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A B S T R A C T

To investigate the evolutionary and epidemiological dynamics of the current COVID-19 outbreak, a total of 112
genomes of SARS-CoV-2 strains sampled from China and 12 other countries with sampling dates between 24
December 2019 and 9 February 2020 were analyzed. We performed phylogenetic, split network, likelihood-
mapping, model comparison, and phylodynamic analyses of the genomes. Based on Bayesian time-scaled phy-
logenetic analysis with the best-fitting combination models, we estimated the time to the most recent common
ancestor (TMRCA) and evolutionary rate of SARS-CoV-2 to be 12 November 2019 (95 % BCI: 11 October 2019
and 09 December 2019) and 9.90 × 10−4 substitutions per site per year (95 % BCI: 6.29 × 10−4–1.35 × 10−3),
respectively. Notably, the very low Re estimates of SARS-CoV-2 during the recent sampling period may be the
result of the successful control of the pandemic in China due to extreme societal lockdown efforts. Our results
emphasize the importance of using phylodynamic analyses to provide insights into the roles of various inter-
ventions to limit the spread of SARS-CoV-2 in China and beyond.

1. Introduction

On December 31, 2019, the World Health Organization (WHO) was
informed of an outbreak of respiratory illnesses, including atypical
pneumonia, which seriously threatened the global public health, de-
tected around Wuhan Huanan Seafood Wholesale Market in the Chinese
city of Wuhan, Hubei Province–the seventh-largest city in China with
11 million city residents. Of note, some of the first reported infected
individuals from the wet market showed symptoms as early as
December 8, 2019. Subsequently, the wet market was closed on
January 1, 2020. The virus causing the outbreak of mysterious pneu-
monia cases was quickly determined to be a novel coronavirus, and this
novel coronavirus was further named 2019-nCoV by WHO (Zhu et al.,
2020; Zhou et al., 2020a; Wu et al., 2020a). On 23 January, 2020,
Chinese authorities introduced unprecedented measures to contain the
virus, stopping movement in and out of Wuhan and 15 other cities in
Hubei Province. Consequently, WHO declared the 2019-nCoV outbreak
to be a Public Health Emergency of International Concern (PHEIC)
under International Health Regulations on 30 January 2020. The newly
emerged coronavirus (SARS-CoV-2) is similar to betacoronaviruses
detected in bats, reportedly sharing ∼96 % sequence identity to the

BetaCoV/bat/Yunnan/RaTG13/2013 (EPI_ISL_402131) genome, a cor-
onavirus isolated from an intermediate horseshoe bat (Rhinolophus af-
finis) in Yunnan Province, China (Zhou et al., 2020b). SARS-CoV-2, a
member of the betacoronavirus genus of the Coronaviridae family, is a
single, positive-strand RNA, approximately 30 kb in length, however,
the mortality and transmissibility of SARS-CoV-2 are still unknown. On
11 February 2020, the International Committee on Taxonomy of
Viruses officially renamed 2019-nCoV, which is responsible for the
current outbreak of coronavirus disease 2019 (COVID-19), severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus belongs
to the same family as the SARS-CoV-1 pathogen, which was responsible
for> 8 000 cases and 774 deaths in 37 countries during the 2002–2003
SARS outbreak (Drosten et al., 2003; Ksiazek et al., 2003; Zhong et al.,
2003), and the MERS-CoV pathogen, which was responsible for 2 494
cases and 858 deaths in 27 countries during the 2012 MERS outbreak
(Zaki et al., 2012; de Groot et al., 2013). Notably, the current COVID-19
outbreak is characterized by its significant dispersal into many major
urban centers in China and beyond, further facilitating its continued
spread from person to person (Chan et al., 2020; Li et al., 2020a), and
has caused considerable morbidity and mortality in China and else-
where. As of 14 July 2020, a total of 12 964 809 confirmed cases
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including 570 288 deaths in 216 countries, areas or territories, have
been reported globally by WHO (https://www.who.int/emergencies/
diseases/novel-coronavirus-2019), with USA, Brazil, India, and Russia
especially hard hit. Although the number of confirmed cases of COVID-
19 worldwide has excessed 12 million, it showed that countries had
only discovered on average about 6 % of coronavirus infections and the
true number of infected people worldwide may already have reached
several tens of millions(https://medicalxpress.com/news/2020-04-
covid-average-actual-infections-worldwide.html). Notably, there are
many asymptomatic carriers remaining in humans and the nucleic acid
of SARS-CoV-2 from some convalescent patients could be tested posi-
tive again which means that the virus cannot be eradicated and can
replicate again. These factors will contribute the subsequent COVID-19
outbreaks, and many scientists believe that COVID-19 outbreaks will be
recurrence.

