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Abstract

Background: Hepatitis C virus (HCV) RNA synthesis and protein expression affect cell
homeostasis by modulation of gene expression. The impact of HCV replication on global cell
transcription has not been fully evaluated. Thus, we analysed the expression profiles of different
clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express
all viral proteins (HCV replicon system).

Results: First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-
7 parental cells and the 21-5 cured (21-5¢) cells. In these latter, the HCV RNA has been eliminated
by IFN-a treatment. To confirm data, we also analyzed microarray results from both the 21-5 and
two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried
out by using the Applied Biosystems (AB) Human Genome Survey Microarray v1.0 which provides
31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific
transcriptional program induced by HCV in replicon cells respect to both IFN-o-cured and Huh-7
cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a
final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been
described before and showed high fold-change associated with significant p-value, strongly
supporting data reliability. Classification of the 38 genes by Panther System identified functional
categories that were significantly enriched in this gene set, such as histones and ribosomal proteins
as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes
involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical
for HCV replication and pathogenesis.

Conclusion: Our data provide a comprehensive analysis of alterations in gene expression induced
by HCV replication and reveal modulation of new genes potentially useful for selection of antiviral
targets.
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Background

Infection with hepatitis C virus (HCV) represents the
major cause of liver disease, affecting more than 170 mil-
lion individuals worldwide. After a sub-clinical phase,
greater than 80% of patients progress to persistent HCV
infection which is the leading cause of chronic liver dis-
ease associated with cirrhosis and hepatocellular carci-
noma [1,2].

Research on HCV replication and pathogenesis has been
hampered by the lack of reproducible in vitro methods of
HCYV infection. To overcome these restrictions, selectable
HCV replicons in human hepatoma-derived Huh7 cells,
which contain self-replicating HCV RNA and express all
viral proteins, were developed [3-6]. These systems have
been largely used for the study of HCV translation and
RNA replication revealing important processes of virus-
host interactions [7-12]. HCV proteins have been pro-
posed to be involved in a wide range of activities, includ-
ing cell signaling, transcriptional modulation,
transformation, apoptosis, oxidative stress, membrane
rearrangement, vesicular trafficking and immune
response [13-21]. Recently, cell culture models that
release HCV viral particles have been developed providing
new possibilities for molecular studies of the HCV life
cycle and virus-cell interactions [22-24]. Interestingly, a
set of 26 human genes that modulate virus production
have been identified by using a siRNA screening
approach, suggesting the possibility to target host genes
for antiviral therapy [25].

Microarray technology provides the opportunity to study
HCV-host interactions at genomic level and identify novel
genes relevant for HCV infection. Despite a large body of
evidences suggesting that HCV affects cell homeostasis, a
first microarray analysis revealed that HCV replicon exerts
a minimal effect on host cell expression profile. On the
other hand, this study indicated that a common transcrip-
tional response to HCV could be detected in different
clones of replicon cells. This response, however, involves
only a limited number of mRNAs that show minor
changes in the expression level and remains to be more
fully elucidated [26].

Microarray is a rapidly implementing technology and the
commercially available platforms show unique genomic
targets and use different methodologies for probe design
and for detection of signals, resulting in different level of
sensitivity [27,28]. Moreover, the final list of human
genes has yet to be determined and reference sequences
are periodically modified. On this basis, to identify cellu-
lar genes that are modulated by HCV RNA replication, we
analyzed the expression profile of cell lines carrying a full-
length HCV genome by a new microarray platform devel-
oped by the Applied Biosystems. To enhance the sensitiv-

http://www.biomedcentral.com/1471-2164/9/309

ity to low abundance transcripts, this platform employs
60-mers oligonucleotides and a chemiluminescence-
based approach to detection, with reduced background
noise relative to standard fluorescent systems.

Present data indicated that the AB microarray shows the
sensitivity to detect a higher number of cellular genes
modulated by HCV in replicon cells respect to both cells
cultured with IEN «, a treatment which has been shown to
eliminate self-replicating HCV RNA [9], and Huh-7 cells.
From the original datasets of differentially expressed
genes, we selected 38 genes that show a concordant
expression in three different HCV replicon clones and are
potentially implicated in HCV infection. Our study also
confirmed the involvement of previously identified cellu-
lar processes in HCV replication, and provided archived
microarray databases useful for selection of new targets of
antiviral therapy.

