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Abstract: Acute-on-chronic liver failure (ACLF) is an important syndrome of liver failure that has a
high risk of short-term mortality in patients with chronic liver disease. The development of ACLF
is associated with proinflammatory precipitating events, such as infection, alcoholic hepatitis, and
intense systemic inflammation. Recently, the role of the gut microbiome has increasingly emerged
in human health and disease. Additionally, the gut microbiome might have a major role in the
development of liver disease. In this review, we examine evidence to support the role of gut dysbiosis
in cirrhosis and ACLF. Additionally, we explore the mechanism by which the gut microbiome
contributes to the development of ACLF, with a focus on alcohol-induced liver disease.
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1. Introduction

The gut microbiome is a complex ecosystem consisting of more than 100 trillion mi-
croorganisms [1]. In adulthood, the gut microbiome tends to show rather stable health,
but it is affected by age, pharmaceuticals, diet, alcohol, and smoking [2,3]. The physiologi-
cal interaction between the gut microbiome and host has an important role in metabolic
functions, such as production of vitamins K and B and fatty acids and glucose metabolism,
and it also contributes to the immune system of the host, with various critical roles re-
vealed [4,5]. Gut dysbiosis, which is defined as imbalances in the composition of the gut
microbiome, has been associated with many diseases, such as gastrointestinal, hepatic,
cardiovascular, respiratory, metabolic, neurological, and psychiatric diseases, including
malignancies [5].

The concept of the gut–liver axis is increasingly emphasized in liver, gastrointestinal,
and immune diseases [6,7]. The liver communicates with the gut through the biliary
tract, portal vein, and systemic circulation. Endogenous (bile acids and amino acids) and
exogenous (diet and drugs) substrates metabolized by the host and gut microbiome directly
enter the liver via the portal circulation after crossing the epithelial barrier of the gut [8].
Intestinal permeability is increased by gut inflammation and gut dysbiosis [9,10], which
have been associated with a high-fat diet [11,12], chronic alcohol consumption [13–15],
long-term use of antibiotics [16], and inflammatory bowel disease [17]. Breakdown of the
intestinal epithelial barrier allows bacteria or their metabolites to enter the liver through
the portal system, causing hepatic damage and inflammation [5].

Globally, acute and chronic liver disease (CLD), including cirrhosis and hepatocellular
carcinoma, account for approximately 2 million deaths per year [18,19]. The causes of CLD
vary. In North America and Europe, alcohol-related liver disease (ALD), nonalcoholic fatty
liver disease (NAFLD), and hepatitis C virus (HCV) infection are more common [19,20],
whereas in Asia, hepatitis B virus (HBV) infection is the predominant etiology [21]. Regard-
less of the etiology, CLD can progress to liver fibrosis and finally cirrhosis if the cause is not
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eliminated [22]. Cirrhosis is characterized by diffuse nodular regeneration surrounded by
fibrous septa and severe disruption of the intrahepatic arterial and venous flow and portal
hypertension. Clinically, cirrhosis is classified as compensated or decompensated. Progres-
sion to decompensated cirrhosis is associated with 3- to 5-year survival, and patients with
decompensated cirrhosis are warned to prepare for liver transplantation [23].

Acute decompensation of cirrhosis and acute-on-chronic liver failure (ACLF) are two
major challenges in patients with CLD. Acute decompensation of cirrhosis is defined as
the development of ascites, hepatic encephalopathy, jaundice, and/or gastrointestinal
hemorrhage only in cirrhotic patients [24,25]. ACLF is characterized by failure of one or
more major organs (liver, kidney, brain, coagulation, circulation, or respiration). Patients
who develop ACLF have high short-term mortality (within 28 days after admission) [26].
The definition of ACLF differs depending on the region of the world. The European
Association for the Study of the Liver-Chronic Liver Failure Consortium and the North
American Consortium for the Study of End-Stage Liver Disease (NACSELD) define the
concept of ACLF only in cirrhotic patients [24,27], whereas the definition of the Asian
Pacific Association for the Study of the Liver (APASL) does not require cirrhosis to define
ACLF. Furthermore, unlike the Western definition of ACLF, the APASL includes only
liver failure (jaundice and coagulopathy) [25]. In Asia, HBV infection (76%) is a major
cause of ACLF [25,28,29], which is associated with the increased development of liver
and coagulation failure. As the case stands, the APASL definition does not require the
status of cirrhosis. However, the Korean Acute-on-Chronic Liver Failure study involving
1470 prospectively enrolled cirrhotic patients demonstrated that the major etiology was
alcohol (72%) [28]. Additionally, ACLF significantly occurs among those with alcoholic
cirrhosis (60%) and is caused by infection, alcohol, or both in Western countries [24].

The pathophysiology of ACLF has largely been studied but is still unknown. Many
studies have reported that systemic inflammation from bacterial infection and alcohol
directly correlate with the severity of ACLF [29–31]. Approximately 40–50% of patients
with ACLF have systemic inflammation without any identifiable precipitating triggers [24].
The mechanism of systemic inflammation suggests that metabolites produced by the gut
microbiome may affect the systemic compartment and trigger systemic inflammation [32].
Systemic inflammation may induce single or multiple organ failure in patients with cir-
rhosis. Therefore, the role of gut dysbiosis could be considered an important factor in
managing the precipitating factor, diagnosis, treatment, and prevention of ACLF [33]. This
review discusses the role of dysbiosis in patients with ACLF and highlights the role of the
gut microbiome in patients with alcohol-induced ACLF.

