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Abstract

We employ a ‘reverse-engineering’ approach to illuminate the neurocomputational building blocks 

that combine to support controlled semantic cognition: the storage and context-appropriate use of 

conceptual knowledge. By systematically varying the structure of a computational model and 

assessing the functional consequences, we identified the architectural properties that best promote 

some core functions of the semantic system. Semantic cognition presents a challenging test case as 

the brain must achieve two seemingly contradictory functions: abstracting context-invariant 

conceptual representations across time and modalities, whilst producing specific context-sensitive 

behaviours appropriate for the immediate task. These functions were best achieved in models 

possessing a single, deep multimodal hub with sparse connections from modality-specific regions, 

and control systems acting on peripheral rather than deep network layers. The reverse-engineered 

model provides a unifying account of core findings in the cognitive neuroscience of controlled 

semantic cognition, including evidence from anatomy, neuropsychology, and functional brain 

imaging.

At heart, cognitive neuroscience is an effort to understand how mental representations and 

processes arise from, and relate to, underlying neural mechanisms. Toward this goal, 

researchers typically begin by seeking relationships between neural data (neurophysiological 

activity and/or neuropathology) and patterns of behaviour in various tasks. Here we employ 

an alternative ‘reverse-engineering’ approach that first considers the functions that a given 

cognitive system must support and then evaluates what neuro-computational machinery best 

achieves those functions. By systematically varying structure within a computer simulation 

and assessing the functional consequences, one can establish the architectural elements 
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critical to the targeted functions, potentially explaining why the system is organised in a 

particular way.

We apply this approach to understand the cortical network underlying semantic cognition, 

the controlled access to and manipulation of conceptual knowledge or meaning1,2. Semantic 

cognition provides a challenging test case because the system must concurrently achieve two 

functions that appear diametrically opposed. First, it must abstract over episodes and across 

time to acquire context-independent representations that express conceptual similarity 

structure and thereby promote knowledge generalisation across items and contexts1,3,4. This 

‘conceptual abstraction’ supports the ability to discern conceptual similarity amongst items 

denoted by images, words, or other attributes, despite sometimes dramatic variability in their 

surface properties4–6. For instance, if one learns that wolves are dangerous after being 

attacked in the woods, this knowledge should generalise to a different wolf on a farm or in 

the house promoting the inference ‘dangerous’ for all wolves. Second, the system must 

flexibly adapt semantic representations to suit immediate task demands1,5,7,8 - 

differentiating wolves and dogs when generating an inference about safety, but treating them 

similarly to infer physical appearance. Thus, the subset of features governing the similarity 

space and consequent generalisation in the moment must also be context-sensitive.

Whilst the literature currently advances several hypotheses about the cortical architecture of 

the semantic system, no prior work has compared their ability to simultaneously achieve 

conceptual abstraction and context-sensitivity. Interestingly, the extant hypotheses are 

variants of a central idea dating back at least to Wernicke: that semantic knowledge arises 

from interactions amongst various surface representations (sensory, motor, linguistic, 

affective, etc.) distributed throughout cortex9. They differ principally in their proposals about 

the pathways through which these surface representations interact. Consequently, they can 

be contrasted using computer simulations with a family of neural network models, all 

learning to compute the same interactive mappings amongst various surface representations, 

but differing in their architecture. Illuminating the architectural elements that best support 

both conceptual abstraction and context sensitivity, generates a cognitively- and 

computationally-motivated hypothesis about cortical network structure that can be weighed 

against critical empirical evidence, including (1) extant data about the anatomy of the 

cortical semantic system, (2) differing patterns of semantic impairment arising from damage 

to representation10–12 versus control2,13 systems, and (3) key functional brain imaging 

results from the study of semantic cognition under conditions of control14,15. The rest of this 

paper reports such an analysis, arriving at a model of controlled semantic cognition that 

provides a unified account of these disparate phenomena.

