# **Role of tranexamic acid in nasal surgery** A systemic review and meta-analysis of randomized control trial

Wei-dong Ping, MD<sup>a</sup>, Qi-ming Zhao, MD<sup>a</sup>, Hua-feng Sun, MD<sup>b</sup>, Hai-shan Lu, MD<sup>b</sup>, Fei Li, MD<sup>a,\*</sup>

### Abstract

**Objective:** Nasal surgeries (such as Functional Endoscopic Sinus Surgery, Rhinoplasty, and Septorhinoplasty) are popular procedures. But perioperative bleeding, eyelid edema, and periorbital ecchymosis remain problems. Tranexamic acid (TXA) is an antifibrinolytic, and it was used to reduce the perioperative bleeding. However, there is no enough evidence judging its safety and efficiency. Therefore, a meta-analysis is conducted by us to evaluate the role of TXA in patients undergoing nasal surgeries.

**Method:** A search of the literature was performed until June 2018; the PubMed, Embase, Cochrane Central Register of Controlled Trials, and Google Scholar databases were searched for related articles using search strategy. Two authors independently assessed the methodological quality of the included studies and extracted data. Surgical information and postoperative outcomes were analyzed. Only randomized controlled trial (RCT) articles were included, and subgroup analysis was established to deal with heterogeneity. RevMan 5.3 software was selected to conduct the meta-analysis.

**Result:** Eleven RCTs were included in our meta-analysis. There were significant differences in blood loss (P < .001), surgical field quality (P < .001), edema rating of upper (P < .001) and lower (P < .001) eyelid, ecchymosis rating of upper (P < .001) and lower eyelid (P < .001) when comparing the TXA group to the placebo group. However, the difference in operation time (P = .57) was not significant between the two groups.

**Conclusion:** Perioperative TXA could reduce the blood loss and improve the quality of surgery field during nasal surgery, and it was helpful for reducing the edema and ecchymosis after nasal surgeries, but it has little influence in reducing the operation time.

**Abbreviations:** CI = confidence interval, FESS = functional endoscopy sinus surgery, RCT = randomized controlled trial, TXA = tranexamic acid.

Keywords: blood loss, meta-analysis, nasal surgery, tranexamic acid

# 1. Introduction

Nasal surgeries, such as rhinoplasty, septoplasty, and functional endoscopy sinus surgery (FESS) are common invasive nasal procedures, performed singly or in combination frequently. These procedures have drastically improved over time, although they were commonly performed by the mid-19th century.<sup>[1]</sup> Similar to other surgeries, these surgeries are not without complications, considering its performance for changing the physical appearance, and attending the satisfaction and confidence of patients. Therefore, it is necessary to prevent these complications.

Editor: Yan Li.

W-dP and Q-mZ contributed equally to this work.

Medicine (2019) 98:16(e15202)

Received: 28 July 2018 / Received in final form: 17 March 2019 / Accepted: 20 March 2019

http://dx.doi.org/10.1097/MD.000000000015202

The most common complications are intraoperative bleeding, eyelid edema, and periorbital ecchymosis after surgery.<sup>[2,3]</sup> The maxillofacial area is a blood-rich area,<sup>[4]</sup> so the bleeding is expected in most nasal surgeries and this has a negative impact on the quality of the surgery. The intraoperative bleeding will increase the operative risk and the consequent reduction in intraoperative visualization can hinder surgical progress, prolongs surgery, reduces success rates, and, in some cases, even prevent the surgeon from completing the procedure.<sup>[5]</sup> Sometimes, it may occur in the postoperative period when the packing is removed. In these cases, the doctor may need to add packing or to repack the nose, causing inconvenience to the patient. Edema can delay the healing process of the involved tissues, and ecchymosis may lead to permanent pigmentation of the skin.<sup>[6]</sup> Different kinds of osteotomies are needed in most cases of rhinoplasty and septoplasty, and it is the main cause of periorbital and paranasal edema and ecchymosis.<sup>[7]</sup> These sequelae may even cause potential candidates to dismiss the surgical treatment.

Tranexamic acid (TXA) is a synthetic derivative of lysine amino acid that exerts an antifibrinolytic effect via inhibits lysinebinding sites on plasminogen molecules.<sup>[8]</sup> TXA has been used to reduce bleeding digestive and urinary systems, thrombocytopenia, hemophilia, cardiac, and orthopedic surgeries, various types of nasal surgeries (rhinoplasty, septoplasty, turbinectomy, and FESS).<sup>[9,10]</sup> And systemic medication of TXA may cause some side effects such as dizziness, nausea, vomiting, blurred vision, and headache.<sup>[11]</sup>

In recent years, there have been some studies analyzed the efficacy of TXA on bleeding reduction, edema, ecchymosis, and other complications in nasal surgeries. However, different

The authors have no conflicts of interest to disclose.

<sup>&</sup>lt;sup>a</sup> Department of Plastic and Reconstructive Surgery, Zhejiang Hospital, <sup>b</sup> Department of Plastic and Reconstructive Surgery, 903th Hospital of PLA,

Hangzhou, Zhejiang, China.

<sup>\*</sup> Correspondence: Fei Li, Department of Plastic and Reconstructive Surgery, Zhejiang Hospital, 12 Lingyin Road, Xihu District, Hangzhou 310013, China (e-mail: doctor\_lii@126.com).

Copyright © 2019 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

conclusions have been reached, and the efficacy of TXA in nasal surgery was not clear. Therefore, the aim of our study is to systematically review the existing research on the role of TXA in patients undergoing nasal surgery. This meta-analysis is conducted to determine whether perioperative TXA affect surgical field quality, operative time, and some operative complications (estimated blood loss, eyelid edema, and periorbital ecchymosis).

# 2. Materials and method

# 2.1. Search strategy

The PubMed (1980–June 2018), Embase (1980–June 2018), Cochrane Central Register of Controlled Trials, and Google Scholar databases were searched for related studies. To improve the sensitivity and specificity and sensitivity of searching, we used the following search terms in combination with Boolean operators "AND" or "OR": "rhinoplasty OR septoplasty OR turbinectomy OR functional endoscopy sinus surgery OR nasal surgery" AND "tranexamic acid". The search strategy is presented in Figure 1.

#### Medicine

#### 2.2. Study selection

Included studies were considered eligible if they met the following criteria:

Study design: Interventional or observational studies Population: Patients undergoing nasal surgery (rhinoplasty, septoplasty, and FESS) Intervention: Tranexamic acid Comparator: Placebo or nothing

### Outcome:

Primary outcome: Blood loss, Surgical field quality. Secondary outcome: Edema of upper and lower eyelid, Ecchymosis of upper and lower eyelid, operation time.

#### 2.3. Quality assessment

Published RCTs comparing TXA with a control (placebo or nothing) in patients who underwent nasal surgery (rhinoplasty, septoplasty, and FESS) are included in this meta-analysis. Two



Figure 1. Search results and selection procedure.