2. Gut Dysbiosis in Cirrhosis

Cirrhotic patients have increased translocation of intestinal bacteria and circulating
concentrations of bacterial DNA. Additionally, the weakened gut epithelial barriers can
easily allow translocated bacteria and their metabolites to influx into the portal blood
circulation. The translocated bacteria interact with liver cells, some of which alter the gut
microbiome composition and act as signaling molecules (Table 1) [34].

Table 1. The gut dysbiosis profiles in cirrhosis.

Gut Microbial Changes Any Alcohol NAFLD

Increase
Phylum

Proteobacteria [35] Proteobacteria [36]
Fusobacteria [35,37,38]
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Table 1. Cont.

Gut Microbial Changes Any Alcohol NAFLD

Increase

Family
Enterobacteriacea [35–40] Enterobactriaceae [36] Bacteroidaceae [36]

Enterococcaceae [36] Prevotellaceae [35] Porphyromonadaceae [36]
Streptococcaceae [35,38] Halomonadaeaace [36]

Pasteurellaceae [35] Gordonibacter pamelaeae [35]
Veillonellaceae [35,39]

Virbionaceae [40]
Alcaligenaceae [37,40]

Genus/Species
Lactobacillus [37–39] Ruminococcus sp. 5_1_39BFAA [35]

Prevotella [38]
Megasphaera [38]

Campylobacter [38]
Leuconostocacea [37]

Clostridium [38]
Veillonella [35,38,41]

Streptococcus [41]
Haemophilus parainfluenzae [38]

Escherichia [38]
Shigella [38]

Salmonella [38]

Decrease

Phylum
Bacteroidetes [35,38]

Firmicutes [38]

Family
Clostridiales_XIV [36] Clostridiales_XIV [36]

Lachnospiraceae [35–40] Lachnospiraceae [36,40] Veillonellaceae [36]
Ruminococcacea [36–39] Ruminococcaceae [36]

Prevotellaceae [37]

Genus/Species
Alistipes [38]
Roseburia [38] Phascolarctobacterium sp. [38]

Faecalibacterium [38] Bacteroides [38]
Coprococcus [38] Prevotella [38]
Eubacterium [38] Parabacteroides [38]

Phascolarctobacterium [38] Xylaniphila [38]
Subdoligranulum [38] Clostridium [38]

Bilophila [38] Paraprevotella [38]
Parabacteroides [38] Odoribacter splanchnicus [38]

Tannerella [38] Acidaminococcus sp. [38]

NAFLD, nonalcoholic fatty liver disease.

2.1. The Profile the of Gut Microbiome in Cirrhosis

The interaction between the gut microbiome and liver is highly dependent on the
etiology of cirrhosis, despite a lack of sufficient data [36,42]. Chen et al. demonstrated
that the fecal microbial communities in cirrhotic patients (n = 36; 24 HBV-related and
12 alcohol-related) compared with healthy subjects (n = 24) were analyzed by 454 pyrose-
quencing of the 16S ribosomal RNA V3 region and by subsequent real-time PCR. At the
phylum level, Bacteroidetes and Firmicutes were prevalent in the fecal microbial com-
munities of both cirrhotic patients and healthy subjects. However, this study revealed
that the proportion of the phylum Bacteroidetes was significantly decreased, whereas
Proteobacteria and Fusobacteria were significantly increased in cirrhotic patients. At the
family level, Enterobacteriaceae, Veillonellaceae, and Streptococcaceae were prevalent in
cirrhotic patients. The Child-Turcotte-Pugh (CTP) score was positively correlated with
Streptococcaceae, whereas the proportion of Lachnospiraceae was reduced significantly in
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cirrhotic patients and correlated negatively with the CTP score [35]. Interestingly, although
no significant difference was observed at the phylum and class levels of the gut microbiome
between HBV-related and alcohol-related cirrhosis, they reported a profound increase in
Prevotellaceae in alcohol-related cirrhosis [35]. Additionally, a prior study reported that
Lachnospiraceae was significantly decreased in the colonic mucosa of cirrhotic patients as
compared with that of healthy subjects [40]. The author demonstrated that Virbionaceae,
Enterobacteriaceae, and Alcaligenaceae were prevalent in the colonic mucosa of cirrhotic
patients as compared with those of healthy subjects [40]. Among cirrhotic patients, there
was a difference in the composition of gut microbiota between alcohol-related patients
and NAFLD-related patients, which are described in Table 1 [36]. Interestingly, the model
for end-stage liver disease (MELD) score was negatively correlated with Clostridiales
XIV, Lachnospiraceae, Ruminococcaceae, and Rikenellaceae but positively correlated with
Staphylococcae, Enterococceae, and Enterobacteriaceae. There was also a significant associ-
ation of the cirrhosis dysbiosis ratio (CDR) with the MELD score and endotoxin [36].