Over the past three and half decades at least 30 new infectious
agents affecting humans have emerged including SARS-CoV-2, and
most of them are zoonotic. It was also reported that 61 % infectious
organisms affecting humans are zoonotic diseases which can infect both
human and animals (Nii-Trebi, 2017; McArthur, 2019). Previous stu-
dies have revealed that both SARS-CoV-1 and MERS-CoV originated in
bats (Lau et al., 2010; Guan et al., 2003; Lau et al., 2005; Li et al.,
2005), with SARS-CoV-1 jumping to humans from palm civets (Song
et al., 2005; Chinese, 2004; Wang et al., 2005) and MERS-CoV jumping
to humans from camels (Muller et al., 2014; Chu et al., 2014) following
intermediate transmission from bats (Lau et al., 2010; Guan et al., 2003;
Lau et al., 2005; Li et al., 2005). Research has also revealed that SARS-
CoV-2 likely originated in bats, either directly or through an as-yet
unidentified animal host (Zhou et al., 2020b). Initial cases have been
linked to Wuhan Huanan Seafood Wholesale Market; however, the
specific animal source is yet to be determined (Li et al., 2020a). The
detection of SARS-CoV-2 in humans without knowing the animal source
of infection has heightened concerns not only in China, but also inter-
nationally. Therefore, identifying the animal source of SARS-CoV-2 is
still a top research priority for controlling the COVID-19 outbreak. The
deadly pandemic has prompted a high-speed race to understand how
the coronavirus is evolving and spreading. But doing so requires an
unprecedented collaboration among scientists, across the globe, to de-
code the virus and its path.

Since the first whole-genome sequence (Wuhan-Hu-1; GenBank ac-
cession number MN908947, also named hCoV-19/Wuhan/Hu-1/2019
with accession ID EPI_ISL_402125 in GISAID) of the novel coronavirus,
SARS-CoV-2, which was isolated from a 41-year old man who worked at
Wuhan Huanan Seafood Wholesale Market, was shared online on 11
January, 2020, that first genome became the baseline for researchers to
track the SARS-CoV-2 virus as it spreads around the world (Wu et al.,
2020b). Since the start of the COVID-19 outbreak and the identification
of the pandemic virus, laboratories around the world are generating
viral genome sequence data with unprecedented speed, researchers
have sequenced and shared some 66 000 viral genomes from around the
world on 14 July, 2020. Such a vast amount of available genetic data
presents a unique opportunity for researchers to trace the origin and
spread of COVID-19 outbreaks in different countries and gain real-time
insights into the pandemic, enabling real-time progress in the under-
standing of the new disease and in the research and development of
candidate medical countermeasures. Sequence data are essential to
design and evaluate diagnostic tests, to track and trace the ongoing
outbreak, and to identify potential intervention options. Therefore,
tracking the accumulating nucleotide mutations in SARS-CoV-2 virus’s
genome as the pandemic progresses will help us better understand the
pandemic and could help improve antiviral drug and vaccine effec-
tiveness.