# Table 1 The general characteristic of the included studies.

|                                  | Case    |                               | Male patient |                                                         | Reference |                 |
|----------------------------------|---------|-------------------------------|--------------|---------------------------------------------------------|-----------|-----------------|
| Studies                          | (TXA/P) | Mean age (TXA/P)              | (TXA/P)      | TXA dosage                                              | type      | Surgery         |
| Mohammad Mehdizadeh 2017         | 15/15   | $26.2 \pm 5/27.27 \pm 6.48$   | 8/7          | 10 mg/kg, 1 h before surgery<br>and tid postoperatively | RCT       | Rhinoplasty     |
| Mohammad Ali 2017                | 24/26   | $28.78 \pm 2.8/28.78 \pm 2.8$ | 6/6          | 10 mg/kg, immediately before<br>surgery                 | RCT       | Rhinoplasty     |
| Mohammad Hossein 2017            | 30/30   | 40.7/38.6                     | 21/22        | 2g, before surgery                                      | RCT       | FESS            |
| Hamid Reza 2016                  | 25/25   | 24.72±3.6/22.32±5.12          | 8/13         | 1g, 2h before surgery                                   | RCT       | Rhinoplasty     |
| Saeedollah Nuhi 2015             | 100/70  | 32.4±3.24/29.7±4.32           | 45/40        | 15 ml/kg, before surgery                                | RCT       | FESS            |
| Javaneh Jahanshahi 2014          | 30/30   | 37.43±11.75/34.10±9.61        | 16/20        | 15 mg/kg, before surgery                                | RCT       | FESS            |
| Öner Sakallioğlu 2015            | 25/25   | $28 \pm 7/29 \pm 7$           | 13/15        | 1g before surgery, and 1 g tid<br>postoperatively       | RCT       | Septorhinoplast |
| Morgan A 2013                    | 14/14   | 43.5±13.6/50.0±16.5           | 10/7         | 15 mg/kg, before surgery                                | RCT       | FESS            |
| Mahzad Alimian 2011              | 42/42   | $33 \pm 13/35 \pm 12$         | 25/24        | 10 mg/kg, before surgery                                | RCT       | FESS            |
| Theodore Athanasiadis 2007 100mg | 10/10   | 51 ± 15/51 ± 15               | Unknown      | 100 mg, before surgery                                  | RCT       | FESS            |
| Theodore Athanasiadis 2007 1g    | 10/10   | 51 ± 15/51 ± 15               | Unknown      | 1 g, before surgery                                     | RCT       | FESS            |
| M. Jabalameli 2006               | 26/30   | Unknown                       | Unknown      | 1 g, before surgery                                     | RCT       | FESS            |

FESS=functional endoscopic sinus surgery, RCT=randomized controlled trial, TXA/P=tranexamic acid/placebo.

reviewers (FL and WP) conducted the eligibility assessment, independently in an unblended standardized manner. And disagreements were resolved by discussion. According to the Cochrane Handbook for Systematic Reviews of Interventions,<sup>[12]</sup> the methodological quality, and risk basis of the included studies were evaluated as follows: (1) randomization method, (2) allocation concealment, (3) blind method of participant and outcome assessment, and (4) complete outcome data.

#### 2.4. Data extraction

Data were extracted from the selected studies by two authors (WP and FL) independently. The extracted data included: publication data, title, first author's name, patient demographics, sample size, blood loss, surgical field quality, edema of upper and lower eyelid, ecchymosis of upper and lower eyelid, and operation time.

#### 2.5. Data analysis and statistical methods

The data were analyzed by Review Manager Software for Windows (RevMan Version 5.3, Copenhagen, Denmark: The Nordic Cochrane Center, The Cochrane Collaboration, 2014). The means and standard deviations were applied to assess continuous variable outcomes with a 95% confidence interval [CI], and relative risks and 95% CIs were applied to assess dichotomous outcomes. Statistical heterogeneity was tested using the  $I^2$  value and chi-squared test. A *P* value <.05 was considered statistically significant, and the random effects model was used for analysis. If *P* values were <.05 or  $I^2 > 50\%$ , indicating significant heterogeneity, the random effects model was applied.

## 2.6. Ethical approval

This article is not involved in ethical requirements. This is a metaanalysis, so a ethical requirement is not necessary.

### 3. Result

# 3.1. Search result

The search strategy identified 82 relevant articles in the databases. Eleven RCTs<sup>[13–23]</sup> were selected after reading the abstracts and full text carefully. All of the documents are high

quality articles. Finally, a total of 568 patients were included and reviewed for our meta-analysis, the sample sizes for each study ranged from 20 to 170. Theodore<sup>[23]</sup> studied the use of topical antifibrinolytic drugs in FESS, one part of the study was for TXA, the research designed two doses (100 mg and 1 g), so we divided them into two groups to extract data separately. The results of patient characteristics are summarized in Table 1. Risk of bias is represented in Figures 2 and 3. Seven studies<sup>[15,16,18,20–23]</sup> were for FESS, 3 studies<sup>[13,14,17]</sup> were for rhinoplasty, and 1 study<sup>[19]</sup> was for septorhinoplasty. There were 7 articles had been published in recent 3 years, and the longest article included was published in 2006.

#### 4. Meta-analysis results

#### 4.1. Blood loss

Nine studies<sup>[14–22]</sup> in this meta-analysis provided the data of blood loss in nasal surgery. Three types of surgery were included in this result, so we established a subgroup analysis to deal with heterogeneity. Blood-loss volume was calculated by subtracting the volume of irrigation fluid from the total volume collected in the suction container, plus the estimated blood absorbed by the throat pack in each patient. The result showed a highly significant difference between TXA group and control group (MD = -72.65, 95% CI, [-100.42, -44.88], P < .001, Fig. 4). A random-effect model was used because the statistical heterogeneity was high ( $\chi^2$  = 97.87, df = 8, P < .001,  $I^2 = 92\%$ ).

#### 4.2. Surgical field quality

Based on seven component studies<sup>[15,20,21,23]</sup> with 388 patients providing available data, we found that TXA produced a better outcome compared to the placebo group in surgical field quality (MD = -0.63, 95% CI, [-0.83, -0.44], P < .001, Fig. 5). In the included studies of our meta-analysis, there are two validated scoring systems (Wormald grading scale<sup>[24]</sup> and Boezaart grading scale<sup>[25]</sup>) for surgical field quality. Both scoring systems are comparatively authoritative systems to evaluate the quality of the surgical field. A subgroup was established to survey the data of different scoring system and the reasons of heterogeneity. The





Figure 3. Risk of bias summary.

statistical heterogeneity was low ( $\chi^2 = 5.90$ , df=6, P=.43,  $I^2 = 0\%$ ), so we used a fixed-effect model.

# 4.3. Edema and ecchymosis rating of upper and lower eyelid

Three studies<sup>[13,14,19]</sup> provided the data of edema and ecchymosis rating of upper and lower eyelid, two of them were rhinoplasty and one is about septorhinoplasty. The same evaluation index of eyelid edema and ecchymosis used in the three literatures (Fig. 6). We summarized the edema rating of upper and lower eyelid in Figure 7, and the ecchymosis rating of upper and lower eyelid in Figure 8. The results are presented in Table 2. We set up subgroups because the data from different days after surgery.

# 4.4. Operation time

Seven studies<sup>[13–15,19–22]</sup> stated the operation time. Two types of surgery are included in this outcome, so we established a subgroup analysis. The available data revealed that there was no difference between the two groups (MD=-0.06, 95% CI, [-0.27, 0.15], P=.32, Fig. 9). A fixed-effect model was used, because the statistical heterogeneity was high ( $\chi^2$ =12.01, df=6, P=.06,  $I^2$ =50%).