Core functions for semantic cognition

Research in semantic cognition has largely focused on how we acquire representations that 

capture conceptual structure from sensory, motor, and linguistic inputs that do not 

transparently reflect such structure (i.e., conceptual abstraction). This ability is thought to 

arise from sensitivity to patterns of covariation in experience16. While birds vary wildly in 

appearance, they possess properties that covary: feathers, beaks, wings, flying ability, the 

name “bird,” etc. Many otherwise competing theories agree that the human semantic system 
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detects and exploits such structure, representing items as conceptually similar when they 

share coherently-covarying properties, even if they differ in many other respects6,17,18. By 

this view, concepts reflect clusters in the high-order covariance structure of experience.

This idea becomes challenging, however, when one considers how the various properties 

purported to co-occur in experience are distributed across learning episodes. While birds 

typically possess the abilities to fly and lay eggs, those behaviours do not directly co-occur: 

a bird laying an egg is not flying, and vice versa6. Each experience provides only partial 

exposure to an item’s properties. Moreover, such exposure can be highly context- and 

modality-specific; for instance, learning that birds have hollow bones only via verbal 

statements in science class. Thus, conceptual abstraction relies upon extracting the relevant 

covariances across many different episodes over time, each providing only limited, context-

bound access to a subset of properties: the system must track sameness in kind across 

contexts and experiences to detect that the flying item observed in one episode is similar to 

an item labelled “bird” in another.

This requirement to form representations abstracted across items, modalities and contexts 

seems at odds with the second core function of semantic cognition, context-sensitivity. 

Context-appropriate behaviour requires flexible construction of task-relevant similarity 

structure, as different subsets of features and aspects of meaning are crucial in different 

contexts, whilst other often more dominant meanings must be inhibited1,6. For instance, 

representing a piano and a computer keyboard as similar when generating action plans, but 

dissimilar when generating inferences about their weight. This flexibility underlies 

construction of ad-hoc categories, e.g., ‘things that fit in a pocket’19, and the tendency for 

new learning to generalise differently depending upon the nature of the information20. Often 

the context-appropriate behaviour requires access to a particular subset of features within a 

modality. For instance, the features relevant for moving a piano conflict with those relevant 

to playing it; accessing both simultaneously may produce an action inappropriate in strength 

or nature7. Likewise, naming a piano requires a highly specific output differing from the 

information required to draw it or mime its action. Thus, conceptual abstraction and context-

sensitivity may appear diametrically opposed by virtue of their treatment of context, yet the 

semantic system must achieve both concurrently.

These considerations highlight three core functions of the human semantic system that 

informed the design of our simulations:

(1) It must acquire representations that capture overall conceptual similarity 

structure and not merely the perceptual, motor, and linguistic structure apparent 

within various modalities.

(2) It must acquire context-independent conceptual representations from learning 

episodes that provide only partial context-specific information about an item’s 

properties.

(3) It must adapt to context so as to generate only context-appropriate behaviours.
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Proposals about the neural architecture of semantic representation

Hypotheses about the architecture of the semantic network abound, but few have been 

specified with sufficient mechanistic precision to compare and contrast their implications for 

understanding conceptual abstraction and context-sensitivity (though see6). The reverse-

engineering approach we adopt, identifies a series of architectural ‘building blocks’ that 

distinguish various theories, then parametrically varies these to delineate a space of possible 

architectures that encompass some existing proposals, as well as hypotheses not typically 

considered. Formal comparison of the effects of each building block provides critical insight 

into hypotheses that have been articulated only verbally, and allows us to determine which 

possible model best supports both conceptual abstraction and context sensitivity.

To identify the building blocks, we first considered how contemporary hypotheses about the 

cortical architecture of semantics vary. One view derives from Wernicke’s9 proposal that 

semantic processing reflects direct, interactive communication amongst various associated 

surface representations—perceptual, motor, linguistic, affective, and so on. This perspective 

foreshadows modern ‘embodied cognition’ views21,22 and has been explored 

computationally23–26. Other work emphasises the importance of multimodal ‘hub’ regions 

for mediating interactions between sensorimotor modalities. For instance, ‘convergence 

zones’ may connect different modalities within a network that adopts multiple hubs, such as 

a pathway connecting visual and linguistic representations, another connecting visual and 

haptic representations, and so on27,28. Such hubs could be the sole vehicle for crossmodal 

communication, or could connect via a broader multimodal region, producing a hierarchical 

convergence of information across modalities. Whilst neither proposal has been investigated 

computationally, both have received support from functional neuroimaging and 

neuropsychological evidence27,29,30. Alternatively, the various representational modalities 

might all communicate via a single multimodal hub, an idea supported by convergent 

computational31,32, neuropsychological1,10,11, neuroimaging33,34, neurophysiological35,36 

and neurostimulation37,38 evidence.