Results

Modulation of gene expression in 21-5 cells carrying a full-
length HCV replicon

To determine the impact of HCV protein synthesis and
RNA replication on host cell transcription, we compared
the expression profile of the 21-5 cell line, harbouring a
full-length HCV genome, with the 21-5 cured cell line
(21-5¢) and the Huh-7 parental cell line. The study was
carried out by using the Applied Biosystems (AB) Human
Genome Survey Microarray v1.0 which provides 31,700
probes that correspond to 27,868 human genes. The
experimental design included two biological replicates
(cells seeded in different plates) for each cell line. In addi-
tion, as hybridization of the same RNA extract with two
different arrays (technical replicates) may significantly
increase the number of identified genes by AB platform
[27], we also included two technical replicates for each
biological replicate for a total of twelve microarray exper-
iments. The number of differentially expressed genes in
the 21-5 vs. 21-5¢ (dataset 1) and 21-5 vs. Huh-7 (dataset
2) comparisons was evaluated by filtering data using a sig-
nal/noise (S/N) ratio > 3.0 in 75% of replicates in at least
one tested sample group (either 21-5 or 21-5c and either
21-5 or Huh-7) and p < 0.05. The 21-5 vs. 21-5c and 21-5
vs. Huh-7 comparisons showed 733 and 865 differentially
expressed probes, respectively (dataset 1 and dataset 2 in
Table 1). After subtraction for probes considered to be
obsolete and genes now recognised to be pseudogenes,
the number was reduced to 690 and 810 in dataset 1 and
2, respectively (Table 1, see Current probes). Probes show-
ing a fold-change (FC) > 2 were 288 for comparison 1
(112, up-regulated; 176, down-regulated). In comparison
2, we observed 352 probes with a fold-change > 2 (250,
up-regulated; 102, down-regulated). These findings indi-
cated that microarray analysis with the AB platform
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Table I: Number of probes with significantly different expression
(p <0.05)

Probes Comparisons
21-5vs. 21-5c (dataset 1) 21-5 vs. Huh-7 (dataset 2)
Total 733 865
Current * 690 810
FC>2 288 352
Up 112 250
Down 176 102

* Probe set after the exclusion of obsolete genes and pseudogenes.

showed enough sensitivity to reveal a specific transcrip-
tional program induced by HCV in replicon cells.

Functional classification of genes altered by HCV in 21-5
replicon clone

To increase the likelihood to identify HCV-modulated
genes, we selected probes showing a common expression
pattern in both 1 and 2 datasets. Fig. 1A shows a Venn dia-
gram of the number of probes altered by expression of
HCV as detected in each comparison alone or in both. Out
of the 690 probes detected in dataset 1, 156 of them over-
lapped with the 810 probes identified in dataset 2. Among
these 156 probes, only those showing the same direction
of regulation (i.e. probes identifying up-regulated or
down-regulated genes in both datasets) were further
selected. This resulted in a set of 104 (7.7%) probes with
concordant expression out of 1,344 total probes (Fig. 1A).
A list of the 104 probes, which exactly identified 103
genes, with name, symbol, accession number, probe ID,
fold-changes (FC) and functional description is provided
as supplementary information [see Additional file 1].