# 5. Discussion

Nose surgeries (such as FESS, rhinoplasty, and septoplasty) are common procedure. However, patients under these surgeries often experience edema, ecchymosis, bleeding, and other complications. Because the nasal cavity is small, the blood vessels are abundant, and the routine hemostatic method is difficult to administer, therefore, the reasonable use of hemostatic drugs is an important measure to reduce the bleeding in the operation and provide clear field.<sup>[26]</sup> We summarized this meta-analysis to clear the efficacy of TXA during nose surgeries. The results indicated that the TXA have a positive effect in decrease intraoperative blood loss, improve the surgical field quality, and

|                                           | tranex                 | camic a    | cid      | С             | ontrol                  |            |            | Mean Difference            | Mean Difference                          |
|-------------------------------------------|------------------------|------------|----------|---------------|-------------------------|------------|------------|----------------------------|------------------------------------------|
| Study or Subgroup                         | Mean                   | SD         | Total    | Mean          | SD                      | Total      | Weight     | IV, Random, 95% Cl         | IV, Random, 95% CI                       |
| 6.1.1 FESS                                |                        |            |          |               |                         |            |            |                            |                                          |
| Jabalameli 2006                           | 174                    | 10.6       | 26       | 299.1         | 23.8                    | 30         | 13.3%      | -125.10 [-134.54, -115.66] | -                                        |
| Javaneh Jahanshahi 2014                   | 100.1                  | 52.5       | 30       | 170.49        | 45.87                   | 30         | 12.2%      | -70.39 [-95.34, -45.44]    |                                          |
| Mahzad Alimian 2011                       | 184                    | 64         | 42       | 312           | 75                      | 42         | 11.7%      | -128.00 [-157.82, -98.18]  |                                          |
| Mohammad Hossein 2017                     | 235.6                  | 70.65      | 30       | 254.13        | 70.65                   | 30         | 11.0%      | -18.53 [-54.28, 17.22]     |                                          |
| Morgan A 2013                             | 115                    | 173        | 14       | 200           | 112                     | 14         | 4.4%       | -85.00 [-192.95, 22.95]    | • • • • • • • • • • • • • • • • • • • •  |
| Saeedollah Nuhi 2015                      | 107.7                  | 45.1       | 100      | 189.3         | 51.2                    | 70         | 13.0%      | -81.60 [-96.50, -66.70]    |                                          |
| Subtotal (95% CI)                         |                        |            | 242      |               |                         | 216        | 65.5%      | -86.50 [-117.99, -55.02]   | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 1221.1  | 7; Chi <sup>2</sup> =  | 59.08, d   | f=5(P    | < 0.0000      | 01); F= !               | 92%        |            |                            |                                          |
| Test for overall effect: Z = 5.3          | 9 (P < 0.0             | 0001)      |          |               |                         |            |            |                            |                                          |
| 6.1.2 rhinoplasty                         |                        |            |          |               |                         |            |            |                            |                                          |
| Hamid Reza 2016                           | 144.6                  | 60.28      | 25       | 199.6         | 73.05                   | 25         | 10.9%      | -55.00 [-92.13, -17.87]    |                                          |
| Mohammad Ali 2017                         | 213.29                 | 56.87      | 24       | 254.34        | 55.14                   | 26         | 11.5%      | -41.05 [-72.14, -9.96]     |                                          |
| Subtotal (95% CI)                         |                        |            | 49       |               |                         | 51         | 22.4%      | -46.80 [-70.64, -22.96]    | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 0.00; 0 | hi <sup>2</sup> = 0.32 | . df = 1 ( | P = 0.5  | 7); $l^2 = 0$ | %                       |            |            |                            | 12261                                    |
| Test for overall effect: Z = 3.8          |                        |            |          |               |                         |            |            |                            |                                          |
| 6.1.3 septoplasty                         |                        |            |          |               |                         |            |            |                            |                                          |
| O"ner Sakalliog"lu 2015                   | 68                     | 21         | 25       | 113           | 63                      | 25         | 12.1%      | -45.00 [-71.03, -18.97]    |                                          |
| Subtotal (95% CI)                         |                        |            | 25       |               |                         | 25         | 12.1%      | -45.00 [-71.03, -18.97]    | •                                        |
| Heterogeneity: Not applicable             | e                      |            |          |               |                         |            |            |                            |                                          |
| Test for overall effect: Z = 3.3          | 9 (P = 0.0             | 007)       |          |               |                         |            |            |                            |                                          |
| Total (95% CI)                            |                        |            | 316      |               |                         | 292        | 100.0%     | -72.65 [-100.42, -44.88]   | -                                        |
| Heterogeneity: Tau <sup>2</sup> = 1488.7  | '8: Chi <sup>2</sup> = | 97.87. d   | f = 8 (P | < 0.0000      | )1);   <sup>2</sup> = ! | 92%        |            |                            |                                          |
| Test for overall effect: $Z = 5.1$        |                        |            |          |               |                         | 10.7 V 2.4 |            |                            | -100 -50 0 50 100                        |
| Test for subaroup difference              |                        |            | 2 (P=    | 0.09), 17:    | = 58.9%                 |            |            |                            | Favours [experimental] Favours [control] |
|                                           | Figu                   | re 4. 1    | The eff  | ect of t      | ranexa                  | imic a     | cid illust | rated by forest plot diag  | ram on blood loss.                       |

reducing periorbital edema and ecchymosis. No statistically significant difference was found in the operation time between the TXA group and the control group.

Blood loss was one of the primary outcomes in our research. Nine studies documented the data of blood loss, and the significant difference was found between the TXA group and the control group (P < .001). Bleeding is a common concern during nasal surgeries because of the rich blood supply of the nasal mucosa and sinuses. Although many nasal operations use local vasoconstrictor to treat nasal cavity and controlled hypotension anesthesia, the intraoperative oozing or bleeding still has a significant impact on operative field resolution and surgical procedures, even stop the operation. Our pooled data showed that TXA could effectively decrease the bleeding volume during

nasal operation. It was reported that TXA was used for openheart surgery under extracorporeal circulation, coronary artery bypass surgery, and hip arthroplasty, etc, which can significantly reduce the perioperative blood loss.<sup>[27–31]</sup> Another meta-analysis showed that TXA could reduce hemoglobin decline, volume of drainage, total blood loss, and transfusion requirements after total knee arthroplasty.<sup>[32]</sup> These results manifested that ideal hemostatic effect can be achieved when TXA is used perioperatively. This is very meaningful for the surgical procedure.

Surgical field quality was another primary outcome in our study. Good visibility during nasal surgeries is necessary, because the tiny structure of noses is filled with small blood vessels. In this case, even mild bleeding can cause the surgery to fail.<sup>[20]</sup> There two validated scoring systems (Wormald grading scale<sup>[24]</sup> and