Lachnospiraceae has a role in carbohydrate fermentation into short-chain fatty acids
(SCFAs) and CO2 with H2 in the human intestine [43]. Lachnospiraceae and Ruminococ-
caceae, with butyrate production roles, were enriched in healthy subjects. A lower propor-
tion of these species in cirrhotic patients indicates that cirrhotic patients have a less healthy
gut microbiome [38]. The reduction in these fermentation-related gut microbiomes induces
a decline in SCFA production. The role of SCFAs includes their role as nutrients for the
colonic epithelium as modulators of colonic pH [44]. Surprisingly, taxa such as Veillonella
or Streptococcus, known as species of oral origin, were enriched in the small intestines of
cirrhotic patients [45]. These oral commensals can invade the gut in cirrhotic patients.
Additionally, small-intestinal bacterial overgrowth is easily found in cirrhotic patients [41].

2.2. Progression to Decompensated Cirrhosis

During liver disease progression, host mucosal proteins and pathways, such as the
farnesoid X receptor (FXR) signaling pathway, are changed by an altered gut microbiome
and its metabolites, such as SCFAs [46]. Additionally, the alteration of gut innervations
might influence the gut epithelial barrier, induce gut inflammation [47,48], and reduce
the levels of antibacterial peptides [49]. Gut-associated lymphatic tissues might affect gut
epithelial barrier dysfunction, thereby increasing the permeability of the gut epithelial
barrier [46,50]. Liver disease progression is related to systemic inflammation, leading
to impaired dendritic cell activity, increased tumor necrosis factor (TNF)- and interferon
(IFN)-γ-expressing lymphocytes, and depletion of interleukin (IL)-17-producing T helper
cells [46]. Patients with cirrhosis show increased levels of lipopolysaccharide (LPS) and
bacterial DNA in the portal blood circulation, as compared with those in healthy subjects,
and these levels become higher as liver function worsens [51,52]. Schierwagen et al. [53]
reported that bacteria from the circulating blood microbiome and their compartment-
specific patterns are viable in patients with transjugular intrahepatic portosystemic shunts.
This suggests that liver bacteria enable translocation across the gut epithelial barrier in
patients with decompensated cirrhosis.

Gut dysbiosis and bacterial translocation are significantly associated with the devel-
opment of acute decompensation of cirrhosis and ACLF [38,54,55]. In fact, the treatment
of variceal bleeding episodes with antibiotics or long-term prophylactic use of antibiotics
in decompensated cirrhosis improves outcomes [54]. Therefore, gut dysbiosis in cirrhotic
patients may be the main factor for disease progression.

Interestingly, Bajaj et al. also reported that alterations in the gut microbiome are
associated with the severity and stability of cirrhosis over time. This study demonstrated
that the ratio of autochthonous to nonautochthonous taxa was measured as the CDR using
multitagged pyrosequencing. In the study, the gut microbiome profile in patients with
cirrhotic changes worsened in patients with poor outcomes but remained stable in patients
with a stable status [36]. Therefore, the interaction of the gut microbiome and liver cirrhosis
per se is the main factor of disease progression (Table 1).
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2.3. Gut Dysbiosis and Gut-Brain Axis in Hepatic Encephalopathy

Several studies have clearly revealed the bidirectional communication between the
gut microbiota and the brain [55]. The gut microbiota can send signals to the brain via
neuronal-, endocrine-, and immune-mediated pathways [56]. The amount and type of the
signals from gut microbiota to the brain are highly dependent on the regional intestinal
environment because the gut microbiota is influenced by various factors such as intestinal
transit, mucus secretion, antimicrobial peptides, and intraluminal release of neuroactive
substances, intestinal permeability, blood-brain barrier, and the clearance of gut microbial
metabolites [55,57]. Hepatic encephalopathy (HE) in cirrhotic patients shows a very wide
spectrum, ranging from minimal HE, including reversal of sleep-wake cycle, short-term
memory loss, poor concentration, and deficits that may only become apparent on neurocog-
nitive test, to the most severe symptoms of coma [58]. HE is a major gut dysbiosis-related
complication in cirrhotic patients. This is a result of systemic endotoxemia and inflam-
mation that ultimately induces neuroinflammation, although ammonia was noted to be
central to the pathogenesis of HE [59–61]. Interestingly, Bajaj et al. demonstrated that
the IL-23 system was significantly associated with several bacterial families in patients
with HE, and there was a direct correlation between cognition, Porphyromonadaceae, and
Alcaligeneceae [38]. Additionally, Ahluwalia et al. [62] showed that patients with HE had
more evidence of systemic inflammation, gut dysbiosis, and hyperammonemia compared
with healthy subjects and cirrhotic patients without HE. Several studies demonstrated that
the altered linkage between gut microbiota and the brain had a key role in the development
of HE. The findings of small intestinal overgrowth, gut dysbiosis, increased intestinal per-
meability, endotoxemia, and changes in brain status are consistent with this concept. Thus,
altered brain–gut microbiome communication might provide novel therapeutic approaches
and the prediction of outcome in patients with HE.