To classify genes into biological categories, we analyzed
the Gene Ontology annotations of the 103 common
genes with the Panther Protein Classification System [29].
As shown in Table 2, Panther System found several func-
tional categories that were significantly enriched in this
gene set compared to the entire NCBI reference list of
human genome. We considered, as potentially interesting,
only categories showing a p-value < 0.05, as determined
by the binomial statistic [30]. The 103 genes of the dataset
were significantly classified by the Panther system in 18
biological processes (i.e., processes in which genes partic-
ipate) and 14 molecular functions (i.e., biological func-
tions of gene products). Furthermore, some of the
identified categories were still significantly represented in
the set of 103 genes even after the application of the Bon-
ferroni correction for multiple testing, suggesting that the
confidence for their over-representation is very strong
(Table 2, see p-value with Bonferroni correction). Several
genes are included in functional categories previously
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reported to be relevant for HCV, such as immunity and
defense, oncogenesis, intracellular signaling cascade (NF-
kappaB cascade), lipid, fatty acid and steroid metabolism
and extracellular matrix providing a validation of our
analysis. In addition, Panther identified genes in the cate-
gories of amino acid metabolism, carbohydrate metabo-
lism and protein glycosylation that probably reflected a
well described condition of endoplasmic reticulum (ER)
stress due to accumulation of HCV proteins in the ER
compartment [31-33]. Interestingly, new categories were
also found in this gene set such as histones, signalling
molecules, select calcium binding proteins and cell motil-
ity as well as genes involved in Glutamine glutamate con-
version and Blood coagulation pathways (Table 2, see
Pathways). Most of the described categories were even
found in the wider set of 288 probes with fold-changes >
2 from dataset 1 (21-5 vs. 21-5¢) [see Additional file 2],
supporting the biological relevance of this set of genes in
HCV replication.

Selection of genes modulated by different HCV replicon
clones

One of the major concern in HCV studies is that the
observed findings might be due to clonal selection of rep-
licon cells rather than HCV replication and expression. To
exclude that differences in gene expression were exclusive
of the 21-5 clone, we carried out a second analysis, includ-
ing microarray results from both the 21-5 clone and two
other HCV replicon clones, 22-6 and 21-7, as well as the
Huh-7 cell line. Overall, we analysed data from eleven
arrays: four replicates (two technical replicates for each
one of two biological replicates) from both 21-5 and Huh-
7 cell lines, two biological replicates from clone 21-7 and
one from clone 22-6, for a total of seven HCV arrays and
four Huh-7 arrays. The number of differentially expressed
genes was evaluated by filtering data using a S/N ratio >
3.0 in 75% of replicates in at least one tested sample
group and p < 0.05. The analysis revealed that 725 current
probes were modulated in HCV clones as compared to
Huh-7 cells (dataset 3) (Fig. 1B). As shown in supplemen-
tary information [see Additional file 3], a hierarchical
clustering analysis performed on this probe list correctly
grouped biological and technical replicates among either
the HCV clones or the Huh-7 cells. In addition, this anal-
ysis clearly depicted that, in spite of some differences
between HCV clones, a common transcriptional response
to HCV is well detectable. It is reasonable to suppose that
HCV replication level may influence only in minimal part
the variation in gene expression observed between clones.
In fact, only a slight variation (1.6 fold) in HCV RNA
amount was reported: the average replication levels of
HCV RNA in the cell clones 21-5, 22-6 and 21-7 ranged
between 1.5 to 2.5 x 107 molecules per ug of total RNA
[6], levels that were confirmed in our laboratory.
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dataset 1 dataset 3
(21-5vs. 21-5¢) (HCV clones vs. Huh?)
690 probes 725 probes

l

Concordant expression:

C 58 (4.4%)

l

Concordant expression
in all datasets

Figure |

(A) Venn diagram of probes differentially expressed in 21-5 vs. 21-5c (dataset 1) and 21-5 vs. Huh-7 (dataset 2) comparisons.
The number of probes differentially expressed in both comparisons was 156, and 104 (7.7%) out of 1344 total probes showed
concordant expression (up-regulated or down-regulated in both datasets). (B) Venn diagram of the differentially expressed
probes in 21-5 vs. 21-5¢ (dataset |) and HCV clones vs. Huh-7 (dataset 3) comparisons. The number of probes differentially
expressed in both comparisons was 88, and 58 (4.4%) out of 1327 total probes showed concordant expression. (C) Venn dia-
gram of the 104 and 58 probes identified 39 (31,7%) common probes out of 123.