|                                                       | tranex                  | camic a   | cid      | C       | ontrol |         |          | Mean Difference      | Mean Di                         | fference          |    |
|-------------------------------------------------------|-------------------------|-----------|----------|---------|--------|---------|----------|----------------------|---------------------------------|-------------------|----|
| Study or Subgroup                                     | Mean                    | SD        | Total    | Mean    | SD     | Total   | Weight   | IV, Fixed, 95% CI    | IV, Fixed                       | , 95% CI          |    |
| 5.1.1 Boezaart grading scale                          |                         |           |          |         |        |         |          |                      |                                 |                   |    |
| lavaneh Jahanshahi 2014                               | 2                       | 2.22      | 30       | 3       | 1.48   | 30      | 4.2%     | -1.00 [-1.95, -0.05] |                                 |                   |    |
| Aohammad Hossein 2017                                 | 2.73                    | 1.01      | 30       | 3       | 1.01   | 30      | 14.7%    | -0.27 [-0.78, 0.24]  |                                 |                   |    |
| Theodore Athanasiadis 2007 100mg                      | 1                       | 0.4       | 10       | 1.6     | 0.53   | 10      | 22.6%    | -0.60 [-1.01, -0.19] |                                 |                   |    |
| Theodore Athanasiadis 2007 1g                         | 0.5                     | 0.41      | 10       | 1.12    | 0.33   | 10      | 36.0%    | -0.62 [-0.95, -0.29] |                                 |                   |    |
| Subtotal (95% CI)                                     |                         |           | 80       |         |        | 80      | 77.5%    | -0.57 [-0.79, -0.35] | +                               |                   |    |
| Heterogeneity: Chi <sup>2</sup> = 2.21, df = 3 (P = 0 | ).53); I <sup>2</sup> = | 0%        |          |         |        |         |          |                      |                                 |                   |    |
| Test for overall effect: Z = 5.01 (P < 0.00           | 0001)                   |           |          |         |        |         |          |                      |                                 |                   |    |
| 5.1.2 Wormald grading scale                           |                         |           |          |         |        |         |          |                      |                                 |                   |    |
| Aorgan A 2013                                         | 5.8                     | 1.9       | 14       | 5.8     | 2      | 14      | 1.8%     | 0.00 [-1.45, 1.45]   |                                 |                   |    |
| Theodore Athanasiadis 2007 100mg                      | 1.41                    | 0.75      | 10       | 2.61    | 0.95   | 10      | 6.8%     | -1.20 [-1.95, -0.45] |                                 |                   |    |
| Theodore Athanasiadis 2007 1g                         | 0.81                    | 0.66      | 10       | 1.62    | 0.53   | 10      | 13.9%    | -0.81 [-1.33, -0.29] |                                 |                   |    |
| Subtotal (95% CI)                                     |                         |           | 34       |         |        | 34      | 22.5%    | -0.86 [-1.27, -0.45] | -                               |                   |    |
| Heterogeneity: Chi <sup>2</sup> = 2.18, df = 2 (P = 0 | ).34); I <sup>2</sup> = | 8%        |          |         |        |         |          |                      |                                 |                   |    |
| Test for overall effect: Z = 4.10 (P < 0.00           | 001)                    |           |          |         |        |         |          |                      |                                 |                   |    |
| fotal (95% CI)                                        |                         |           | 114      |         |        | 114     | 100.0%   | -0.63 [-0.83, -0.44] | +                               | 10                |    |
| Heterogeneity: Chi <sup>2</sup> = 5.90, df = 6 (P = 0 | ).43); I <sup>2</sup> = | 0%        |          |         |        |         |          | 3                    |                                 |                   | -1 |
| Test for overall effect: Z = 6.36 (P < 0.00           | 0001)                   |           |          |         |        |         |          |                      | -2 -1<br>Favours [experimental] | Foucure legetrall | 2  |
| Test for subaroup differences: Chi <sup>2</sup> = 1   | .51. df = 1             | 1 (P = 0) | 22). 12: | = 33.69 | 6      |         |          |                      | Pavours (experimental)          | Pavours [control] |    |
| Figuro 5                                              | The e                   | ffoct of  | f trano  | vamic   | acid i | lluetra | tod by f | prost plot diagram   | on surgical field quality.      |                   |    |

5



Figure 6. Rates of ecchymosis expansion (A) and periorbital edema (B) in upper and lower periorbital area.