With this landscape in mind, we considered two factors governing how modality-specific 

“spokes” connect to multimodal “hubs”. First, communication could be direct or involve one 

or more intermediating regions. Deeper models (possessing more layers between input and 

output) can acquire more complex representations and behaviours as attested by the recent 

explosion of research in deep neural networks39,40, and conceptual representations arise 

within the deepest layers of visual and language networks41–43. Thus, depth seems an 

important factor to consider. Second, network layers may connect only to immediately 

adjacent areas, or may additionally send direct ‘shortcut’ connections to anatomically distal 

regions, an analogue of white matter pathways. Such connectivity would need to be sparse 

due to cortical metabolic and packing constraints44,45.

From these considerations we discern five building blocks that may influence the behaviour 

of the cortical semantic network: a) presence of multiple hubs connecting subsets of 

modality-specific spokes, b) presence of a single multimodal hub, c) network depth, d) 

presence of shortcut connections, and e) hierarchical convergence across modalities. These 

building blocks combine in different ways to produce the space of candidate architectures 
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shown in Figure 1 (note, not all possible combinations are explored, only those relating to 

the theoretical literature and allowing assessment of the impact of each building block). 

Importantly, all architectures employ identical inputs/outputs, and possess equal numbers of 

hidden units and connections, differing only in the pattern of connectivity amongst units. We 

assess how each building block impacts conceptual abstraction, first without and then with 

simultaneous context sensitivity, and whether successful architectures provide insight into 

existing anatomical, neuropsychological and neuroimaging data.

Results

The models were fully recurrent neural networks with activity unfolding over time, trained 

in the same learning environment to the same performance criterion (all output units within 

0.2 of their targets), differing only in their connectivity (Figure 1). We created activation 

patterns for 16 items in each of three ‘modalities’ (e.g., word, image, action) designed to 

capture the central challenge of conceptual abstraction: conceptual structure was latent in the 

relationship between unit activations across modalities but differed strongly from the 

structure apparent within each modality considered independently (Figure 2, see Methods). 

In an initial phase, models received input from a single modality and learned to reproduce 

the complete pattern across all three modalities (as in prior work25,31,46). In a second phase, 

a control signal was provided as an additional input to indicate different task contexts, and 

models learned to activate, from input in a single modality, only those output units both true 

of the item and relevant to the task. For context-sensitive simulations, the required output 

modality was designated by an additional input signal.

To measure success in conceptual abstraction we computed a ‘true’ conceptual similarity 

matrix by concatenating the vectors from all three modalities for each item and tabulating 

the resulting correlations for all item pairs. We used this as the target matrix for the model 

representations in a representational similarity analysis47: for each model hidden layer, we 

correlated the pairwise similarities in its activation patterns and the true conceptual 

similarities. The highest such correlation for each model indicated its overall success in 

abstracting conceptual structure (see Supplementary Notes 1 and 2 for further details). We 

considered how this ‘conceptual abstraction score’, and learning speed, varied with model 

architecture, with and without the additional requirement of context-sensitivity. We also 

assessed how well each model (1) captures the multimodal structure, ignoring the modality-

specific structure, and (2) generalises newly-learned conceptual and modality-specific 

information across contexts—however since these results align fully with the conceptual 

abstraction scores, they are reported in Supplementary Notes 3-5. The simulations strongly 

favoured one architecture, which we assessed in its ability to explain core phenomena in 

anatomical, neuropsychological, and neuroimaging studies of controlled semantic cognition 

(Phase 3).