In the present study, we employed state-of-the-art methods to in-
vestigate the evolutionary and epidemiological dynamics of the virus
based on 112 genomes of SARS-CoV-2 strains sampled from China and
12 other countries with sampling dates between 24 December 2019 and

9 February 2020. Rapid evolutionary and epidemiological analyses
have become ever more important in response to the ongoing public
health crisis in order to understand pathogenic origins, transmission
dynamics, and subsequent host adaptations, and to investigate effective
prevention measures for controlling pathogenic outbreaks. Our study
should provide insights into the evolutionary and epidemiological his-
tories of SARS-CoV-2 in China and elsewhere.

2. Materials and methods

2.1. Collation of SARS-CoV-2 genome-wide dataset

As of 19 February 2020, more than 100 genomes of human-obtained
SARS-CoV-2 strains have been released on GISAID (http://gisaid.org/)
(Elbe and Buckland-Merrett, 2017). No statistical methods were used to
predetermine the number of genomes in the present study, we down-
loaded all available genomes of human-obtained SARS-CoV-2 strains.
The dataset used in present study was also not randomized. Notably,
due to the difficulty of sequencing samples with low virus concentra-
tions, certain sequences were excluded from this study in order to avoid
potential biases, e.g., sequences that were too short, re-sequences of the
same sample, sequences with insufficient associated information, and
sequences that showed evidence of artefacts due to the appearance of
nucleotide variation. The final dataset (“dataset_112”) included 112
genomes of SARS-CoV-2 from Australia (n = 8), Belgium (n = 1),
China (n = 53), Finland (n = 1), France (n = 10), Germany (n = 1),
Japan (n = 7), Korea (n = 1), Nepal (n = 1), Singapore (n = 11),
Thailand (n = 2), UK (n = 2), and USA (n = 14) with sampling dates
between 24 December 2019 and 9 February 2020. Of the 53 genomes
collected from China, three were from Chongqing, two were from Fu-
jian Province, 16 were from Guangdong Province, 21 were from Hubei
Province, one was from Jiangsu Province, one was from Jiangxi Pro-
vince, one was from Sichuan Province, three were from Taiwan, one
was from Yunnan Province, and four were from Zhejiang Province
(Supplementary Table 1). We first aligned the collected dataset (“da-
taset_112”) using MAFFT v7.222 (Katoh and Standley, 2013) and sub-
sequently edited the alignment manually using BioEdit v7.2.5 (Hall,
1999).

2.2. Recombination screening and maximum-likelihood analysis

Recombination may impact evolutionary estimates and is known to
occur in coronaviruses (Graham and Baric, 2010). To assess re-
combination of our dataset (“dataset_112”), we employed the pairwise
homoplasy index (PHI) to measure similarity between closely linked
sites using SplitsTree v4.15.1 (Huson and Bryant, 2006) and the default
recombination detection methods using the Recombination Detection
Program (RDP) v4.100 (Martin et al., 2015). The best-fit nucleotide
substitution model for “dataset_112” was identified according to the
Bayesian information criterion (BIC) method with three (24 candidate
models) or 11 (88 candidate models) substitution schemes in jMo-
delTest v2.1.10 (Darriba et al., 2012). To evaluate the phylogenetic
signals of “dataset_112”, we performed likelihood-mapping analysis
(Schmidt and von Haeseler, 2007) using TREE-PUZZLE v5.3 (Schmidt
et al., 2002), with 280 000 randomly chosen quartets for the dataset.
Split network analysis was performed for “dataset_112” using Kishino-
Yano-85 (Kimura, 1980) distance transformation with the NeighborNet
method, which can be loosely thought of as a “hybrid” between the
neighbor-joining (NJ) and split decomposition methods, implemented
in TREE-PUZZLE v5.3 (Schmidt et al., 2002). Maximum-likelihood (ML)
phylogenetic trees for the dataset were estimated using PhyML v3.1
(Guindon et al., 2010) under a Hasegawa-Kishino-Yano (HKY) (Kimura,
1980) nucleotide substitution model with a proportion of invariable
sites, which was identified as the best fitting model for ML inference by
jModelTest v2.1.10 (Darriba et al., 2012). Branch support was inferred
using 1 000 bootstrap replicates (Felsenstein, 1985) and trees were
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midpoint rooted. Analysis of temporal molecular evolutionary signals
for the dataset was conducted using TempEst v1.5 (Rambaut et al.,
2016). In brief, regression analyses were used to determine the re-
lationship between sampling dates and root-to-tip genetic divergence
obtained from the ML phylogeny. The slope of the regression line
provides an estimate of the rate of evolution in substitutions per site per
year, and the intercept with the time-axis constitutes an estimate of the
age of the root. We also estimated the evolutionary rate and time to the
most recent common ancestor (TMRCA) for “dataset_112” using ML
dating in the TreeTime package (Sagulenko et al., 2018).