Figure 7. The effect of tranexamic acid illustrated by forest plot diagram on eyelid edema. (A) Edema of upper eyelid; (B) edema of lower eyelid.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       | xamic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                | ontrol                                            |                                                    |                                                                               | Mean Difference                                                                                                                                                                                                                           | Mean Difference                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean                                                                                                                                                  | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean                                                                                                           | SD                                                | Total                                              | Weight                                                                        | IV, Random, 95% CI                                                                                                                                                                                                                        | IV, Random, 95% Cl                                                                                              |
| 2.1.1 POD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                   |                                                    |                                                                               |                                                                                                                                                                                                                                           | ACTIVICA N                                                                                                      |
| Mohammad Mehdizadeh 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                     | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.8                                                                                                            | 0.41                                              | 15                                                 | 16.3%                                                                         | -1.80 [-2.27, -1.33]                                                                                                                                                                                                                      |                                                                                                                 |
| O"ner Sakalliog"lu 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.32                                                                                                                                                  | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                              | 0.816                                             | 25                                                 | 16.4%                                                                         | -0.68 [-1.14, -0.22]                                                                                                                                                                                                                      |                                                                                                                 |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                   | 40                                                 | 32.7%                                                                         | -1.24 [-2.34, -0.14]                                                                                                                                                                                                                      |                                                                                                                 |
| Heterogeneity: Tau <sup>2</sup> = 0.57; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 11.01,                                                                                                                                              | df = 1 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109); I <sup>2</sup> =                                                                                         | 91%                                               |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| Test for overall effect: Z = 2.21 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P = 0.03)                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                   |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| 2.1.2 POD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                                                   |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| Mohammad Mehdizadeh 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.47                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4                                                                                                            | 0.5                                               | 15                                                 |                                                                               | -1.93 [-2.38, -1.48]                                                                                                                                                                                                                      | Contraction of the second s |
| O"ner Sakalliog"lu 2015<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.96                                                                                                                                                  | 0.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.12                                                                                                           | 0.666                                             | 25<br>40                                           | 17.4%<br>33.9%                                                                | -1.16 [-1.53, -0.79]<br>-1.53 [-2.29, -0.78]                                                                                                                                                                                              | -                                                                                                               |
| Heterogeneity: Tau <sup>2</sup> = 0.25; Chi <sup>2</sup><br>Test for overall effect: Z = 3.99 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l);  ² = 8                                                                                                     | 5%                                                |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| 2.1.3 POD7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                   |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| Mohammad Mehdizadeh 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4                                                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4                                                                                                            | 0.75                                              | 15                                                 | 16.1%                                                                         | -2.00 [-2.50, -1.50]                                                                                                                                                                                                                      |                                                                                                                 |
| O"ner Sakalliog"lu 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24                                                                                                                                                  | 0.723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.92                                                                                                           | 0.64                                              | 25                                                 | 17.3%                                                                         | -0.68 [-1.06, -0.30]                                                                                                                                                                                                                      |                                                                                                                 |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                   | 40                                                 | 33.4%                                                                         | -1.33 [-2.62, -0.04]                                                                                                                                                                                                                      |                                                                                                                 |
| Heterogeneity: Tau <sup>2</sup> = 0.82; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 17.21.                                                                                                                                              | df = 1 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101); F=                                                                                                       | 94%                                               |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| Test for overall effect: Z = 2.02 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                   |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                                                   | 120                                                | 100.0%                                                                        | -1.36 [-1.85, -0.88]                                                                                                                                                                                                                      |                                                                                                                 |
| Heterogeneity: Tau <sup>2</sup> = 0.31; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 27 17                                                                                                                                               | df - 5 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0011-12                                                                                                        | - 070                                             | 120                                                | 100.0%                                                                        | -1.50 [-1.05, -0.08]                                                                                                                                                                                                                      |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001), 1-                                                                                                      | = 87 %                                            |                                                    |                                                                               |                                                                                                                                                                                                                                           | -2 -1 0 1 2                                                                                                     |
| Test for overall effect: Z = 5.54 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 001 17                                                                                                         | 004                                               |                                                    |                                                                               |                                                                                                                                                                                                                                           | Favours [experimental] Favours [control]                                                                        |
| Test for subaroup differences: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $n^{-} = 0.2$                                                                                                                                         | 1.01 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $u^{\mu} = 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90), r=                                                                                                        | U %                                               |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                   |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0014.04/8                                                                                                      | 2.000                                             |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2024048                                                                                                        | 2.20                                              |                                                    |                                                                               |                                                                                                                                                                                                                                           |                                                                                                                 |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trane                                                                                                                                                 | vamic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                   |                                                    |                                                                               | Mean Difference                                                                                                                                                                                                                           | Mean Difference                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       | xamic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ncid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c                                                                                                              | ontrol                                            | Total                                              | Weight                                                                        | Mean Difference                                                                                                                                                                                                                           | Mean Difference                                                                                                 |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trane<br>Mean                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c                                                                                                              | ontrol                                            | Total                                              | Weight                                                                        | Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                     | Mean Difference<br>IV, Random, 95% Cl                                                                           |
| Study or Subgroup<br>2.2.1 POD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean                                                                                                                                                  | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | icid<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C<br>Mean                                                                                                      | control<br>SD                                     |                                                    | 1000                                                                          | IV, Random, 95% Cl                                                                                                                                                                                                                        |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean<br>1.67                                                                                                                                          | SD<br>1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ncid<br><u>Total</u><br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br><u>Mean</u><br>2.73                                                                                       | control<br>SD<br>0.45                             | 15                                                 | 13.6%                                                                         | IV, Random, 95% Cl<br>-1.06 [-1.63, -0.49]                                                                                                                                                                                                |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>Oʻner Sakalliogʻlu 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean<br>1.67                                                                                                                                          | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rcid<br>Total<br>15<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C<br>Mean                                                                                                      | control<br>SD                                     | 15<br>25                                           | 13.6%<br>17.6%                                                                | -1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]                                                                                                                                                                                              |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean<br>1.67<br>2.24                                                                                                                                  | SD<br>1.04<br>0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>Mean<br>2.73<br>2.68                                                                                      | 0.45<br>0.69                                      | 15                                                 | 13.6%                                                                         | IV, Random, 95% Cl<br>-1.06 [-1.63, -0.49]                                                                                                                                                                                                |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O"ner Sakalliog"lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean<br>1.67<br>2.24<br>= 2.91, c                                                                                                                     | SD<br>1.04<br>0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>Mean<br>2.73<br>2.68                                                                                      | 0.45<br>0.69                                      | 15<br>25                                           | 13.6%<br>17.6%                                                                | -1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]                                                                                                                                                                                              |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean<br>1.67<br>2.24<br>= 2.91, c                                                                                                                     | SD<br>1.04<br>0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>Mean<br>2.73<br>2.68                                                                                      | 0.45<br>0.69                                      | 15<br>25                                           | 13.6%<br>17.6%                                                                | -1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]                                                                                                                                                                                              |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean<br>1.67<br>2.24<br>= 2.91, c<br>2 = 0.02)                                                                                                        | <u>50</u><br>1.04<br>0.831<br>If = 1 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ncid<br>Total<br>15<br>25<br>40<br>= 0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br><u>Mean</u><br>2.73<br>2.68<br>; <b> <sup>2</sup> =</b> 66                                                | 0.45<br>0.69                                      | 15<br>25<br>40                                     | 13.6%<br>17.6%<br>31.1%                                                       | IV, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]                                                                                                                                                |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean<br>1.67<br>2.24<br>= 2.91, c<br>2 = 0.02)<br>1.27                                                                                                | <u>SD</u><br>1.04<br>0.831<br>If=1 (P<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncid<br><u>Total</u><br>15<br>25<br>40<br>= 0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br><u>Mean</u><br>2.73<br>2.68<br>;   <sup>2</sup> = 66                                                      | 0.45<br>0.69<br>%                                 | 15<br>25<br>40                                     | 13.6%<br>17.6%<br>31.1%                                                       | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]                                                                                                                         |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O"ner Sakalliog"lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O"ner Sakalliog"lu 2015                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean<br>1.67<br>2.24<br>= 2.91, c<br>2 = 0.02)<br>1.27                                                                                                | <u>50</u><br>1.04<br>0.831<br>If = 1 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ncid<br><u>Total</u><br>15<br>25<br>40<br>= 0.09)<br>15<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br><u>Mean</u><br>2.73<br>2.68<br>;   <sup>2</sup> = 66                                                      | 0.45<br>0.69                                      | 15<br>25<br>40<br>15<br>25                         | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%                                     | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]                                                                                                 |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O"ner Sakalliog"lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O"ner Sakalliog"lu 2015<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>Mean</u><br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04                                                                                   | SD<br>1.04<br>0.831<br>If = 1 (P<br>0.88<br>0.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncid<br><u>Total</u><br>15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.73<br>2.68<br>1 <sup>2</sup> = 66<br>2.4<br>2.88                                                             | 0.45<br>0.69<br>%<br>0.5<br>0.781                 | 15<br>25<br>40                                     | 13.6%<br>17.6%<br>31.1%                                                       | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]                                                                                                                         |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                             | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c                                                                             | SD<br>1.04<br>0.831<br>If = 1 (P<br>0.88<br>0.676<br>If = 1 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ncid<br><u>Total</u><br>15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.73<br>2.68<br>1 <sup>2</sup> = 66<br>2.4<br>2.88                                                             | 0.45<br>0.69<br>%<br>0.5<br>0.781                 | 15<br>25<br>40<br>15<br>25                         | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%                                     | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]                                                                                                 |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>Oʻner Sakalliogʻlu 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c                                                                             | SD<br>1.04<br>0.831<br>If = 1 (P<br>0.88<br>0.676<br>If = 1 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ncid<br><u>Total</u><br>15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.73<br>2.68<br>1 <sup>2</sup> = 66<br>2.4<br>2.88                                                             | 0.45<br>0.69<br>%<br>0.5<br>0.781                 | 15<br>25<br>40<br>15<br>25                         | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%                                     | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]                                                                                                 |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7                                                                                                                                                                                                                                                                                                       | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c<br>> < 0.000                                                                | SD<br>1.04<br>0.831<br>if = 1 (P<br>0.88<br>0.676<br>if = 1 (P<br>01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.73<br>2.68<br>; I <sup>2</sup> = 66<br>2.4<br>2.88<br>; I <sup>2</sup> = 0%                                  | 0.45<br>0.69<br>%<br>0.5<br>0.781                 | 15<br>25<br>40<br>15<br>25<br>40                   | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%                            | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]                                                                         |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017                                                                                                                                                                                                                                                                           | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c<br>< 0.000<br>0.27                                                          | SD<br>1.04<br>0.831<br>if = 1 (P<br>0.88<br>0.676<br>if = 1 (P<br>01)<br>0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.73<br>2.68<br>(1 <sup>2</sup> = 66<br>2.4<br>2.88<br>(1 <sup>2</sup> = 0%                                    | 0.45<br>0.69<br>%<br>0.5<br>0.781                 | 15<br>25<br>40<br>15<br>25<br>40                   | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%                            | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]                                                 |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015                                                                                                                                                                                                                                                | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c<br>< 0.000<br>0.27                                                          | SD<br>1.04<br>0.831<br>if = 1 (P<br>0.88<br>0.676<br>if = 1 (P<br>01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)<br>15<br>25<br>40<br>15<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.73<br>2.68<br>(1 <sup>2</sup> = 66<br>2.4<br>2.88<br>(1 <sup>2</sup> = 0%                                    | 0.45<br>0.69<br>%<br>0.5<br>0.781                 | 15<br>25<br>40<br>15<br>25<br>40<br>15<br>25       | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%                            | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]<br>-0.52 [-0.85, -0.19]                         |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)                                                                                                                                                                                                                           | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c<br>= 0.76, c<br>= 0.27<br>1.16                                              | SD<br>1.04<br>0.831<br>If = 1 (P<br>0.88<br>0.676<br>If = 1 (P<br>01)<br>0.79<br>0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ncid<br><u>Total</u><br>15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>25<br>40<br>15<br>25<br>25<br>25<br>40<br>15<br>25<br>25<br>40<br>15<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2                                                                                                                                                                                                                                                                       | 0<br><u>Mean</u><br>2.73<br>2.68<br>1 <sup>P</sup> = 66<br>2.4<br>2.88<br>1. <sup>P</sup> = 0%<br>1.67<br>1.68 | 0.45<br>0.69<br>%<br>0.5<br>0.781<br>0.557        | 15<br>25<br>40<br>15<br>25<br>40                   | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%                            | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]                                                 |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015                                                                                                                                                                                                                                                | Mean<br>1.67<br>2.24<br>= 2.91, (2<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, (2<br>< 0.000<br>0.27<br>1.16<br>= 8.20, (2<br>= 8.20, (2)                   | SD<br>1.04<br>0.831<br>If = 1 (P<br>0.88<br>0.676<br>If = 1 (P<br>01)<br>0.79<br>0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ncid<br><u>Total</u><br>15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>25<br>40<br>15<br>25<br>25<br>25<br>40<br>15<br>25<br>25<br>40<br>15<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2                                                                                                                                                                                                                                                                       | 0<br><u>Mean</u><br>2.73<br>2.68<br>1 <sup>P</sup> = 66<br>2.4<br>2.88<br>1. <sup>P</sup> = 0%<br>1.67<br>1.68 | 0.45<br>0.69<br>%<br>0.5<br>0.781<br>0.557        | 15<br>25<br>40<br>15<br>25<br>40<br>15<br>25       | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%                            | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]<br>-0.52 [-0.85, -0.19]                         |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.34; Chi <sup>2</sup><br>Test for overall effect: Z = 2.13 (F                                                                                                                       | Mean<br>1.67<br>2.24<br>= 2.91, (2<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, (2<br>< 0.000<br>0.27<br>1.16<br>= 8.20, (2<br>= 8.20, (2)                   | SD<br>1.04<br>0.831<br>If = 1 (P<br>0.88<br>0.676<br>If = 1 (P<br>01)<br>0.79<br>0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)<br>15<br>25<br>40<br>= 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br><u>Mean</u><br>2.73<br>2.68<br>1 <sup>P</sup> = 66<br>2.4<br>2.88<br>1. <sup>P</sup> = 0%<br>1.67<br>1.68 | 0.45<br>0.69<br>%<br>0.5<br>0.781<br>0.557        | 15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40 | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%<br>15.3%<br>20.4%<br>35.7% | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]<br>-0.52 [-0.85, -0.19]<br>-0.94 [-1.80, -0.08] |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.34; Chi <sup>2</sup><br>Test for overall effect: Z = 2.13 (F<br>Total (95% Cl)                                                                                                     | Mean<br>1.67<br>2.24<br>= 2.91, (2<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, (2<br>- < 0.0000<br>0.27<br>1.16<br>= 8.20, (2<br>- = 0.03)                  | SD<br>1.04<br>0.831<br>if = 1 (P<br>0.88<br>0.676<br>if = 1 (P<br>0.79<br>0.625<br>if = 1 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)<br>15<br>25<br>40<br>= 0.004<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.73<br>2.68<br>(P=66)<br>2.4<br>2.88<br>(P=0%)<br>1.67<br>1.68<br>)); P=8                                     | 0.45<br>0.69<br>%<br>0.5<br>0.781<br>0.557<br>3%  | 15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40 | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%                            | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]<br>-0.52 [-0.85, -0.19]                         | M. Random, 95% Cl                                                                                               |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.34; Chi <sup>2</sup><br>Test for overall effect: Z = 2.13 (F<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.09; Chi <sup>2</sup>                                         | Mean<br>1.67<br>2.24<br>= 2.91, (2<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, (2<br>< 0.000<br>0.27<br>1.16<br>= 8.20, (2<br>= 0.03)<br>= 13.42,           | SD<br>1.04<br>0.831<br>If = 1 (P<br>0.88<br>0.676<br>If = 1 (P<br>0.79<br>0.625<br>If = 1 (P<br>0.79<br>0.625<br>If = 1 (P<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0. | 15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.38)<br>15<br>25<br>40<br>= 0.004<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.73<br>2.68<br>(P=66)<br>2.4<br>2.88<br>(P=0%)<br>1.67<br>1.68<br>)); P=8                                     | 0.45<br>0.69<br>%<br>0.5<br>0.781<br>0.557<br>3%  | 15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40 | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%<br>15.3%<br>20.4%<br>35.7% | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]<br>-0.52 [-0.85, -0.19]<br>-0.94 [-1.80, -0.08] |                                                                                                                 |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.34; Chi <sup>2</sup><br>Test for overall effect: Z = 2.13 (F<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.09; Chi <sup>2</sup><br>Test for overall effect: Z = 5.67 (F | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c<br>< 0.000<br>0.27<br>1.16<br>= 8.20, c<br>= 0.03)<br>= 13.42,<br>< < 0.000 | SD<br>1.04<br>0.831<br>if = 1 (P<br>0.88<br>0.676<br>if = 1 (P<br>0.79<br>0.625<br>if = 1 (P<br>0.79<br>0.625<br>if = 1 (P<br>0.79<br>0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ncid<br>15<br>25<br>40<br>15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.038)<br>15<br>25<br>40<br>= 0.038)<br>15<br>25<br>40<br>= 0.038)<br>15<br>25<br>40<br>= 0.039)<br>15<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>25<br>40<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | ();   <sup>2</sup> = 6                                                                                         | 0.45<br>0.69<br>%<br>0.781<br>0.61<br>0.657<br>8% | 15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40 | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%<br>15.3%<br>20.4%<br>35.7% | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]<br>-0.52 [-0.85, -0.19]<br>-0.94 [-1.80, -0.08] | M. Random, 95% Cl                                                                                               |
| Study or Subgroup<br>2.2.1 POD1<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Chi <sup>2</sup><br>Test for overall effect: Z = 2.33 (F<br>2.2.2 POD3<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 5.87 (F<br>2.2.3 POD7<br>Mohammad Mehdizadeh 2017<br>O'ner Sakalliog'lu 2015<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.34; Chi <sup>2</sup><br>Test for overall effect: Z = 2.13 (F<br>Total (95% Cl)                                                                                                     | Mean<br>1.67<br>2.24<br>= 2.91, c<br>= 0.02)<br>1.27<br>2.04<br>= 0.76, c<br>< 0.000<br>0.27<br>1.16<br>= 8.20, c<br>= 0.03)<br>= 13.42,<br>< < 0.000 | SD<br>1.04<br>0.831<br>if = 1 (P<br>0.88<br>0.676<br>if = 1 (P<br>0.79<br>0.625<br>if = 1 (P<br>0.79<br>0.625<br>if = 1 (P<br>0.79<br>0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ncid<br>15<br>25<br>40<br>15<br>25<br>40<br>= 0.09)<br>15<br>25<br>40<br>= 0.038)<br>15<br>25<br>40<br>= 0.038)<br>15<br>25<br>40<br>= 0.038)<br>15<br>25<br>40<br>= 0.039)<br>15<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>40<br>25<br>25<br>25<br>40<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | ();   <sup>2</sup> = 6                                                                                         | 0.45<br>0.69<br>%<br>0.781<br>0.61<br>0.657<br>8% | 15<br>25<br>40<br>15<br>25<br>40<br>15<br>25<br>40 | 13.6%<br>17.6%<br>31.1%<br>15.1%<br>18.1%<br>33.2%<br>15.3%<br>20.4%<br>35.7% | N, Random, 95% Cl<br>-1.06 [-1.63, -0.49]<br>-0.44 [-0.86, -0.02]<br>-0.72 [-1.32, -0.11]<br>-1.13 [-1.64, -0.62]<br>-0.84 [-1.24, -0.44]<br>-0.95 [-1.27, -0.63]<br>-1.40 [-1.91, -0.89]<br>-0.52 [-0.85, -0.19]<br>-0.94 [-1.80, -0.08] | M.Random, 95% Cl                                                                                                |