Phase 1: Conceptual representation without control

Consistent with prior work6, phase 1 models learned to generate, from input provided to any 

individual modality, the full pattern associated with the concept across all modalities. The 

models varied dramatically in their conceptual abstraction scores (F(6, 1273)=1168.575, 
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p<.001; Figure 3, Table S1, significant contrasts had p<.001 throughout, Hedges g effect size 

and confidence intervals (CI) are reported). Scores were better when the architecture 

included some form of hub (Spokes-Only < Bimodal Hubs; t(718)=-38.763; g=3.064, CI 

=-.21383, -.19322) and better still with a multimodal hub (Bimodal Hubs < Shallow 

Multimodal Hub; t(718)=-46.634, g=2.877, CI=-.17007, -.15633). No evidence was found 

for an effect of depth (Shallow Multimodal Hub ~= Deep Multimodal Hub; 

t(105.648)=-0.645, p=.521, g=0.099, CI=-.01207, .00614) and hierarchical convergence had 

a significant detrimental effect compared to a single multimodal hub (Deep Multimodal Hub 

> Convergent Hubs; t(133.049)=22.503, g=3.558, CI=.16428, .19594; Multimodal Hub-

plus-Shortcut > Convergent Hubs-plus-Shortcut; t(114.224)=11.436, g=1.808, 

CI=.06229, .08838). Addition of shortcut connections further improved performance for 

both deep architectures (Deep Multimodal Hub < Multimodal Hub-plus-Shortcut; 

t(138.57)=-5.444, g=0.861, CI=-.03815, -.01782; Convergent Hubs < Convergent Hubs-

plus-Shortcut; t(158)=-14.748, g=2.332, CI=-.15054, -.11498). Thus, the Multimodal Hub-

plus-Shortcut model performed better than all other architectures.

The number of training epochs required to reach the performance criterion varied by 

architecture (F(6, 98)=39.307, Figure 4). The Spokes-Only structure learned fastest, with the 

presence of a hub increasing the time taken (Spokes-Only < Bimodal Hubs; 

t(14.163)=-13.057, g=4.768, CI=-18409, -13219), yet a multimodal hub decreasing it 

somewhat (Bimodal Hubs > Shallow Multimodal Hub; t(15.735)=9.545, g=3.485, CI=9238, 

14522). Depth slowed training dramatically (Shallow Multimodal Hub < Deep Multimodal 

Hub; t(14.846)=-10.408, g=3.801, CI=-22042, -14543), but this slowing diminished 

substantially with shortcut connections (Deep Multimodal Hub > Multimodal Hub-plus-

Shortcut; t(20.653)=7.152, g=2.612, CI=9827, 17896; Convergent Hubs > Convergent Hubs-

plus-Shortcut; t(15.581)=5.065, g=1.849, CI=9168, 22417). There was no evidence 

hierarchical convergence affected learning time (Deep Multimodal Hub ~= Convergent 

Hubs; t(28)=-0.622, p=.539, g=0.227, CI=-9326, 4983; Multimodal Hub-plus-Shortcut ~= 

Convergent Hubs-plus-Shortcut; t(28)=-0.213, p=.833, g=0.076, CI=-2557, 2076).

The efficient abstraction of context-independent conceptual structure depended critically on 

the presence of one multimodal hub, resulting in the largest effects of all contrasts. Depth 

alone did not improve representation quality and greatly increased training time, but adding 

shortcut connections produced the highest-quality representation whilst speeding learning 

somewhat. An interim conclusion from Phase 1 is that conceptual abstraction benefitted 

from a single multimodal hub.

Phase 2: Controlled semantic cognition

Phase 2 simulations addressed the full challenge of controlled semantic cognition - 

achieving context-independent conceptual abstraction when experiencing and generating a 

limited, context-sensitive subset of an item’s properties per learning episode. Three 

additional context units were added, each coding the task-relevance of a modality. For 

instance, if modality 1 and 2 are important but modality 3 is not (e.g., picture naming 

requiring visual input and verbal output without action), context units 1 and 2 would be 

active. This Control Layer sent trainable unidirectional connections to all units, providing a 
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simple way of implementing control as an influence of the current context on the flow of 

activation through the network to generate task-appropriate representations and 

behaviours6,48,49 (Figure 5.A.).