To further select, among the 725 probes, only genes which
were confirmed also in the comparison with the cured
cells, we overlapped datasets 3 and 1. Of the 725 probes
detected in dataset 3, 88 of them were in common with
the 690 probes identified in dataset 1. Among these 88
probes, 58 (4.4%) out of 1,327 total probes showed con-
cordant expression in all different HCV replicon clones
respect to both cured and Huh-7 cell lines (Fig. 1B). As a
final step, we found that 39 probes were common to the
sets of 58 and 104 probes identified above: thus, 39
(31.7%) out of 123 probes were confirmed in all three
comparisons (Fig. 1C). The 38 genes identified by those
39 probes are included, marked by gene symbol in bold,
in the larger list of 57 genes identified by the above 58
probes, reported as supporting information [see Addi-
tional file 4]. Although the used strategy of analysis seri-

ously reduced the number of differentially expressed
probes, it led to 4 to 8 fold enrichment of probes showing
concordant expression in different datasets (7.7% and
4.4% vs 31.7%, Fig. 1A, B and 1C). Modulation of 19 out
of 58 probes did not reach statistical significance in data-
set 2 (Fig. 1C) (the corresponding genes are marked by
gene symbol in normal type in the list of 57 genes [see
Additional file 4]). However, these genes were included in
the subsequent ontological analysis as their modulation is
highly significant in dataset 1 and 3.

To directly compare the expression data from datasets 1
and 3, a scatter plot of the log, fold-change was generated
using the 58 probes with a significant fold-change in both
comparisons (Fig. 2). As can be seen, the correlation is
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Table 2: Panther classification of biological processes, molecular functions and pathways significantly enriched in the set of 103 genes

Observed Genes® Expected Genes™  p-value™ p-value with
Bonferroni correction

BIOLOGICAL PROCESSES

Immunity and defense 14 5.39 9.78E-04 3.03E-02
Stress response 4 0.82  9.44E-03
T-cell mediated immunity 3 0.79  4.58E-02
Granulocyte-mediated immunity 2 026  2.86E-02
Blood circulation and gas exchange activity
Other blood circulation and gas exchange activity 2 0.07  2.56E-03
Nucleoside. nucleotide and nucleic acid metabolism
Chromatin packaging and remodeling 5 097 3.01E-03
Protein metabolism and modification
Proteolysis 10 393  6.08E-03
Protein glycosylation 3 0.79  4.52E-02
Developmental processes
Skeletal development 3 050 1.43E-02
Amino acid metabolism 4 0.94 1.51E-02
Cell structure and motility
Cell motility 5 1.44  |.51E-02
Oncogenesis
Other oncogenesis 2 0.28  3.29E-02
Intracellular signaling cascade
NF-kappaB cascade 2 029  3.46E-02
Carbohydrate metabolism
Pentose-phosphate shunt | 0.04 4.01E-02
Lipid. fatty acid and steroid metabolism
Fatty acid metabolism 3 0.76  4.19E-02
Homeostasis 3 0.80 4.70E-02
Growth factor homeostasis | 0.03  2.82E-02
Other homeostasis activities 2 028  3.29E-02
MOLECULAR FUNCTIONS
Nucleic acid binding
Histone 5 0.35  3.08E-05 4.96E-03
Extracellular matrix 7 1.57 1.06E-03 3.08E-02
Extracellular matrix glycoprotein 4 045  1.I8E-03
Other extracellular matrix 2 0.15  1.03E-02
Signaling molecule 10 3.25 1.60E-03 4.65E-02
Chemokine 2 0.22  2.09E-02
Transferase 9
Transaldolase | 0.00 4.08E-03
Protease 6 2.28 2.72E-02
Serine protease 4 0.77  7.79E-03
Select calcium binding protein 4 1.12  2.65E-02
Annexin 2 029  3.46E-02
Miscellaneous function .0
Storage protein | 0.04 3.61E-02
Myelin protein | 0.05 4.79E-02
PATHWAYS
Glutamine glutamate conversion | 0.02 2.78E-05 2.02E-02
Blood coagulation 2 0.22 2.46E-02 2.17E-02

*Number of genes. in the dataset of 103 genes, that map to the indicated Panther classification categories
** Expected number of genes in the dataset of 103, based on the NCBI reference list of human genome
*** p-value as determined by the binomial statistic. A cutoff of 0.05 has been applied

quite high (R2> 0.88), and consequently the confidence  Biological functions of selected genes modulated by HCV
for the differential expression of these probes is strong. in different replicon clones
A complete list of the 58 selected probes (32 up-regulated
and 26 down-regulated), which exactly identified 57
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Figure 2

Scatterplot comparison of the log, ratio of the 58 probes altered in the indicated datasets. Log, ratios of genes from dataset 3

are plotted on the y-axis and from dataset | on the x-axis.