2.3. Molecular clock phylogenetics

To estimate the Bayesian molecular clock phylogenies of SARS-CoV-
2, Bayesian inference analyses were performed for “dataset_112”
through a Markov chain Monte Carlo (MCMC) (Yang and Rannala,
1997) framework implemented in BEAST v1.8.4 (Drummond et al.,
2012), with the BEAGLE v2.1.2 library program (Suchard and Rambaut,
2009) used for computational enhancement. For model selection, we
tested five coalescent tree priors for our dataset: a constant-size popu-
lation (Kingman, 1982), an exponential growth population with growth
rate parameterization (Griffiths and Tavare, 1994), another exponential
growth population with doubling time parameterization (Griffiths and
Tavare, 1994), a Bayesian skyline tree prior (five groups, piecewise-
constant model) (Drummond et al., 2005), and a Bayesian Skygrid tree
prior (five population sizes across our 0.2 year interval, allowing a
different population size to be estimated for 14.6 days (d)) (Gill et al.,
2013). We kept the default option of a ‘Random starting tree’ to start
the inference process. For each tree prior, we tested two clock models: a
strict clock and an uncorrelated relaxed clock with log-normal dis-
tribution (UCLN) (Drummond et al., 2006). In each case, we set an
uninformative continuous-time Markov chain (CTMC) reference prior
(Ferreira and Suchard, 2008) on the molecular clock rate. For all 10
model combinations, we selected the best fitting model by marginal
likelihood comparison using path-sampling (PS) and stepping-stone
sampling (SS) estimations (Gelman and Meng, 2020; Baele et al., 2012;
Baele et al., 2013). We sampled for 100 path steps with a chain length
of one million, with power posteriors determined from evenly spaced
quantiles of a beta (0.3, 1.0) distribution (Xie et al., 2011). All Bayesian
analyses were run for 100 million MCMC steps with sampling para-
meters and trees every 10 000 generations. Convergence of MCMC
chains was evaluated by calculating the effective sample sizes of
parameters using Tracer v1.7.1 (Rambaut et al., 2018). All parameters
had an effective sample size> 200, indicative of sufficient sampling.
We extracted clock rate and TMRCA estimates using Tracer v1.7.1
(Rambaut et al., 2018) and identified the maximum clade credibility
(MCC) tree using TreeAnnotator v1.8.4 after discarding the first 10 % as
burn-in, followed by tree visualization using FigTree v1.4.4 (http://
tree.bio.ed.ac.uk/software/figtree/).

2.4. Estimation of Re for SARS-CoV-2

We used the Bayesian birth-death skyline (BDSKY) model (Stadler
et al., 2013) to estimate time-varying rates of epidemic spread, mea-
sured as changes in Re, denoted as Re (t) (Stadler et al., 2013), and
implemented in BEAST v2.6.1 (Bouckaert et al., 2019). The nucleotide
substitution process was modeled under HKY (Kimura, 1980) with a
proportion of invariable sites, and evolutionary rates were estimated
using an UCLN model (Drummond et al., 2006). We employed log-
normal distribution with a mean of 0 and standard deviation of 1.0 for
Re, which placed most weight below 5.18 (95 % quantile). The selected
number of intervals for Re was 5 with equidistant intervals per step. We
used a normal distribution with a mean of 48.7 and standard deviation
of 15 (corresponding to a 95 % credible interval from 19.3–78.1) for the
rate of becoming uninfectious (denoted as δ), which placed most weight
below 73.4 (95 % quantile). These values are expressed as units per

