical Analysis

ARR5::GUS transgenic plants were vacuum infiltrated for 10 minutes with the staining buffer
[0.5 M sodium phosphate, 1% (v/v) Triton X-114, 0.5 mM potassium ferricyanide, 2 mM potassium
ferrocyanide, 1 mg mL−1 5-bromo-4-chloro-3-indolyl-β-d-glucuronide, pH 7.0] and incubated at 37 ◦C
for 2 h. Samples were then incubated in 70% (v/v) ethanol and then documented with a camera.
The image quantification was performed with ImageJ [51], as described previously [52].

4.3. Proteome Analysis

Total protein extracts were prepared as previously described, employing a combination of
phenol/acetone/TCA extraction [14]. Portions of samples corresponding to 5 µg of peptide were
analyzed by nanoflow reverse-phase liquid chromatography-mass spectrometry using a 15 cm
C18 Zorbax column (Agilent), a Dionex Ultimate 3000 RSLC nano-UPLC system and the Orbitrap
Fusion Lumos Tribrid Mass Spectrometer (Thermo). Peptides were eluted with up to a 120-min,
4% to 40% acetonitrile gradient. Spectra were acquired using the default settings for peptide
identification, employing HCD activation, resolution 60,000 (MS) and 15,000 (MS2), and 60 s dynamic
exclusion. The measured spectra were recalibrated and searched against Araport 11 protein database,
as described previously [14]. Only proteins with at least two unique peptides were considered
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for the quantitative analysis. The quantitative differences were determined by Minora, employing
precursor ion quantification followed by normalization and background-based t-test for peptide- and
protein-based quantitation.

4.4. Statistical Analyses

The reported statistical tests were generated and implemented using Instant Clue [53], Rapid Miner
(www.rapidminer.com; [54]) and Proteome Discoverer. Significant differences refer to p < 0.05.

5. Conclusions

Cytokinin metabolism and signaling play important roles in abiotic stress tolerance, and the
manipulation of these processes by inhibiting cytokinin degradation could be beneficial for sustainable
agriculture. This work provided the first insights into the INCYDE-responsive proteins in Arabidopsis
seedlings, and found differences between cytokinin tZ and INCYDE effect at the molecular level.
The results showed that the INCYDE inhibition of CKX is different from that of cytokinin accumulation
in response to exogenous treatment, and found tissue-specific differences in cytokinin signaling.
The inhibitory effect of INCYDE on early seedling growth and development was not found in
14-day-old plantlets, indicating that the response is not only tissue-specific, but also developmentally
regulated. Finally, the presented data provide evidence of INCYDE-induced stress response attenuation
and a new framework for further detailed investigations of the molecular mechanisms involved in
hormonal signaling and stress mitigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/11/1563/s1,
Figure S1: Representative images of 14-day-old ARR5::GUS reporter line cultivated on the medium supplemented
with (i) 0.5 µM trans-Zeatin (tZ) or 0.5 µM INCYDE; Figure S2: Differences in primary root elongation for
INCYDE-treated plants after 168 h were not significant; Table S1: Supplementary table to Figure 2a; Table S2:
Early INCYDE response proteins, Table S3: Dose-dependent proteome response to INCYDE.
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42. Černý, M.; Kuklová, A.; Hoehenwarter, W.; Fragner, L.; Novák, O.; Rotková, G.; Jedelský, P.L.P.L.;
Žáková, K.K.; Šmehilová, M.; Strnad, M.; et al. Proteome and metabolome profiling of cytokinin action in
Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot.
2013, 64, 4193–4206. [CrossRef] [PubMed]

43. Karunadasa, S.S.; Kurepa, J.; Shull, T.E.; Smalle, J.A. Cytokinin-induced protein synthesis suppresses growth
and osmotic stress tolerance. New Phytol. 2020, 227, 50–64. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10725-013-9813-8
http://dx.doi.org/10.1094/MPMI-12-12-0287-R
http://dx.doi.org/10.1073/pnas.0900060106
http://dx.doi.org/10.1104/pp.108.1.47
http://dx.doi.org/10.1016/j.jplph.2016.03.011
http://dx.doi.org/10.1073/pnas.1506339112
http://dx.doi.org/10.1074/jbc.M111.255695
http://dx.doi.org/10.1093/bioinformatics/btz931
http://www.ncbi.nlm.nih.gov/pubmed/31882993
http://dx.doi.org/10.3389/fpls.2020.590337
http://dx.doi.org/10.1105/tpc.114.129973
http://www.ncbi.nlm.nih.gov/pubmed/25465408
http://dx.doi.org/10.1016/j.cell.2010.05.007
http://dx.doi.org/10.1073/pnas.1106706108
http://dx.doi.org/10.1093/nar/gky1131
http://dx.doi.org/10.1038/s41586-020-2094-2
http://dx.doi.org/10.1038/nplants.2017.112
http://dx.doi.org/10.1371/journal.pone.0000718
http://dx.doi.org/10.3389/fpls.2020.00948
http://dx.doi.org/10.1093/jxb/ert227
http://www.ncbi.nlm.nih.gov/pubmed/24064926
http://dx.doi.org/10.1111/nph.16519
http://www.ncbi.nlm.nih.gov/pubmed/32129886


Plants 2020, 9, 1563 15 of 15

44. Ferreyra, M.L.F.; Pezza, A.; Biarc, J.; Burlingame, A.L.; Casati, P. Plant L10 Ribosomal Proteins Have Different
Roles during Development and Translation under Ultraviolet-B Stress. Plant Physiol. 2010, 153, 1878–1894.
[CrossRef] [PubMed]

45. Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci.
2020, 29, 28–35. [CrossRef] [PubMed]

46. Skirycz, A.; Vandenbroucke, K.; Clauw, P.; Maleux, K.; De Meyer, B.; Dhondt, S.; Pucci, A.; Gonzalez, N.;
Hoeberichts, F.; Tognetti, V.B.; et al. Survival and growth of Arabidopsis plants given limited water are not
equal. Nat. Biotechnol. 2011, 29, 212–214. [CrossRef] [PubMed]

47. Li, P.; Li, Y.-J.; Zhang, F.-J.; Zhang, G.-Z.; Jiang, X.-Y.; Yu, H.-M.; Hou, B.-K. The Arabidopsis
UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via
modulating anthocyanin accumulation. Plant J. 2017, 89, 85–103. [CrossRef] [PubMed]

48. Lu, D.P.; Christopher, D.A. Endoplasmic reticulum stress activates the expression of a sub-group of protein
disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol. Genet. Genom.
2008, 280, 199–210. [CrossRef] [PubMed]

49. Fridborg, I.; Johansson, A.; Lagensjö, J.; Leelarasamee, N.; Floková, K.; Tarkowská, D.; Meijer, J.; Bejai, S.
ML3: A novel regulator of herbivory-induced responses in Arabidopsis thaliana. J. Exp. Bot. 2013,
64, 935–948. [CrossRef]
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