genes, is provided in supplementary information [see
Additional file 4]. Thirty-nine probes were confirmed in
all datasets and identified 38 genes (marked by gene sym-
bol in bold in Additional file 4). The list included name,
symbol, accession number, probe ID, fold-changes (FC)
and p-value in all datasets and functional description of
the genes. The analysis of the FC in dataset 1 revealed that
19 (33%) genes showed a FC > 2, while minor changes
(FC 1.2-2) have been detected for the other genes. Com-
pared with the NCBI reference list of human genome, this
dataset showed a larger proportion of genes encoding
nucleic acid binding proteins, such as histones and ribos-
omal proteins and genes involved in chromosome segre-
gation and mRNA transcription (Table 3), possibly
suggesting the induction by HCV of specific new path-
ways. In addition, genes associated with extracellular
matrix constitution and intracellular protein traffic were
represented much more abundantly in the dataset.
Although two relevant categories, such as oxidative stress
and lipid metabolism, were not significantly overrepre-
sented, genes involved in these processes like DDIT3 and

ELOVLG6 were still present in the dataset [see Additional
file 4].

Validation of microarray data by real-time RT-PCR

We performed real-time RT-PCR on 7 genes to validate the
changes in gene expression observed by microarray analy-
sis. They were selected from the 38 gene list because of
high statistical significance and different expression levels
[see Additional file 4]. The increase or decrease in expres-
sion of these genes by microarray analysis was in agree-
ment with the real-time RT-PCR validation data (Fig. 3).

Discussion

In the present work, we identified cellular genes which are
modulated by HCV replication and protein expression by
using a DNA microarray platform. This study represents
the first global analysis that showed the sensitivity to
reveal a common transcriptional response of Huh-7 cells
to different clones of full-length HCV replicon. Specifi-
cally, we selected from the original datasets of differen-
tially expressed genes, 38 genes that showed a concordant
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Table 3: Panther classification of biological processes and molecular functions significantly enriched in the set of 57 genes

Observed Genes® Expected Genes™ p-value™ p-value with Bonferroni
correction
BIOLOGICAL PROCESSES
Nucleoside, nucleotide and nucleic acid
metabolism 14 7.62 1.63E-02
Chromatin packaging and remodeling 6 0.54 1.75E-05 2.54E-03
Chromosome segregation 2 0.28 3.14E-02
Other mRNA transcription | 0.05 4.68E-02
Intracellular protein traffic 6 23 2.70E-02

Molecular Functions

Nucleic acid binding 16 6.5 4.82E-04 1.40E-02
Histone 6 0.2 5.21E-08 8.38E-06
Ribosomal protein 5 1.06 4.19E-03

Etracellular matrix 5 0.88 1.85E-03
Extracellular matrix glycoprotein 3 0.25 2.14E-03

* Number of genes, in the dataset of 57 genes, that map to the indicated Panther classification categories.
** Expected number of genes in the dataset of 57, based on the NCBI reference list of human genome.
*** p-value as determined by the binomial statistic. A cutoff of 0.05 has been applied.

expression in three HCV replicon clones respect to both ~ Most of the 38 genes have never been described previously
Huh-7 and IFN-a-cured cell lines. as relevant in HCV biology. To our knowledge, although
modulation of SPP1, G1P2 and DDIT3 genes have been
demonstrated in previous studies [34-37,25], the impact

8 .

— @ Real time
6 . DOMicroarray
4 4

Fold-changes
n

ELOVL6 UAP1

5| T

URB LEPRELA1 HIST1H1C SPP1

Figure 3

Real-time PCR validation of the microarray data, performed for 7 genes modulated by HCV. Total RNA from the 21-5 and 21-
5 cured cell lines was used to assess mRNA levels using real time RT-PCR. Levels were normalized to cellular GAPDH; mRNA
levels from 21-5 cured cells were set as the basis for the comparative results. Shown are the means (+ SD) of three independ-
ent experiments. Fold-changes calculated for the microarray data are also indicated.
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of HCV replication on the other 36 genes has never been
reported. In addition, gene ontology analysis of the 38
genes revealed regulation by HCV of new biological proc-
esses like chromatin packaging and chromosome segrega-
tion as well as the identification of new genes involved in
previously identified pathways such as lipid metabolism,
extracellular matrix constitution and cytoskeletal net-
work. The discovery of these new genes and gene families
has been made possible through our microarray study and
may constitute the basis for additional experiments useful
to provide new insights into the biology of the virus.