year and reflect the inverse of the time of infectiousness (mean = 7.49
d, 95 % credible interval: 4.67–18.91 d) according to previous study (Li
et al., 2020a). We used a beta distribution with parameters α = 1.0 and
β = 9 999 for the sampling proportion (denoted as s), corresponding to
a minority of sampled cases (95 % credible interval: 2.53 × 10−6–3.69
× 10−4). The origin of the epidemic was estimated using a normal
distribution with a mean of 0.25 and standard deviation of 0.05 units
per year. Bayesian analysis was run for 500 million MCMC steps and
sampled every 50 000 steps. Mixing of the MCMC chains was visually
inspected using Tracer v1.7.1 (Rambaut et al., 2018), with an effective
sample size of> 200 for each parameter. We used the bdskytools
package in R (https://github.com/laduplessis/bdskytools) to plot the
BDSKY results.

3. Results

3.1. Demographic characteristics of SARS-CoV-2

“Dataset_112” included 112 genomes of SARS-CoV-2 strains sam-
pled from Australia (n = 8), Belgium (n = 1), China (Chongqing, n =
3; Fujian Province, n = 2; Guangdong Province, n = 16; Hubei
Province, n = 21; Jiangsu Province, n = 1; Jiangxi Province, n = 1;
Sichuan Province, n = 1; Taiwan, n = 3; Yunnan Province, n = 1; and
Zhejiang Province, n = 4), Finland (n = 1), France (n = 10), Germany
(n = 1), Japan (n = 7), Korea (n = 1), Nepal (n = 1), Singapore (n =
11), Thailand (n = 2), UK (n = 2), and USA (n = 14) with sampling
dates between 24 December 2019 and 9 February 2020 (Supplementary
Table 1). The samples were primarily from China (53/112, 47.32 %)
and Hubei Province (21/112, 18.75 %), the Chinese Province ac-
knowledged as the original epicenter of the SARS-CoV-2 outbreak.

3.2. Tree-like signals and phylogenetic analyses

For “dataset_112”, a HKY (Kimura, 1980) nucleotide substitution
model with a proportion of invariable sites was the model of best fit
across the two different substitution schemes (i.e., 24 and 88 candidate
models) according to the BIC method, and was thus used in subsequent
likelihood-mapping and phylogenetic analyses. The PHI test of “da-
taset_112” did not find statistically significant evidence of recombina-
tion (p = 1.0). In addition, no evidence of recombination was found
using RDP v4.100 (Martin et al., 2015). Our likelihood-mapping ana-
lysis revealed that the quartets from “dataset_112” were primarily
distributed in the center (63.2 %) rather than the corners (36.8 %) or
sides (0%) of the triangle, indicating a strong star-like topology signal,
which may be due to exponential epidemic spread (Fig. 1A), in ac-
cordance with previous studies (Li et al., 2020b; Li et al., 2020c; Li
et al., 2020d). The split network generated for “dataset_112” using the
NeighborNet method revealed the existence of polytomies, and thus
was highly unresolved. This indicated that the phylogenetic relation-
ship of our dataset was probably best represented by a star-like phy-
logenetic tree rather than a strictly bifurcating tree (Fig. 1B), suggesting
possible rapid early spread of SARS-CoV-2, in accordance with the
likelihood-mapping results. ML phylogenetic analysis of “dataset_112”
also showed star-like topology (Fig. 2), indicating the introduction of a
new virus to an immunologically naive population, in accordance with
the likelihood-mapping and split network results. Root-to-tip linear
regression analyses between genetic divergence and sampling date
using the best-fitting root, which minimizes the mean of the squares of
the residuals, showed that “dataset_112” had a minor positive temporal
signal (R2 = 0.087; correlation coefficient = 0.2945), thus suggesting a
minor clocklike pattern of molecular evolution (Fig. 3). We estimated
the whole-genome evolutionary rate of SARS-CoV-2 to be 5.3504 ×
10−3 substitutions per site per year and the TMRCA of SARS-CoV-2 to
be 19 October 2019. The ML dating analyses between root-to-tip ge-
netic divergence and sampling date also showed that our dataset had a
minor strong positive temporal signal (R2 = 0.09) (Supplementary
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Fig. 1). The evolutionary rate and TMRCA date estimates of SARS-CoV-
2 for “dataset_112” were 5.35 × 10−3 substitutions per site per year
and 19 October 2019, respectively, in accordance with the root-to-tip
regression results using TempEst v1.5 (Rambaut et al., 2016). Based on
Bayesian time-scaled phylogenetic analysis using the tip-dating
method, the estimated TMRCA dates and evolutionary rates of SARS-
CoV-2 for “dataset_112” ranged from 12 November 2019 to 7 December
2019 (95 % BCI: 11 October 2019 and 21 December 2019) and from
8.37 × 10−4 to 1.12 × 10−3 substitutions per site per year (95 % BCI:
5.06 × 10−4–1.53 × 10−3), respectively (Table 1). Notably, the esti-
mated TMRCA dates and evolutionary rates of SARS-CoV-2 were