The models were trained to generate context-sensitive outputs from partial inputs for 16 

items in each of 9 ‘tasks’, defined by specifying the relevant input/output modalities. Tasks 

could involve the same modality for both (e.g., word repetition), or one modality as input 

and another as output (e.g., picture naming). From the task representation and an item’s 

input features, the models learned to activate the item’s task-relevant features while keeping 

task-irrelevant features inactive. The models experienced a limited subset of an item’s 

features in any given training example, both in the inputs and outputs.

Conceptual abstraction score varied substantially by architecture (F(6, 1673)=2326.016, 

Figure 3, Table S2). Bimodal hubs improved performance (Spokes-Only < Bimodal Hubs; 

t(611.94)=-29.141, g=1.719, CI=-.07598, -.06639), but a multimodal hub performed still 

better (Bimodal Hubs < Shallow Multimodal Hub; t(718)=-59.050, g=4.668, CI=-.22886, 

-.21413). In contrast to Phase 1, depth significantly improved conceptual abstraction under 

conditions of control (Shallow Multimodal Hub < Deep Multimodal Hub; 

t(92.161)=-14.049, g=2.486, CI=-.16050, -.12074). Hierarchical convergence dramatically 

reduced conceptual abstraction (Deep Multimodal Hub > Convergent Hubs; 

t(90.826)=37.123, g=5.984, CI=.35030, .38991; Multimodal Hub-plus-Shortcut > 

Convergent Hubs-plus-Shortcut; t(137.278)=15.495, g=4.753, CI=.18296, .23648). Shortcut 

connections improved conceptual abstraction in both deep architectures (Deep Multimodal 

Hub < Multimodal Hub-plus-Shortcut; t(148.947)=-11.548, g=1.826, CI=-.16490, -.11671; 

Convergent Hubs < Convergent Hubs-plus-Shortcut; t(87.551)=-26.027, g=4.638, 

CI=-.32419, -.27819). Only the Multimodal Hub-plus-Shortcut architecture acquired 

representations significantly closer to the context-independent conceptual structure than the 

control structure (Supplementary Note 6).

Training time varied by architecture (Figure 4; F(6,98)=113.036), with effects mimicking 

those observed without control. The Spokes-Only architecture was fastest, with a bimodal 

hub leading to slowing (Spokes-Only < Bimodal Hubs; t(14.504)=-15.720, g=5.752, 

CI=-7530, -5371), and a multimodal hub reducing this (Bimodal Hubs > Shallow 

Multimodal Hub; t(15.833)=9.424, g=3.441, CI=3145, 4973). Depth significantly slowed 

learning (Shallow Multimodal Hub < Deep Multimodal Hub; t(15.778)=-21.041, g=7.683, 

CI=-10121, -8267), yet shortcut connections alleviated this effect (Deep Multimodal Hub > 

Multimodal Hub-plus-Shortcut; t(28)=8.235,g=3.007, CI=3937, 6545; Convergent Hubs > 

Convergent Hubs-plus-Shortcut; t(28)=6.077, g=2.219, CI=2759, 5565). There was no 

evidence that hierarchical convergence changed learning time (Deep Multimodal Hub ~= 

Convergent Hubs; t(28)=1.802, p=.576, g=0.658, CI=-146, 2280; Multimodal Hub-plus-

Shortcut ~= Convergent Hubs-plus-Shortcut; t(28)=-0.017, p=1, g=0.006, CI=-1494, 1470).

In these simulations, context units connected to all units in the semantic network, with their 

influence shaped by learning. In the best-performing Multimodal Hub-plus-Shortcut 

architecture, learned weights from control to the hub were smaller in magnitude than those 

projecting to shallower hidden (t(1517.275)=11.824, g=.507, CI=.50724, .70901) and spoke 
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units (t(1512.273)=10.364, g=.445, CI=.43016, .63102) suggesting that control should 

operate on more superficial layers (Figure 5.B.). To test this, we compared models in which 

control connected only to Spokes, Hidden Layer 1, or Hidden Layer 2 units (Figure 5, 