Consistent with our microarray data, proteome analysis of
cells harboring HCV replicon revealed a virus-induced
perturbation in host cell protein synthesis, including pro-
teins associated with host cytoskeleton, intracellular pro-
tein traffic, oxidative and ER stress and lipid metabolism
[38,39]. Importantly, the down-regulation of enzymes
involved in the mitochondrial 3-oxidation of fatty acids,
such as carnitine palmitoyltransferase II (CPT2) and acyl-
Coenzyme A dehydrogenase (ACADM), reported in pro-
teome analysis [39] has been confirmed by our study
(data not shown). This impaired mitochondrial function
was also reported in a study describing a reduction in
mitochondrial processes as a result of HCV-associated oxi-
dative stress [40].

In a previous microarray analysis, the authors found that
only 25 and 43 transcripts, respectively, differed in abun-
dance by > 2-fold (p £0.05) when two clones of HCV rep-
licon were compared to the relative cured cell lines [26].
In contrast, we found that 288 genes were differentially
expressed with a fold change > 2 (p < 0.05) when HCV
replicon clone 21-5 was compared to the 21-5 cured cells.
This discrepancy could be explained by the different sen-
sitivity of the used microarray platforms. Indeed, the AB
platform was reported to be more sensitive respect to the
Affymetrix platform, detecting four times as many genes
in an identical experimental design, and over seven times
when additional technical replicates were included [27].
The higher sensitivity of the AB platform and the inclu-
sion of four technical replicates for each samples, likely
contributed to the increased number of differentially
expressed genes that we detected.

Among the 38 selected genes modulated by HCV, we
found that genes encoding DNA and RNA-binding pro-
teins were significantly over-represented. Consistent with
this observation, a larger proportion of genes encoding
nucleic acid binding proteins have been found by micro-
array analysis in HCV-infected cirrhotic livers [41]. Inter-
estingly, four genes encoding histone proteins were up-
regulated in this gene set. Three of these genes
(HIST2H2AC, HIST2H2AA and HIST1H1C) showed a
fold induction > 2 and a highly significant associated p-
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value in all comparisons [see Additional file 4]. Impor-
tantly, in microarray data analysis fold-change alone is
widely considered an invalid statistic test and it needs to
be associated with its p-value [42]. Therefore, the statisti-
cal significance of these results possibly suggests that
modulation of histone genes represents a new HCV-
induced pathway. To our knowledge, this is the first report
coupling histone gene expression with HCV RNA replica-
tion. Interestingly, production of histone proteins is
required to package DNA immediately upon initiation of
DNA synthesis. As a consequence, transcription of histone
genes takes place only at the onset of S-phase and it also
respond to changes in rates of DNA synthesis [43,44].
Studies aimed at investigating HCV replication revealed
that synthesis of HCV RNA is stimulated in S-phase cells
[6,26]. Moreover, replication of viral RNA is regulated by
the level of precursors of DNA synthesis, such as pyrimi-
dine nucleosides, and/or the de novo synthesis of pyrimi-
dines [45,46]. On this basis, we speculated that
stimulation of nucleic acid metabolism, and consequently
histone synthesis, by HCV may be an advantageous mech-
anism for replication of viral RNA. The induction of his-
tone genes in HCV replicon cells further support the
existence of a link between regulation of cell cycle and
HCV RNA synthesis and requires further investigation.