3. Gut Dysbiosis and Progression to ACLF

ACLF induced by acute insult or pathogens directly or indirectly activates differ-
ent cells and inflammatory cytokines. Danger-associated molecular patterns (DAMPs)
and other cytokines are released from injured parenchymal and nonparechymal cells [61].
Liver tissue damage is induced by the direct action of virulence factors, excessive immune
response, and failure of the immune-mediated tolerance system of the host [63]. The
deterioration from decompensated cirrhosis to ACLF is associated with extensive systemic
inflammation activating many inflammatory systems and cytokine pathways [29,63]. The
association between ACLF and DAMPs is particularly important in patients with ACLF
due to viral activation, such as HBV reactivation [64,65], as well as superimposed hepatitis
A virus and hepatitis E virus infections [65,66]. This systemic inflammation and organ fail-
ure caused by bacterial infection occurs in approximately 30% of patients with ACLF [24].
The most common cause in these patients is spontaneous bacterial infection [24]. As a
result of infection, pathogen-associated molecular patterns (PAMPs) release and stimulate
intracellular signaling cascades, such as nuclear factor-κB. Then, activated transcription fac-
tors induce various gene-encoding molecules, such as cytokines and chemokines [67–69].
Elevated serum levels of IL-8 or IL-6 with or without obvious bacterial infection were
demonstrated in patients with acute decompensation of cirrhosis and ACLF [29,63,70].
This understanding was also shown in the PREDICT (PREDICTing Acute-on-Chronic
Liver Failure) study; patients in the pre-ACLF group showed significantly higher systemic
inflammation than patients with acute decompensation [71]. Additionally, several studies
have revealed that gut dysbiosis is a strong factor for the development of ACLF [33,70]. In
a prospective study across North America, stool gut microbiome composition on admission
was associated with the development of ACLF, individual organ failure, and mortality.
This study showed that the phylum Proteobacteria was higher in patients with poor out-
comes [72]. This result is not surprising because Proteobacteria, such as Escherichia coli,
Klebsiella pneumoniae, and Pseudomonas aeruginosa, are responsible for infections in patients
with cirrhosis [32,73–76]. However, increased pathogenic taxa, such as Enterococcaceae
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and Streptococcaceae, were highly associated with mortality [30,72,73]. Decreased au-
tochthonous taxa, such as Lachnospiraceae and Clostridia, which are associated with the
formation of secondary bile acids and SCFAs [74,75], were demonstrated [71]. Another
study in patients with HBV-associated ACLF revealed that increased Prevotellaceae was
an important risk factor for 28-day mortality, although the abundances of Enterobacteri-
aceae, Proteobacteria, and Fusobacteria were not significantly changed in the circulation
of either the cirrhosis or HBV-associated ACLF group [74]. Zhang et al. demonstrated
that increased Pasteurellaceae was an important risk factor for short-term mortality in
patients with ACLF, mostly composed of HBV-associated ACLF. In this study, patients
with ACLF had higher levels of inflammatory cytokines (TNF-α, IL-6, and IL-2); increased
abundances of Fusobacteriaceae, Veillonellaceae, and Enterobacteriaceae; and a reduction
in Ruminococcaceae [77]. Additionally, the negative association of Ruminococcaceae and
Lachnospiraceae with TNF-α and IL-6 could anticipate a therapeutic role in ACLF [77].
Another recent metagenomics study confirmed that ACLF was associated with an increased
abundance of Enterococcus and Peptostreptococcus. Interestingly, this study showed that
cirrhotic patients had enriched pathways related to ethanol production, γ-aminobutyric
acid metabolism, and endotoxin synthesis [78]. Alcohol-induced ACLF is the second high-
est after infection-induced ACLF, and several studies on gut dysbiosis related to alcohol
consumption have been reported [24,36,78]. Associated studies between gut dysbiosis and
alcohol-induced liver disease, including ACLF, will be described in more detail in the next
section. Recently, studies on drug-induced ACLF [79] and autoimmune hepatitis-related
ACLF [80,81] have been reported, but studies on gut dysbiosis in these patients are also
warranted. Although many studies have noted that systemic inflammation and single
or multiple organ failure in patients with ACLF are caused by gut dysbiosis and altered
metabolic pathways, as well as by many of the altered metabolites from microbial dysbiosis,
there is an urgent need to investigate whether there is a difference in the gut microbiome
in cirrhosis with regard to the etiology and whether there is a change in the development
pattern of ACLF and the prediction, treatment, and prevention of ACLF using the gut
microbiome (Table 2).

Table 2. The gut dysbiosis profiles in ACLF.

Gut Microbial Changes ACLF Infection HE Renal Dysfunction

Increase

Phylum
Firmicutes [77]

Proteobacteria [77]

Class
Bacteroidia [77]

Bacilli [77]
Gammaproteobacteria [77]

Family
Enterecoccaceae [77] Enterobacteriaceae [36,39] Enterobacteriaceae [37] Enterobacteriaceae [39]
Streptococcaceae [77] Lactobacillaceae [39] Peptostreptococcaceae [39] Hydrogenophilaceae [69]
Pasteurellaceae [77] Erysipelothricaceae [39] Streptococcaceae- [37,39]
Veillonellaceae [77] Propionibacteriaceae [39] Staphylococcaceae [39]

Campylobacteriaceae [69] Enterococcaceae [39] Enterococcaceae [69]
Actinomycetales [39] Alcaligenaceae [37]

Lactobacilaceae [37]

Genus/Species
Enterococcus [39]
Pseudomonas [39]
Enterobacter [39]

Decrease

Phylum
Bateroidetes [77] Bacteroidetes [39]

Family
Lanchnospiraceae [77] Clostridiales_XIV [36] Lachnospiraceae [77] Lachnospiraceae [39]

Bacteroidaceae [77] Lachnospiraceae [36]
Ruminococcaceae [77] Ruminococcaceae [36]

Porphyromonadaceae [77] Veillonellaceae [36]
Coriobacteriaceae [36]

Acidaminococcaceae [39]

ACLF, acute-on-chronic liver failure; HE, hepatic encephalopathy.