consistent across different molecular clock models but were distinct
across different coalescent tree prior models. The best-fitting combi-
nation was an UCLN relaxed molecular clock along with an exponential
growth tree prior model with growth rate parameterization, as shown
by the marginal likelihood estimates for “dataset_112” when comparing
the two clock models and five tree prior models. Thus, the TMRCA date
and evolutionary rate estimates of SARS-CoV-2 for “dataset_112” with
the best-fitting combination were 12 November 2019 (95 % BCI: 11
October 2019 and 09 December 2019) and 9.90 × 10−4 substitutions
per site per year (95 % BCI: 6.29 × 10−4–1.35 × 10−3), respectively
(Table 1). The estimates of the MCC phylogenetic relationships among

Fig. 1. Likelihood-mapping and split net-
work analyses of SARS-CoV-2.
Likelihood-mapping (A) and split network (B)
analyses of SARS-CoV-2 for “dataset_112” are
shown. For likelihood-mapping analysis, cor-
ners represent tree-like phylogenetic signals
and those at sides represent network-like sig-
nals. Central area of likelihood map represents
star-like signals of unresolved phylogenetic
information.

Fig. 2. Estimated maximum-likelihood phylogenetic tree of SARS-CoV-2.
Maximum-likelihood phylogenetic tree of SARS-CoV-2 for “dataset_112” is shown. Tree is midpoint rooted. Colors indicate different sampling locations. Scale bar at
bottom indicates 0.0003 nucleotide substitutions per site.
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the SARS-CoV-2 genomes for our dataset from the Bayesian coalescent
framework using the tip-dating method, as well as the exponential
coalescent tree prior with doubling time parameterization and UCLN
relaxed molecular clock, are displayed in Fig. 4. As shown, “da-
taset_112” exhibited more genetic diversity than our previous datasets
(Li et al., 2020b; Li et al., 2020c; Li et al., 2020d).

3.3. Phylodynamic analyses of SARS-CoV-2

Analysis showed that the Re estimates of SARS-CoV-2 for “da-
taset_112” experienced complex phylodynamics characterized by at
least two growing and two declining phases (Fig. 5). The mean Re es-
timates of SARS-CoV-2 for our dataset ranged from 0.336 to 4.137, and
the first growth phase had more uncertainty compared to the remaining
phases due to the wider 95 % highest posterior density (HPD) interval
of Re estimates. Notably, we found very low Re estimates of SARS-CoV-2
for “dataset_112″ during the recent sampling time period. The low Re

estimates suggest that China’s extreme lockdowns may be responsible
for the successful control of SARS-CoV-2 in China.