As previously reported in HCV patients [41], genes encod-
ing components of the extracellular matrix (ECM) were
over-represented in the HCV gene set. The confirmation of
in vivo data by microarray, clearly supports the biological
significance of our study. One of these genes (SPP1)
showed elevated levels of induction (fold > 3.9) associ-
ated with significant p-values [see Additional file 4].
Importantly, SPP1 and other genes implicated in the ECM
turnover were up-regulated in the transition from mild to
moderate fibrosis in HCV chronic patients and they have
been proposed as new potential targets for antifibrosis
drug development [34]. In addition, elevated serum levels
of osteopontin, the protein encoded by SPP1, were found
in HCV-associated B-cell nonHodgkin's lymphoma and
type Il mixed cryoglobulinemia [37]. Osteopontin is a
secreted glycoprotein with a wide spectrum of biological
activities promoting cell adhesion, migration, ECM inva-
sion [47]. Evidences point to a central role for osteopon-
tin in liver fibrosis as it induces hepatic stellate cell (HSC)
migration and proliferation and stimulates synthesis of
matrix metalloproteinase 2 (MMP-2) and type I collagen
by HSC [48]. Consequently, modulation of SPP1 by HCV
may be critical for liver fibrosis development and repre-
sents a potential target for therapy of HCV infection and/
or disease progression.

In a recent report, it was shown that HCV RNA synthesis
required an intact cytoskeleton, as inhibition of microtu-
bule and actin polymerization resulted in decreased HCV
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replication [49]. Our microarray data indicated that three
cytoskeletal genes (TUBB2A, CENPE, MTSS1) are signifi-
cantly modulated by HCV replication. Tubulin beta 2A
(TUBB2A), a structural constituent of microtubules, is up-
regulated in HCV replicon cells as well as CENPE and
MTSS1 genes both encoding for cytoskeletal proteins
which bind to microtubule (CENPE) and actin (MTSS1)
structures. The identification of these additional genes
confirms the potential link between HCV RNA synthesis
and cytoskeletal network.

Several evidences indicate that HCV induces alterations in
lipid metabolism and contributes to the development of
oxidative stress [13,14,40,50,33,11,12]. Consistent with
this observation, in the dataset of 38 genes we found two
genes, DDIT3 and ELOVL6, which are involved in oxida-
tive stress induction and lipid biosynthesis, respectively.

Activation of the pro-apoptotic gene DDIT3, also known
as Gadd153, by HCV has been previously demonstrated
[35,36,15]. Elevated levels of Gadd153 protein in HCV
replicon cells increased the sensitivity of these cells to oxi-
dative stress suggesting that dysregulation of Gadd153
expression may be an important factor in HCV liver
pathogenesis [36].

Recent reports suggest that increased synthesis of fatty
acids enhances HCV replication [51]. More than 90% of
fatty acids presents in cells possess chain lengths of 16
(palmitic acid) and 18 (stearic acid) carbons. The palmitic
acid is synthesized by fatty acid synthase (FAS) in the
cytosol. A high proportion of this palmitic acid (C16) is
then converted to stearic acid (C18) in the endoplasmic
reticuilum (ER) by the enzyme, ELOVL6, which initiates
the elongation of C16 to C18 fatty acids [52]. Interest-
ingly, we found for the first time modulation of this gene
in the HCV replicon cells. The robust down-regulation of
ELOVLG in our microarray dataset (fold change < -2, p <
0.008 in all comparisons) suggests that inhibition of this
step would contribute to the accumulation of the
upstream intermediate (palmitic acid), thus favouring
HCV RNA synthesis. Although, it is now clear that lipid
metabolism affects HCV replication, the role of ELOVL6
has not been investigated before and further experiments
are needed to determine whether over-expression of
ELOVLG6 can inhibit HCV replication.

Conclusion

Our microarray analysis provided an overview of altera-
tions in gene expression induced by HCV even in different
replicon clones. The resulting databases from microarray
experiments contained additional information which
may be useful for future investigations. Indeed, gene
ontology classified HCV-modulated genes into functional
categories which are relevant for viral biology and patho-
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genesis, such as immunity, oncogenesis, NF-kappaB cas-
cade, lipid metabolism, extracellular matrix and
cytoskeletal network. But, most importantly, these func-
tional groups also contained genes which have not previ-
ously been reported to be impacted by HCV replication.
In addition, we identified new functional categories such
as histones, signalling molecules, select calcium binding
proteins and cell motility as well as genes involved in
Glutamine glutamate conversion and Blood coagulation
pathways. Finally, we also provided a list of 38 genes
which have been confirmed to be differentially expressed
in all HCV clones. The future design of siRNAs directed
against some of these genes might be useful to evaluate
their importance in regulating HCV replication, providing
an experimental background for selection of new antiviral
drugs