Int. J. Mol. Sci. 2021, 22, 11680 7 of 18

3.1. Infection-Induced ACLF and Gut Dysbiosis

Bacterial infection is more common in cirrhotic patients than in healthy subjects [82].
Proteobacteria is highly associated with poor outcomes in patients with ACLF, whereas
Firmicutes is associated with relatively good outcomes in patients with ACLF [36,77].
Recently, one multicenter clinical study demonstrated that alpha and beta diversity, as well
as the CDR, were not different at admission between patients who did or did not develop
outcomes, including the development of ACLF and mortality [69]. This study demon-
strated that patients with ACLF who had infection on admission had higher abundances of
Enterococcaceae and Staphylococcaceae and a lower abundance of Bifidobacteriaceae [69].
Changes in the Proteobacteria family, such as E. coli, K. pneumoniae, and P. aeruginosa, are
responsible for infections, which lead to ACLF and death [30,69,72,83]. Additionally, the
enrichment of Gram-positive pathogenic taxa, such as Enterococcaceae and Streptococ-
caceae, was highly associated with patient mortality [30,69,72,73]. These patients had a
reduction in autochthonous taxa, such as Clostridia and Lachnospiraceaeae [69]. Bacterial
translocation with gut dysbiosis is responsible for infection-induced ACLF. Proactive plans
to reduce gut dysbiosis (and subsequent development of ACLF) in high-risk patients need
to be studied to achieve favorable outcomes. Additionally, further studies are warranted
with a larger number of patients with ACLF to clarify the independent role of the gut
microbiome in the treatment and prediction of prognosis.

3.2. Extrahepatic Organ Failure in ACLF and Gut Dysbiosis

In the CANONIC study, renal failure was the most common organ failure (55.8%),
followed by hepatic failure (43.6%), coagulation failure (27.7%), brain failure (24.1%),
circulation failure (16.8%), and respiratory failure (9.2%) [24]. The NACSELD study demon-
strated that grade III–IV hepatic encephalopathy was the most common organ failure
(55.7%), followed by circulatory failure (17.6%), respiratory failure (15.8%), and renal failure
(15.1%) [84]. Although gut dysbiosis related to ACLF has been reported, Bajaj et al. investi-
gated the difference in gut microbiome composition according to individual organ failure.
The author reported that the most common extrahepatic organ failure was the brain (13%),
followed by the kidneys (8%), lungs (7%), and heart (7%) [69]. The proinflammatory milieu
is linked to the enrichment of Proteobacteria and the reduction in Firmicutes [36,69]. These
gut microbiota are associated with endotoxin production, leaky gut barrier, and systemic in-
flammation that affects extraintestinal organs [30]. Proteobacteria (Xanthomonadaceae and
Enterobacteriaceae), Tenericutes (Anaeroplasmataceae), Firmicutes (Erysipelotrichaceae),
and Actinobacteria (Bifidobacteriaceae) were higher in those who developed brain failure,
whereas Fusobacteriaceae were higher in those who remained free of it [69]. HE is an
important complication of cirrhosis related to the gut microbiome and its byproducts, such
as ammonia and endotoxin, in the leaky gut barrier and systemic inflammation [85–88].
Interestingly, a study of the change of gut dysbiosis after liver transplantation showed
delta Proteobacteria and delta Firmicutes instead of Proteobacteria and Firmicutes before
liver transplantation, which demonstrated that delta Proteobacteria was associated with
cognitive improvement [89]. Alcaligeneceae and Prophyromonadaceae were linked to
poor cognition in cirrhotic patients [37]. Alcaligeneceae were associated with opportunistic
infections and the degradation of urea to produce ammonia [90]. Porphyromonas were
related to both reduced stomach acid and bile barrier function in cirrhotic patients [37].
Renal failure was associated with MELD, infection on admission, and a higher abundance
of Hydrogenophilaceae [69]. In addition, renal dysfunction was linked to a higher abun-
dance of Enterobacteriaceae and lower abundance of Lachnospiraceae [39]. Circulatory
failure was predicted by diabetes, admission infections, and a higher relative abundance
of Enterobacteriaceae. Respiratory failure was related to a higher MELD score and the
enrichment of Streptococcaceae [69]. Further studies are needed to clarify the independent
role of the gut microbiome according to the failure of affected organs in ACLF.
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3.3. Intervention on Gut Dysbiosis in ACLF

Restoration of gut dysbiosis is a major target in treatments for liver cirrhosis, includ-
ing ACLF. Especially, fecal microbiota transplantation (FMT) demonstrated sustainable
changes in commensal diversity with improvement in cognitive function and reduction
in hospitalization in patients with HE [91]. New application of FMT using oral capsule
demonstrated a similar therapeutic effect and safety profiles in cirrhotic patients with
HE [92]. However, DeFilipp et al. reported that one patient died from extended-spectrum
beta-lactamase-producing Escherichia coli bacteremia after he had undergone FMT [93].
Therefore, we clear definition of the benefits and risks of FMT across different patients
are warranted.