Figure 8. The effect of tranexamic acid illustrated by forest plot diagram on periorbital ecchymosis. (A) Ecchymosis of upper eyelid; (B) ecchymosis of lower eyelid.

Boezaart grading scale<sup>[25]</sup>) for surgical field quality. Although the scoring scores are different, the scoring principles are the gradual changes in the quality of the surgical field from clear to vague. Therefore, we established a subgroup to survey the data of

different scoring system and the reasons of heterogeneity. Our meta-analysis showed significant difference of surgical field quality between TXA group and placebo group, which indicates the TXA can improving the quality of operation field during nasal

# Table 2

Results of periorbital edema and ecchymosis.

|                         |         |                 | Overall effect |         | Heter                     | ogeneity |
|-------------------------|---------|-----------------|----------------|---------|---------------------------|----------|
| Outcome                 | Studies | Effect estimate | 95%CI          | P value | <i>l</i> <sup>2</sup> (%) | P value  |
| Upper eyelid edema      | 2       | -0.95           | -1.20, -0.70   | <.01    | 0                         | .04      |
| Lower eyelid edema      | 2       | -0.78           | -0.95, -0.61   | <.01    | 0                         | .87      |
| Upper eyelid ecchymosis | 2       | -1.36           | -1.85, -0.88   | <.01    | 87                        | <.01     |
| Lower eyelid ecchymosis | 2       | -0.86           | -1.16, -0.56   | <.01    | 63                        | .02      |

|                                                | tranex                 | amic a                 | cid     | С                       | ontrol |           | 5        | Std. Mean Difference   | Std. Mean Difference                     |
|------------------------------------------------|------------------------|------------------------|---------|-------------------------|--------|-----------|----------|------------------------|------------------------------------------|
| Study or Subgroup                              | Mean                   | SD                     | Total   | Mean                    | SD     | Total     | Weight   | IV, Fixed, 95% Cl      | IV, Fixed, 95% CI                        |
| 7.1.1 FESS                                     |                        |                        |         |                         |        |           |          |                        |                                          |
| Javaneh Jahanshahi 2014                        | 114                    | 37.93                  | 30      | 102.73                  | 25.36  | 30        | 16.6%    | 0.34 [-0.17, 0.85]     |                                          |
| Mahzad Alimian 2011                            | 84.2                   | 27.1                   | 42      | 91.1                    | 19.2   | 42        | 23.4%    | -0.29 [-0.72, 0.14]    |                                          |
| Mohammad Hossein 2017                          | 125.33                 | 32.08                  | 30      | 115.17                  | 32.08  | 30        | 16.7%    | 0.31 [-0.20, 0.82]     |                                          |
| Morgan A 2013                                  | 121.5                  | 24.2                   | 14      | 131.5                   | 26.3   | 14        | 7.7%     | -0.38 [-1.13, 0.36]    |                                          |
| Subtotal (95% CI)                              |                        |                        | 116     |                         |        | 116       | 64.4%    | 0.02 [-0.24, 0.28]     | +                                        |
| Heterogeneity: Chi <sup>2</sup> = 5.95, df = 3 | 3 (P = 0.11)           | ); I <sup>2</sup> = 50 | 0%      |                         |        |           |          |                        |                                          |
| Test for overall effect: Z = 0.14 (F           | P = 0.89)              |                        |         |                         |        |           |          |                        |                                          |
| 7.1.2 rhinoplasty                              |                        |                        |         |                         |        |           |          |                        |                                          |
| Hamid Reza 2016                                | 156                    | 31.8                   | 25      | 179.4                   | 35.4   | 25        | 13.2%    | -0.68 [-1.26, -0.11]   |                                          |
| Mohammad Ali 2017                              | 75.16                  | 8.31                   | 24      | 75.64                   | 7.5    | 26        | 14.0%    | -0.06 [-0.61, 0.50]    |                                          |
| Mohammad Mehdizadeh 2017                       | 183.67                 | 16.95                  | 15      | 178.33                  | 14.47  | 15        | 8.3%     | 0.33 [-0.39, 1.05]     |                                          |
| Subtotal (95% CI)                              |                        |                        | 64      |                         |        | 66        | 35.6%    | -0.20 [-0.55, 0.15]    | -                                        |
| Heterogeneity: Chi <sup>2</sup> = 5.08, df = 2 | 2 (P = 0.08)           | ); I <sup>2</sup> = 6' | 1%      |                         |        |           |          |                        |                                          |
| Test for overall effect: Z = 1.13 (F           | P = 0.26)              |                        |         |                         |        |           |          |                        |                                          |
| Total (95% CI)                                 |                        |                        | 180     |                         |        | 182       | 100.0%   | -0.06 [-0.27, 0.15]    | +                                        |
| Heterogeneity: Chi <sup>2</sup> = 12.01, df =  | 6 (P = 0.0             | );   <sup>2</sup> = (  | 50%     |                         |        |           |          | -                      | -1 -0.5 0 0.5 1                          |
| Test for overall effect: Z = 0.56 (F           | P=0.57)                | and a second           |         |                         |        |           |          |                        |                                          |
| Test for subaroup differences: C               | hi <sup>2</sup> = 0.98 | df = 1 (               | P = 0.3 | 2), I <sup>2</sup> = 09 | 6      |           |          |                        | Favours [experimental] Favours [control] |
| F                                              | iauro 9                | Tho o                  | ffoct o | f tranov                | amic a | acid illu | istratod | by forest plot diagrar | m on operation time                      |

surgeries. This results in a response to the conclusion that TXA can reduce bleeding during nasal surgeries, because hemorrhage is the main reason affecting the quality of operative field.

The periorbital regions are particularly prone postoperative edema and ecchymosis during rhinoplasty, and it is hard to hide for patients. In the present meta-analysis, only two trials were identified and studied for postoperative edema and ecchymosis after perioperative TXA administration. There are four results respectively (edema of upper and lower eyelid, ecchymosis of upper and lower eyelid), and all the results displayed a significant difference between the two groups. This shows that the TXA in nasal surgery can effectively reduce postoperative edema and ecchymosis. Wang<sup>[33]</sup> thought systemic administration of TXA can reduce wound hematoma in minimally invasive total knee arthroplasty when rivaroxaban is used for thromboprophylaxis. And Chen<sup>[34]</sup> showed that TXA can reduce the incidence of extremity ecchymosis during total knee arthroplasty. According to these results, we concluded that perioperative TXA was helpful for reduce the edema and ecchymosis after nasal surgeries.

Operation time was one of the second outcomes in our metaanalysis. Seven RCTs were included in this index, and there was no significant difference in our pooled data (P=.57). In the included articles, the mean of operation times was range from 75 to 180 minutes. In our meta-analysis, we know that TXA can reduce the blood loss and improve the quality of surgery field, but this result shows that the use of TXA has no effect on operative time. The main reason may be the main determinant of the operative time is the complexity of surgery and surgeon's proficiency, although intraoperative bleeding may affect the operation process, the effect on the operation time is not very large. Therefore, we know that the perioperative TXA have little influence in operation time during nasal surgeries.

This systematic review has the following limitations:

- Only eleven RCTs were selected in our meta-analysis; if more studies were included, statistical efficacy would increase.
- (2) Our meta-analysis included three types of surgery, although they were all nasal surgery, this improved the heterogeneity of the results.
- (3) The follow-up period of patients was too short in some of the trials. Most patients were followed up in the short term. This may lead to omission of some useful information.

- (4) There were not sufficient data, such as hemoglobin, hematocrit, and patient satisfaction.
- (5) Risk of bias cannot be avoided in this meta-analysis because only English publications were included.
- (6) The regimen or dosage of the drug is not fixed; this also improved the heterogeneity of the results. It is believed that all of these factors have the ability to change the efficacy of TXA during nasal surgeries and they need to be taken into account in the further study.

Although this article has some limitations, it is the first systemic review to evaluate the efficacy of TXA with placebo in nasal surgeries. We have rigorously selected the available articles, so the quality of the articles used after the final review is high. However, more high-quality literature should be included to improve statistical efficiency and increase sample size.

# 6. Conclusion

Our meta-analysis indicated that perioperative TXA could reduce the blood loss and improve the quality of surgery field during nasal surgery, and helpful for reduce the edema and ecchymosis after nasal surgeries, but it has little influence in reducing the operation time.