4. Discussion

To investigate the global epidemic spread of SARS-CoV-2, we per-
formed comprehensive evolutionary analyses of 112 genomes from
“dataset_112”. Our likelihood-mapping analysis confirmed increasing
tree-like phylogenetic signals over time as more genome sequences of
SARS-CoV-2 strains were added to our study compared with previous
results (Li et al., 2020c; Li et al., 2020d; Li et al., 2020e). This indicates
more complex genetic divergence of SARS-CoV-2 in humans and greater
adaptation to humans (Fig. 1A), consistent with our earlier studies (Li
et al., 2020c; Li et al., 2020d; Li et al., 2020e). Split network analysis of
SARS-CoV-2 based on “dataset_112” using the NeighborNet method was
more resolved over time as more genome sequences were added to our
study compared with our previous results (Li et al., 2020d). This in-
dicates increasing tree-like evolution of SARS-CoV-2, consistent with
our likelihood-mapping analysis (Fig. 1B). These results are also con-
sistent with our ML phylogenetic analyses, which showed a more

bifurcating tree topology from “dataset_112” compared to our previous
results (Li et al., 2020c; Li et al., 2020d; Li et al., 2020e), (Fig. 2). Our
dataset still had a minor positive temporal signal based on regression
analysis using TempEst v1.5 (Rambaut et al., 2016) and ML dating
analysis using TreeTime package (Sagulenko et al., 2018) compared to
our previous results (Li et al., 2020d). Furthermore, the estimated
TMRCA dates and evolutionary rates of SARS-CoV-2 for “dataset_112”
were found to be nearly identical using both analyses (Fig. 3 and
Supplementary Fig. 1), consistent with earlier results (Li et al., 2020d).
The estimated TMRCA dates of SARS-CoV-2 based on “dataset_112”
using TempEst v1.5 (Rambaut et al., 2016) (19 October 2019) and ML
dating analysis using TreeTime (Sagulenko et al., 2018) (19 October
2019) were also identical to our previous results (Li et al., 2020d).
However, the estimated evolutionary rates of SARS-CoV-2 for “da-
taset_112” using TempEst v1.5 (Rambaut et al., 2016) (5.3504 × 10−3

substitutions per site per year) and ML dating analysis using TreeTime
(Sagulenko et al., 2018) (5.35 × 10−3 substitutions per site per year)
were very distinct to our prior results (Li et al., 2020d) using TempEst
v1.5 (Rambaut et al., 2016) (3.3452 × 10−4 substitutions per site per
year) and ML dating analysis using TreeTime (Sagulenko et al., 2018)
(3.34 × 10−4 substitutions per site per year). The estimated TMRCA
dates and evolutionary rates of SARS-CoV-2 for “dataset_112” were very
similar across different clocks using the tip-dating method, but very
distinct across different coalescent tree priors (e.g., parametric coales-
cent and nonparametric coalescent models) (Table 1). Notably, the
estimated TMRCA dates and evolutionary rates of SARS-CoV-2 were
more similar between exponential growth population with growth rate
parameterization and constant population size models than those de-
termined using exponential growth population with growth rate para-
meterization and another exponential growth population with doubling
time parameterization models. Bayesian analyses with the tip-dating
method using an UCLN relaxed molecular clock as well as an ex-
ponential growth coalescent tree prior with doubling time para-
meterization model suggested that SARS-CoV-2 is evolving at a rate of
9.90 × 10−4 substitutions per site per year (Table 1). This in ac-
cordance with our prior studies (Li et al., 2020c; Li et al., 2020d; Li
et al., 2020e), but very distinct to results based on regression analysis