Supplementary Note 7). Conceptual abstraction suffered when control operated on the 

multimodal hub compared to the spokes (t(127.713)=31.981, g=5.057, CI=.29835, .33770) 

or Hidden Layer 1 (t(149.191)=27.631, g=4.369, CI=.27904, .32202). There was no 

evidence these differed from one another (t(158)=2.089, p=.115, g=.330, 

CI=.00095, .03404). Moreover, control connectivity to just the spokes (t(138.78)=21.504, 

g=1.977, CI=.09496, .13063) or shallow hidden units (t(158)=9.493, g=1.501, 

CI=.07547, .11513) produced reliably better conceptual abstraction than control connecting 

to all layers, despite employing fewer connections; and only these models acquired internal 

representations significantly closer to the context-independent than context structure 

(Supplementary Note 6). There was no evidence that locus of control affected training time 

(F(2,42)=2.073, p=.139, η2=.090, CI=-1247.957, 729.690; -1952.690, 24.957; -1693.557, 

284.090). Thus, the reverse-engineering approach suggests that controlled semantic 

cognition, is best achieved within an architecture employing a single, deep multimodal hub 

and shortcut connections, with control systems acting on superficial rather than deep 

network components.

Phase 3: Accounting for empirical phenomena with the reverse-engineered model

The reverse-engineered model differs from other proposals in a variety of ways, raising two 

questions. First, how does its structure accord with existing evidence about the anatomy of 

the cortical semantic network? Second, does the model help to explain important 

behavioural and neural phenomena in the study of controlled semantic cognition? We 

assessed these questions in phase 3.

Anatomy

It is well known that the ventral ATL forms a multimodal conceptual hub, as demonstrated 

in SD10–12, brain imaging33,50–52, neurostimulation37,38 and intracortical electrode 

recording35,53. Indeed, this observation motivated the original hub-and-spoke view of 

semantic representation31. Additionally, the progression from unimodal perceptual 

representations to multimodal conceptual representations occurs in a graded fashion across 

many cortical areas51,54 corresponding to a deep network. The simulations establish that 

such an architecture better promotes conceptual abstraction in conditions of context-

sensitivity than other possible arrangements (including popular multi-hub theories27, see 

Discussion).

The reverse-engineered model suggests two additional properties that differ from prior 

models. First, it proposes sparse long-range “shortcut” connections connecting posterior 

modality-specific regions directly to the multimodal hub, in addition to region-to-region 

connectivity. Both varieties of white-matter connection may be seen within the temporal 

lobe in assessments of the inferior longitudinal fasciculus55–57 and were highlighted within a 

detailed assessment of connectivity between anterior and posterior subsections of the 

fusiform gyrus58. Second, it suggests that neural systems of semantic control should connect 

with semantic regions primarily via more posterior regions distal to the anterior temporal 
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hub. Whilst the literature does not definitively answer this question, the core ventral ATL 

hub region does have few connections to distal regions59,60. A connection from control 

regions to shallower areas of the semantic network, is highly consistent with observations 

from functional neuroimaging that control demands act upon spoke representations14. Thus, 

the reverse-engineered model is in high accord with known anatomy and provides a testable 

hypothesis as to the structural connectivity between control regions and the anterior 

temporal hub.

Distinct neuropsychological syndromes

Damage to the anterior temporal hub versus frontal and temporoparietal control regions 

causes qualitatively distinct semantic syndromes, termed semantic dementia (SD) and 

semantic aphasia (SA) respectively10,12,13. Both produce comparably severe semantic 

deficits with frequent omissions in various tasks, but differ in errors of commission. Patients 

with SA more often generate context-inappropriate intrusions, producing associative errors 

(“acorn” for squirrel) and circumlocutions (“has stripes” for zebra) in naming, losing track 

of the target category in verbal fluency (e.g., for birds: robin, sparrow, chicken, pig), or 

failing to grasp a tool in a manner that affords its correct use in a given task context2,13,61. 

Patients with SD more often generate context-appropriate but semantically incorrect 

behaviours: committing coordinate (e.g., “horse” for zebra) or ordinacy (e.g., “animal” for 

squirrel) errors in naming, generating fewer but mainly correct items in verbal fluency, and 

grasping a tool correctly but exhibiting a semantically inappropriate use (e.g., brushing hair 

with a comb)2,10,13,62. Figure 6 shows these patterns for semantic fluency13 and picture 

naming63 from cohorts of each patient type studied in prior work. Does the reverse-

engineered model explain these differences?