Rifaximin, an oral non-absorbable antibiotic, is effective in treating recurrent HE [94].
In addition, a recent study showed improvement in the myriad complications of acute
decompensation in cirrhotic patients [95]. Interestingly, Vlachogiannakos et al. reported
that long-term rifaximin use reduced the risk of developing the complication of portal hy-
pertension, and it improved survival [96]. However, other studies did not demonstrate the
effect on progression of liver disease and the significant changes in the gut dysbiosis [97,98].
Quinolones have been used as prophylaxis in patients deemed to be at risk of spontaneous
bacterial peritonitis. This primary prophylactic use of non-absorbable antibiotics has been
shown to improve survival [99]. The advantages and duration of antibiotic prophylaxis
need to consider concerns about the development of multidrug-resistant infections [100].

Probiotics have been shown to have a beneficial effect on cirrhotic patients with HE
and are associated with a reduction in infection rates and ammonia level without survival
improvement [101].

4. Gut Dysbiosis and Alcohol in ACLF

Alcoholic hepatitis (AH) is a major precipitating factor of ACLF, representing approxi-
mately 24.5% of the cases of ACLF [24]. Before CLD develops, alcohol consumption per se
induces significant gut dysbiosis with a weakened gut barrier [102]. Increased gut perme-
ability in alcoholics is shown in patients with altered composition and activity of the gut
microbiome, such as Bifidobacterium, Clostridium XIV, Incertae Sedis, and Ruminococcaceae,
as compared with those in healthy subjects [102]. Interestingly, when the gut microbiome
of heavy drinking subjects with severe AH are transplanted into germ-free mice and fed an
ethanol-containing diet, severe hepatic inflammation and weakened intestinal permeability
are induced in the mice [103]. Short-term treatment using Bifidobacterium and Lactobacillus
was related to restoration of the normal gut microbiome in ALD [104]. After transplantation
of the gut microbiome in healthy subjects, liver injury was ameliorated, despite ongoing
alcohol consumption [103].

With prolonged and harmful alcohol consumption, microbial diversity and enrichment
of pathogenic bacteria, such as Enterobacteriaceae and Enterococcaceae, are further reduced.
Gut dysbiosis in ALD is relatively more important than other etiologies because alcohol
has direct toxicity to both the gut barrier and the gut microbiome before the onset of
CLD [76,103,105]. Bacterial endotoxins, such as LPS secreted by Gram-negative bacteria;
exotoxins such as candidalysin; and PAMPs from all types of gut microbiomes can induce
liver injury. Endotoxins bind hepatic toll-like receptors, and PAMPs bind to pattern-
recognition receptors on hepatic stellate cells and Kupffer cells. Then, these microbial
products can promote an inflammatory cascade of cytokine release, oxidative stress, and
fibrotic processes [106]. Exotoxins from cytolysin-producing Enterococcus faecalis were
increased in patients with AH as compared with those in heavy drinking subjects without
hepatitis, with the amount of cytolysin associated with disease severity and mortality,
although the amount of fecal Enterococcus faecalis did not correlate with disease severity
or mortality in patients with AH [107]. Candidalysin secreted by Candida albicans induces
direct liver injury and exacerbates ethanol-induced liver injury in mice. Additionally, fecal
positivity for candidalysin is related to disease severity and mortality in patients with
AH [108]. The association of endotoxin and gut dysbiosis in ALD has been demonstrated
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in several studies [36,109–111]. Despite similar MELD scores, alcohol-induced cirrhotic
patients have higher levels of endotoxin than nonalcohol-induced cirrhotic patients [36].
Intestinal permeability was highly associated with gut dysbiosis-linked endotoxemia.
In addition, Akkermansia muciniphila, which promotes mucus thickening and gut barrier
function, constitutes 1–4% of the fecal microbiota. This gut microbiome did not have the
ability to metabolize ethanol, but it was protective against the disruption of the gut barrier
induced by ethanol [112]. Therefore, gut dysbiosis seems to have a major role in changes in
gut permeability and disease progression [102,113].

In general, most of the primary bile acids secreted into the gut are reabsorbed back
into the portal circulation, whereas only 5% of primary bile acids are changed to secondary
bile acids by the gut microbiome. Therefore, gut dysbiosis can alter bile acid metabolism,
aggravate secondary bile acid conversion and reduce the rate of primary bile acid reab-
sorption [106]. Bile acids and the gut microbiome interact and modulate each other closely
through bile acids binding FXR, which results in the production of antimicrobial peptides,
such as angiogenin 1 and RNAse family member 4. Then, it induces the inhibition of gut
microbial overgrowth and gut barrier function [114,115]. In patients with liver disease with
ongoing active alcohol drinking, several studies have demonstrated a significant increase in
secondary bile acids [103,116,117]. Fibroblast growth factor (FGF)-19 was induced through
bile acids binding to FXR. Then, FGF-19 modulated the downregulation of de novo bile acid
synthesis by inhibiting CYP7A1 in hepatocytes using a feedback system for modulation
of bile acid production [118]. Interestingly, patients with AH showed higher elevations
of both hepatic and circulating FGF-19 expression, although patients with nonalcoholic
steatohepatitis did not show these findings. Additionally, the level of FGF-19 expression
was associated with the MELD score in patients with AH [119].

Butyrate and propionate, as products of bacterial fermentation, are major SCFAs in the
gut. Butyrate has a role in maintaining the gut barrier and providing an energy resource
for enterocytes [120]. Chronic alcohol consumption results in gut dysbiosis characterized
by a reduction in the SCFA-producing gut microbiome, such as Lachnospiraceae and
Ruminococcaceae [35,110,121–124].