Methods

Cell lines

The Huh-7 cells carrying the Sfl HCV full-length replicon
(genotype 1b) were obtained from Dr. R. Bartenschlager.
The cell lines that stably replicates the HCV replicon were
the 21-5, 21-7 and 22-6 clones passaged as described
[53,6]. Cured 21-5 replicon cells (21-5c) were obtained by
treatment with 100U IFN-a/ml for 14 days, to eliminate
self-replicating full-length HCV replicon. Clearance of
replicon RNA was confirmed by RT-PCR and by loss of
resistance to G418 [7]. HCV replicon cells were cultured
in complete DMEM supplemented with 10% FCS, antibi-
otics, 1x non-essential amino acids, and 250 pg/ml (21-5,
21-7) and 500 pg/ml (22-6) G418 [53,6].

AB expression array system analysis

Total RNA was extracted from 1x 10° cells using RNeasy
kits (Quiagen) as described by the manufacturer. The
quality of RNA was evaluated using the Agilent Bioana-
lyzer 2100 (Agilent Technologies). Only high quality RNA
samples with a minimum RNA Integrity Number (RIN)
value of 8 were considered for RNA labeling. One pg of
total RNA from each sample was used to synthesize digox-
igenin-UTP-labeled cRNA as described by the Applied
Biosystems (AB) Chemiluminescent RT-IVT Labeling pro-
tocol. Array hybridization, array processing, chemilumi-
nescence detection, image acquisition, and analysis were
performed using AB Chemiluminescent Detection Kit and
AB1700 Chemiluminescent Microarray Analyzer follow-
ing manufacturer's protocol. These protocols are detailed
in the Chemiluminescent Microarray analyzer Chemistry
Guide (P/N 4338853) [54], Chemiluminescent Detection
Kit (P/N 4339627) [55], and Chemiluminescent Microar-
ray Analyzer User Guide (P/N 4338852B). The probe
sequences are available at Panther website [56]. For each
gene, the expression values were normalized across arrays
by quantile normalization. "Detectable" calls for gene
expression were based on Applied Biosystems recommen-
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dations (signal/noise ratio > 3.0 and FLAG values < 5000).
A probe had to be called "detectable" in 75% of replicates
in at least one tested sample group to be retained for fur-
ther analysis. For each gene, expression fold-changes
between groups were derived from the mean expression
level in all replicates. P-values are derived from simple t-
tests using log, intensity data assuming equal variance.
Hierarchical clustering analysis was performed in the
Spotfire DecisionSite 9.1.1 (TIBCO Spotfire) software
package, using the Unweighted Pair-Group Method with
Arithmetic mean (UPGMA) as clustering method and
Pearson's correlation as similarity measure.

Microarray data have been submitted to the ArrayExpress
database [57]. Accession number for the data is E-MEXP-
1686.

Gene network pathway analysis

Gene Ontology (GO) annotations were analyzed with the
Panther Protein Classification System [29] to identify
functional annotations that were significantly enriched in
this gene set compared to the entire human genome. Gene
lists modulated by HCV were mapped onto biological
pathways that were significantly represented.

TaqMan assay validation

Total RNA was extracted from 1 x 10° cells using RNeasy
kit (Qiagen) as described by the manufacturer and quan-
tified by Bioanalyzer 2100 (Agilent Technologies). One
hundred nanograms of total RNA was reverse transcribed
using the high-capacity cDNA Archive Kit (Applied Bio-
systems), with random hexamer primers in a ABI Prism
7000 Sequence Detection System (Applied Biosystems)
using the following thermal profile: 25°C for 10 min,
42°Cfor 1 hand 95°C for 5 min. PCR reactions were per-
formed in triplicate on the ABI Prism 7000 Sequence
Detection System (Applied Biosystems) using TagMan
chemistry with primer and probe sets from the Assay-on-
Demand list (Applied Biosystems). The standard curve of
each gene was compared to the standard curve of the
housekeeping GAPDH gene and calculation of the slope
of log [ng RNA] vs. ACt was always < 0.1. Fold induction
was then calculated by AACt method [58] using GAPDH
mRNA level to normalize values and the mRNA level of
21-5 cured cell line as a calibrator. Data are expressed as
fold-changes.
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