Fig. 3. Root-to-tip genetic divergence plot of SARS-CoV-2.
Root-to-tip plot shows regression of genetic divergence against sampling dates. Colors indicate different sampling locations. Gray color indicates linear regression
line.
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using TempEst v1.5 (Rambaut et al., 2016) and ML dating analysis
using TreeTime (Sagulenko et al., 2018), which showed that SARS-CoV-
2 is evolving at a rate of 5.3504 × 10−3 and 5.35 × 10−3 substitutions
per site per year, respectively. These findings suggest that the virus
originated on 12 November 2019, in agreement with our previous
studies (Li et al., 2020c; Li et al., 2020d; Li et al., 2020e), but distinct
from earlier regression analysis (Rambaut et al., 2016) and ML dating
analysis results (Sagulenko et al., 2018), which both showed that the
virus originated on 19 October 2019. In summary, the TMRCA date and
evolutionary rate estimates of SARS-CoV-2 for “dataset_112” are still
sensitive to the tree prior, and additional genomes should make these
estimates more robust towards the tree prior choice. We found Bayesian
approaches to be more powerful than regression analysis and ML dating
analysis. We employed the BDSKY model (Stadler et al., 2013) and
found that the Re estimates of SARS-CoV-2 for “dataset_112” experi-
enced a complex phylodynamic history (Fig. 5). However, the epidemic
spread of SARS-CoV-2 had very low Re estimates during the recent
sampling time period, suggesting that the introduction of effective
prevention measures (e.g., joint defense and control strategies in China,
particularly the extreme lockdown of Wuhan) limited viral spread
within the sampled populations. If performed in real time, such ana-
lyses could provide actionable targets for prevention. The limitations of
these evolutionary analyses are discussed in our previous studies (Li
et al., 2020c; Li et al., 2020d; Li et al., 2020e), and can also be applied
here. Both Bayesian coalescent and BDSKY models assume that the
population is well-mixed. That is, they assume that there is no sig-
nificant population structure and that the sequences are a random
sample from the population. For the epidemiological analysis of SARS-
CoV-2 from “dataset_112”, the non-random and non-well-mixing of the
sampled population, and the non-constant sampling effort may be po-
tential strong sources of bias in the estimates of SARS-CoV-2 epidemic
parameters, which is an issue for all molecular evolutionary studies
using real world data. It is important to note that there is currently not
enough genomic data from the early COVID-19 outbreak period to in-
terpret the early history of global transmissions of COVID-19 from few
genomes in detail. Links of all paired genomic sequences that seem
directly connected now from our phylogenetic trees in the present study
are likely to be connected more closed with other genomic sequences
from other countries not sampled and sometimes can be connected
differently later with more genomic sequences becoming available. The
phylogenetic relationships of genomic sequences of SARS-CoV-2 in the
future will be much more complex than the early incomplete picture
presented in this study. Therefore, our results and conclusions should
be explained with caution due to the limited number of SARS-CoV-2
genomes presented in this study over a short time period. The 95 % BCI
estimates for the evolutionary rates and TMRCA dates are averaged
over many plausible phylogenetic reconstructions of the genome data;
thus, as more patients with COVID-19 are sampled and more SARS-CoV-
2 genomes become available, we expect these estimates will become
narrower.

In conclusion, this study characterized the epidemic spread patterns
of SARS-CoV-2 in China (including 10 provinces) and beyond (in-
cluding 12 other countries) based on genome data generated from pa-
tients with COVID-19 between 24 December 2019 and 9 February
2020. Our results shed light on the evolutionary and epidemiological
histories of SARS-CoV-2 over time, and suggest that a strategy of
‘suppression’ (e.g., social distancing of the entire population, case iso-
lation, household quarantine, and school and university closure) is
needed to reduce deaths and prevent healthcare systems being over-
whelmed. Our results also emphasize the importance of using phylo-
genetic and phylodynamic analyses to provide insights into the roles of
various interventions to limit the spread of SARS-CoV-2 in China and
beyond. Understanding epidemic dynamics of SARS-CoV-2 in real time
is increasingly important for guiding prevention efforts.
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