ALD is a broad spectrum of diseases ranging from asymptomatic liver steatosis to the
progression of hepatitis, fibrosis, cirrhosis, and ACLF [125]. AH is a specific entity and can
coexist with any stage of liver disease, even cirrhosis [126]. This section will focus on the
gut dysbiosis associated with alcohol-related ACLF (Table 3).

Table 3. Gut dysbiosis profiles in alcoholic liver disease.

Gut Microbial Changes Mild Alcoholic Liver Disease Alcoholic Hepatitis Alcoholic Cirrhosis with Active
Drinking

Increase

Phylum
Proteobacteria [109,111] Fusobacteria [111] Firmicutes [117]

Firmicutes [111] Actinobacteria [111] Proteobacteria [116]
Actinobacteria [111] Firmicutes [111] Enterobactericaea [127]
Fusobacteria [111]

Family
Enterobactericeae [103] Veillonellaceae [117]
Fusobacteriaceae [123] Peptostreptococcacae [116]
Veillonellaceae [123] Enterobacteriaceae [116]

Genus/Species
Turicella [111] Turicella [111] Bifidobacterium [121]

Microbacterium [111] Microbacterium [111] Streptococcus [121]
Nocardioides [111] Nocardioides [111] Lactobacillus spp. [121]
Anaerococcus [111] Anaerococcus [111] Enterobacter spp. [127]

Lachnospiraceae incertae sedis [111] Lachnospiraceae incertae sedis [111] Bacteroides spp. [127]
Clostridium XI [111] Clostridium XI [111] Veillonella spp. [121]

Klebsiella [121] Curvibacter [111] Gordonibacter pamelaeae [121]
Lactococcus [121] Bifidobacteria [103,124] Ruminococcus sp. 5_1_39BFAA [121]

Citrobacter koseri [121] Lactobacillus [124]
Lactobacillus salivarius [121] Enterococcus [124]
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Table 3. Cont.

Gut Microbial Changes Mild Alcoholic Liver Disease Alcoholic Hepatitis Alcoholic Cirrhosis with Active
Drinking

Increase

Genus/Species
Lactococcus lactis subsp.

Cremoris [121] Sterptococcus [103,124]

Haemophilus [124]
Atopobium [123]

Decrease

Phylum
Proteobacteria [109] Bacteroidetes [111] Bacteroidetes [117]

Bacteroidetes [109,111]

Family
Lachnospiraceae [123,124] Lachnospiraceae [116]
Ruminococcaceae [123,124] Ruminococcaceae [116]

Prevotellaceae [116]
Bacteroidaceae [117]

Porphyromonadaceae [117]

Genus/Species
Prevotella [111] Prevotella [111] Prevotella [121]

Flavobacterium [111] Flavobacterium [111] Paraprevotella [121]
Akkermansia [121] Acinetobacter (OTU0021) [111] Clostridiales cluster XIV [116]

Acinetobacter (OTU0021) [111] Clostridium leptum [103] Alistipes [121]
Coprococcus [121] Atopobium [103,124] Parabacteroides [121]
Clostridiale [121] Akkermansia muciniphila [112] Clostridium saccharolyticum [121]

Ruminococcus [124]
Bifidobacteria [104]
Lactobacilli [104] Odoribacter splanchnicus [121]
Enterococci [104] Phascolarctobacterium sp. [121]

4.1. Gut Dysbiosis and Gut–Brain Axis in ALD

The gut-brain axis is the connection between the gut and the brain by various metabo-
lites, neural connections, and hormones. It is an important concept for understanding
patients with alcohol use disorders (AUD), especially patients with ALD. The brain is
affected by alcohol ranging from acute intoxication to changes in personality and behav-
ior [128]. In patients with cirrhosis or ACLF, the brain reserve and functioning can easily
worsen in patients with AUDs [129,130]. Leclercq et al. demonstrated that depression,
anxiety, and alcohol craving was associated with increased intestinal permeability. This
study showed that patients with low intestinal permeability recovered completely at the
end of a 3-week detoxification program for depression and anxiety. Conversely, patients
with high intestinal permeability were persistent in having depression, anxiety, and alcohol
craving, even after alcohol withdrawal [102]. As a result of gut dysbiosis in patients with
AUD, systemic inflammatory mediators, ammonia, and endotoxemia lead to worsened
neuroinflammation [131]. In addition, the altered gut-brain axis can affect concomitant
eating disorders, cocaine use, and anxiety disorders [131,132]. Additionally, the direct
effect of alcohol on the brain or nutritional deficiencies in patients with AUD induces
worsened brain function [133]. Recently, the manipulation of the gut-brain axis in patients
with AUD, alcohol cravings, alcohol consumption, and long-term AUD-related hospital-
izations was shown to potentially decrease after fecal microbiota transplantation, but not
in the placebo group [134]. Given the role of the gut microbiota and altered intestinal
permeability in patients with AUD, this approach is another promising area that requires
dedicated investigation.