To answer this question, we simulated disordered control in SA by adding noise to the 

control unit activations, and degraded representation in SD by removing a proportion of 

connections to, from and within the multimodal hub31. We simulated increasing levels of 

damage for each syndrome, matched for severity (indexed by total number of errors) and 

compared the relative frequency of three error types: omission (inactivation of a correct 

features), context-appropriate (activation of an incorrect task-relevant feature), and intrusion 

errors (activation of a task-irrelevant feature).

Damage to control produced fewer context-appropriate errors (damage type; F(1, 

190)=1292.758, η2=.540, CI=-376.230, -332.070; damage level; F(4,190)=128.784, 

η2=.215, CI=-441.830, -30.670; -207.980, -163.820; -127.180, -83.020; -33.780, 10.380; 

interaction; F(4,190)=99.301, η2=.166) and more intrusion errors (damage type; F(1, 

190)=2194.628, η2=.541, CI=320.775, 378.925; damage level; F(4,190)=168.893, η2=.245, 

CI=-54.975, 3.175; -44.425, 13.725; -38.575, 19.575; -31.825, 26.325; interaction; 

F(4,190)=168.893, η2=.167) than damage to representation (across all damage levels, see 

Supplementary Note 8). There was no evidence for differences in feature omissions, with 

frequency reflecting damage severity (damage type; F(1,190)=0.613, p=.435, η2=.000, 

CI=-21.340, 26.440; damage level; F(4,190)=440.445, η2=.901, CI=-326.690, -278.910, 

134.590, -86.810; 41.090, 6.690; -31.090, 16.690; interaction; F(4,190)=0.570, p=0.685, 

η2=.001). The reverse-engineered architecture accounts for the qualitatively different 
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patterns of impaired semantic cognition arising from damage to control versus 

representational elements of the system identified in the patient data (Figure 6).

Functional brain imaging

In classic neuroimaging experiments, participants viewed a stimulus (word or picture) and 

retrieved either the item’s colour or its action14. An identical stimulus elicited different 

functional activation depending on the task: engaging regions just anterior to colour 

perception for colour retrieval and motion perception for action retrieval (Figure 7.a., also 

see64). To see whether the reverse-engineered model explains this effect, we contrasted 

activation for each hidden and output unit across two tasks using the same input (e.g., a 

‘word’ in modality 1) but differing outputs (e.g., a ‘colour’ in modality 2 or an ‘action’ in 

modality 3). In both the Spoke Layer and Hidden Layer 1, the ‘retrieve colour’ task activated 

‘colour’ units more, while ‘retrieve action’ activated ‘action’ units more (Figure 7.b., 

independent-samples t-tests per unit, all Bonferroni-corrected ps<.05). Consistent with the 

imaging, no evidence of differential activation was observed in the hub, the input modality 

spoke or its associated hidden units.

Functional Connectivity

Recent evidence suggests functional connectivity between the ATL hub and modality-

specific regions changes depending upon the information required for a task15,65. In one 

fMRI study participants judged social status or traits of faces15. Whilst ATL connectivity to 

the fusiform face area (i.e., the input spoke) was stable, functional connectivity to spokes 

associated with status- (IPL) or trait- (PCC) processing differed by task (Figure 7.c.). In the 

reverse-engineered model, we assessed the change in functional connectivity between the 

hub and spokes for two conditions with varying output requirements. Stimuli were always 

presented in modality 1 (‘faces’), but output was either in modality 2 (‘status’) or modality 3 

(‘trait’). T-tests contrasted the correlation strengths of the time series of the hub and each 

spoke region between contexts. There was no evidence for differential hub connectivity with 

the input spoke across contexts (t(158)=-0.568, p=1, g=.090, CI=-.08856, .04900), but 

connectivity to the two output spokes varied significantly (status vs. trait; Modality 2 ‘status’ 

spoke; t(158)=3.659, p=.001, g=.578, CI=.06227, .20837; Modality 3 ‘trait’ spoke; 

t(158)=-3.030, p=.009, g=.479, CI=-.18139, .03819). Thus, despite stable physical 

connectivity, task context effects on unit activations account for dynamic functional 

connectivity.