# **Author contributions**

Conceptualization: Wei-dong Ping. Data curation: Wei-dong Ping. Formal analysis: Fei Li. Methodology: Fei Li. Project administration: Fei Li. Resources: Qi-ming Zhao. Software: Hua-feng Sun. Supervision: Qi-ming Zhao. Writing – original draft: Hua-feng Sun. Writing – review & editing: Hai-shan Lu.

#### References

 Saif AM, Farboud A, Delfosse E, et al. Assessing the safety and efficacy of drugs used in preparing the nose for diagnostic and therapeutic procedures: a systematic review. Clin Otolaryngol 2016;41:546–63.

- [2] Samman N, Cheung LK, Tong AC, et al. Blood loss and transfusion requirements in orthognatic surgery. J Oral Maxillofac Surg 1996;54:21– 4. 25–6.
- [3] Cochran CS, Landecker A. Prevention and management of rhinoplasty complications. Plast Reconstr Surg 2008;122:60e–7e.
- [4] Choi WS, Irwin MG, Samman N. The effect of tranexamic acid on blood loss during orthognathic surgery: a randomized controlled trial. J Oral Maxillofac Surg 2009;67:125–33.
- [5] Ragab SM, Hassanin MZ. Optimizing the surgical field in pediatric functional endoscopic sinus surgery: a new evidence-based approach. Otolaryngol Head Neck Surg 2010;142:48–54.
- [6] Gutierrez S, Wuesthoff C. Testing the effects of long-acting steroids in edema and ecchymosis after closed rhinoplasty. Plast Surg (Oakv) 2014;22:83–7.
- [7] Alajmi MA, Al-Abdulhadi KA, Al-Noumas HS, et al. Results of intravenous steroid injection on reduction of postoperative edema in rhinoplasty. Indian J Otolaryngol Head Neck Surg 2009;61:266–9.
- [8] Karimi A, Mohammadi SS, Hasheminasab M. Efficacy of tranexamic acid on blood loss during bimaxilary osteotomy: a randomized double blind clinical trial. Saudi J Anaesth 2012;6:41–5.
- [9] Later AF, Maas JJ, Engbers FH, et al. Tranexamic acid and aprotinin in low- and intermediate-risk cardiac surgery: a non-sponsored, doubleblind, randomised, placebo-controlled trial. Eur J Cardiothorac Surg 2009;36:322–9.
- [10] Lemay E, Guay J, Cote C, et al. Tranexamic acid reduces the need for allogenic red blood cell transfusions in patients undergoing total hip replacement. Can J Anaesth 2004;51:31–7.
- [11] Herron J, French R, Gilliam AD. Civilian and military doctors' knowledge of tranexamic acid (TXA) use in major trauma: a comparison study. J R Army Med Corps 2018;164:170–1.
- [12] 2011;Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, Available from www.cochrane-handbook.org. Accessed July 12, 2016
- [13] Mehdizadeh M, Ghassemi A, Khakzad M, et al. Comparison of the effect of dexamethasone and tranexamic acid, separately or in combination on postrhinoplasty edema and ecchymosis. Aesthetic Plast Surg 2018;42:246–52.
- [14] Ghavimi MA, Taheri TK, Ghoreishizadeh A, et al. Efficacy of tranexamic acid on side effects of rhinoplasty: a randomized double-blind study. J Craniomaxillofac Surg 2017;45:897–902.
- [15] Baradaranfar MH, Dadgarnia MH, Mahmoudi H, et al. The effect of topical tranexamic acid on bleeding reduction during functional endoscopic sinus surgery. Iran J Otorhinolaryngol 2017;29:69–74.
- [16] Jabalameli M, Zakeri K. Evaluation of topical tranexamic acid on intraoperative bleeding in endoscopic sinus surgery. Iran J Med Sci 2006;31:221–3.
- [17] Eftekharian HR, Rajabzadeh Z. The efficacy of preoperative oral tranexamic acid on intraoperative bleeding during rhinoplasty. J Craniofac Surg 2016;27:97–100.
- [18] Nuhi S, Goljanian TA, Zarkhah L, et al. Impact of intravenous tranexamic acid on hemorrhage during endoscopic sinus surgery. Iran J Otorhinolaryngol 2015;27:349–54.

- [19] Sakallioğlu Ö, Polat C, Soylu E, et al. The efficacy of tranexamic acid and corticosteroid on edema and ecchymosis in septorhinoplasty. Ann Plast Surg 2015;74:392–6.
- [20] Jahanshahi J, Hashemian F, Pazira S, et al. Effect of topical tranexamic acid on bleeding and quality of surgical field during functional endoscopic sinus surgery in patients with chronic rhinosinusitis: a triple blind randomized clinical trial. PLoS One 2014;9:e104477.
- [21] Langille MA, Chiarella A, Cote DW, et al. Intravenous tranexamic acid and intraoperative visualization during functional endoscopic sinus surgery: a double-blind randomized controlled trial. Int Forum Allergy Rhinol 2013;3:315–8.
- [22] Alimian M, Mohseni M. The effect of intravenous tranexamic acid on blood loss and surgical field quality during endoscopic sinus surgery: a placebo-controlled clinical trial. J Clin Anesth 2011;23:611–5.
- [23] Athanasiadis T, Beule AG, Wormald PJ. Effects of topical antifibrinolytics in endoscopic sinus surgery: a pilot randomized controlled trial. Am J Rhinol 2007;21:737–42.
- [24] Athanasiadis T, Beule A, Embate J, et al. Standardized video-endoscopy and surgical field grading scale for endoscopic sinus surgery: a multicentre study. Laryngoscope 2008;118:314–9.
- [25] Boezaart AP, van der Merwe J, Coetzee A. Comparison of sodium nitroprusside- and esmolol-induced controlled hypotension for functional endoscopic sinus surgery. Can J Anaesth 1995;42(Pt 1):373–6.
- [26] Zhang J. Effects of reptilase, tranexamic acid, carbazochrome sodium sulfonate on blood coagulation in patients undergoing endoscopy sinuses surgery. Chinese Journal Medicinal Guide 2008;10:234–6. 241.
- [27] Ren Z, Li S, Sheng L, et al. Topical use of tranexamic acid can effectively decrease hidden blood loss during posterior lumbar spinal fusion surgery: a retrospective study. Medicine (Baltimore) 2017;96:e8233.
- [28] Lostak J, Gallo J, Vecera M, et al. Local application of tranexamic acid in total hip arthroplasty decreases blood loss and consumption of blood transfusion. Acta Chir Orthop Traumatol Cech 2017;84: 254–62.
- [29] Zabeeda D, Medalion B, Sverdlov M, et al. Tranexamic acid reduces bleeding and the need for blood transfusion in primary myocardial revascularization. Ann Thorac Surg 2002;74:733–8.
- [30] Reid RW, Zimmerman AA, Laussen PC, et al. The efficacy of tranexamic acid versus placebo in decreasing blood loss in pediatric patients undergoing repeat cardiac surgery. Anesth Analg 1997;84:990–6.
- [31] Ekback G, Axelsson K, Ryttberg L, et al. Tranexamic acid reduces blood loss in total hip replacement surgery. Anesth Analg 2000;91: 1124–30.
- [32] Wang C, Xu GJ, Han Z, et al. Topical application of tranexamic acid in primary total hip arthroplasty: a systemic review and meta-analysis. Int J Surg 2015;15:134–9.
- [33] Wang JW, Chen B, Lin PC, et al. The efficacy of combined use of rivaroxaban and tranexamic acid on blood conservation in minimally invasive total knee arthroplasty a double-blind randomized, controlled trial. J Arthroplasty 2017;32:801–6.
- [34] Chen X, Xie S, Wang K. Effectiveness of tranexamic acid in total knee arthroplasty. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2014;28: 1338–41.