4.2. Gut Dysbiosis in Mild ALD

Gut dysbiosis was described via analysis of jejunal aspirates in heavy alcoholics in 1984.
There were no significant differences between different stages of ALD [135]. With advances
in stool analysis by PCR fingerprinting, Mutle et al. [109] reported a stepwise decrease in
Bacteroidetes in healthy subjects, heavy drinkers without liver disease, and those with
ALD. None of them showed gut dysbiosis; however, the gut microbiome was characterized
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by decreases in Bacteroidetes and increases in Proteobacteria [109]. A recent study revealed
that patients with alcohol dependence syndrome had significant increases in Klebsiella
pneumonia, Lactobacillus salivarius, Citrobacter koseri, and Lactococcus lactis subsp. cremoris and
decreases in Akkermansia, Coprococcus, and unclassified Clostridiales as compared with those
in healthy subjects. Interestingly, both alcohol dependence and alcoholic cirrhosis have
enrichment of species belonging to the Lactobacillus and Bifidobacterium genera, although
this study did not show significant changes in microbial diversity between any of the
patient groups [121].

4.3. Gut Dysbiosis in Alcoholic Cirrhosis

Gut dysbiosis in patients with cirrhosis was largely irrespective of the etiology.
Provotellaceae was enriched in patients with alcoholic cirrhosis compared with that in
patients with HBV-related cirrhosis [35]. The reason was speculated that the enrichment of
Provotellaceae in alcoholic cirrhosis may be associated with ethanol metabolism in the gut.
Extrahepatic ethanol removal constitutes approximately 40% of total ethanol removal [136].
Microbial oxidation in the gut has an important role in extrahepatic ethanol removal [137].
The gut microbiome profile of patients with alcoholic cirrhosis had relatively higher abun-
dances of Lachnospiraceae and Ruminococcacea [36]. Dubinkina et al. [121] noted increased
abundances of Bifidobacterium, Sterptococcus, and Lactobacillus in patients with alcoholic
cirrhosis, as well as decreased abundances of Paraprevotella, Alistipes, and Prevotella, as
compared with those in healthy subjects. As previously mentioned, both Lactobacillus and
Bifidobacterium are beneficial gut microbiomes with promising roles as probiotic supple-
ments. Especially in alcoholic cirrhosis, the oral microbiome is important because these
patients probably have high rates of periodontitis, changes in the oral microbiome, proton
pump inhibitor use, and relatively low gastric acid levels [37,121,138–140]. For the purpose
of evaluating the effects of continued drinking on the gut microbiome, Bajaj et al. obtained
stool samples and mucosal biopsies taken at various sites in the gut of patients who were
either actively drinking or not actively drinking. They reported that Lachnnospiraceae, Ru-
minococcaceae, and Clostridiales cluster XIV were significantly decreased in stool samples
and all mucosal samples of actively drinking cirrhotic patients as compared with those
in cirrhotic patients with abstinence and with controls [116]. Enterobactericaceae, Enter-
obacter, and Bacteroides were more enriched in alcoholic cirrhosis, whereas the proportion
of Bifidobacterium and Lactobacillus was not different between different groups (alcoholics
with cirrhosis vs. alcoholics without cirrhosis and healthy subjects) [127]. In a recent study,
patients with alcoholic cirrhosis had an increase in Methanobrevibacter and a decrease in
Catenibacterium compared with those in patients with advanced fibrosis [110].

4.4. Gut Dysbiosis in AH

The background of AH mainly occurs in patients with alcoholic cirrhosis. Thus,
gut dysbiosis is more altered in terms of composition and function. Llopis et al. first
described that increased abundances of Enterobacteriaceae and Streptococcaceae were
associated with the severity of AH [103]. Interestingly, Atopobium and Clostridium leptum
were negatively associated with serum bilirubin and the degree of fibrosis. Secondary bile
acids were increased with deteriorating severity of AH, an increase that was similar to
the results in actively drinking patients with cirrhosis [103]. Conversely, Atopobium was
reduced in patients with AH in the study by Ciocan et al. [124]. They demonstrated that
patients with AH had increased in Lactobacillus, Bifidobacterium, Haemophilus, Enterococcus,
Streptococcus, Rothia, and Aggregatibacter and decreases in Ruminococcus, Parabacteroides,
Bilophila, Odoribacter, Desulfovibrio, and Oscillospira [124]. The most recent study compared
the gut microbiome of patients with moderate or severe AH with that of heavy drinking
subjects without hepatitis and that of nondrinking subjects. They revealed an enrichment
of Fusobacterium, Megasphaera, and Veillonella. They also reported an increase in Atopobium
in patients with AH [123]. Interestingly, patients with AH had a significant decrease in
genera of the SCFA producers Lachnospiraceae and Ruminococcaceae [123,124].
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5. Conclusions

The gut microbiome has been widely studied in human health and diseases. Its
importance is increasing in the progression and deterioration of CLD, including acute
decompensation of liver cirrhosis and ACLF. In particular, research on the gut microbiome
in patients with ACLF, which has shown an extremely high mortality rate, is thought
to be a great influence in preventing and predicting the development of ACLF, as well
as in establishing short-term and long-term treatment plans through various antibiotics,
probiotics, diets, and fecal microbiota transplantation. However, individualized treatment
for each patient could not be suggested at present because of limitations and a lack of
research according to age, pharmaceuticals, diet, race, alcohol, smoking, etiology of CLD,
and comorbidities. Therefore, more extensive research is warranted—from basic studies of
the composition and change of the gut microbiome according to etiology and complications
of liver cirrhosis to clinical studies using the gut microbiome.
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