Discussion

We applied a reverse-engineering approach to discover a neural network architecture capable 

of achieving the core, opposing functions of controlled semantic cognition: conceptual 

abstraction across modalities and contexts with simultaneous context-sensitivity. The 

optimal network had four important characteristics: (1) a multimodal hub only, (2) a deep 

architecture, (3) sparse shortcut connections, and (4) control operating on shallow rather 

than deep network components. The reverse-engineered model subsequently accounted for 

several disparate phenomena in controlled semantic cognition including the coarse anatomy 

of the temporal cortex, qualitative differences in error patterns observed in SD vs. SA, 
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differential functional activation to the same stimulus depending on the task, and task-

dependent shifts in functional connectivity between the ATL hub and sensory regions. In this 

discussion we consider why these architectural elements may be critical for conceptual 

abstraction and context-sensitivity, and implications for theories of controlled semantic 

cognition.

Why a multimodal hub only?

Prior work established that feedforward neural networks exploit shared structure across 

modalities and contexts only when information from each gets passed through the same 

units and weights somewhere in the network, termed the ‘convergence principle’6,31. Here 

we show that convergence remains critical for learning structure in more neurobiologically-

plausible recurrent networks: architectures lacking a single multimodal hub can learn the 

same input/output mappings, but do not acquire internal representations reflecting the full 

conceptual representational structure across modalities and learning episodes. Even models 

possessing a multimodal hub fail to learn the desired structure if they also possess shallower 

and more direct pathways between modalities as there is little pressure to use the 

connections mediating all modalities. These findings are problematic for distributed-only9,66 

and multi-hub27,28 theories of semantic cognition, but consistent with the hub and spoke 

theory31. The reverse-engineered model merges the hub-and-spoke model with the 

controlled semantic cognition framework1,31 with the additional constraints of depth (also 

instantiated in41), shortcut connections and a shallow interface between control and 

representation systems.

Why should depth help?

Deep networks can acquire complex internal representations that generalise well when 

trained on large corpora of naturally occurring stimuli67. Yet, only when required to generate 

context-sensitive outputs did the deeper model outperform the shallow model. Thus, depth 

particularly facilitates the ability to discover representational structure when learning 

involves experience with limited, context-dependent inputs and outputs. Context-sensitive 

training pressures the system to represent the same item differently in different contexts, 

making it difficult for the system to exploit feature covariance across contexts. If the 

multimodal hub connects directly to unimodal representations, context strongly influences 

the representations. Likewise, a deep model in which the multimodal hub directly receives 

context inputs acquires context-bound representations. Only when the model is deep and 

control operates on the shallower elements is the hub sufficiently insulated from contextual 

information to acquire more context-invariant representations.

Why shortcut connections?

Deep networks initially learn slowly due to ‘vanishing’ or ‘exploding’ gradients68: with 

many weights intervening between input and output (and little initial differentiation between 

inputs), changes to earlier weights may have negligible impact, so error-driven learning 

produces minimal (or inordinately large) weight changes6,69. Even when sparse, shortcut 

connections significantly remediate this problem by propagating error through fewer layers 

to learn more quickly, increasing pattern differentiation and speeding overall learning. They 

also produce a concomitant improvement in conceptual abstraction, perhaps by roughly 
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approximating the core structure in the environment or ‘warming up’ the deep hub early in a 

trial. A similar cortical mechanism may be in play, with an early feedforward sweep 

bringing the hub online and generating approximately correct states, followed by continued, 

iterative interaction between hub and spoke regions70,71.

Accounting for distinct semantic syndromes

Simulated damage to control versus hub representations produced qualitatively similar 

damage to the error pattern found across SD and SA: equivalent reductions in accuracy but 

more context-inappropriate intrusions following control damage and context-appropriate 

errors following representation damage. In the intact model, control can be viewed as 

“selecting” which properties matter for the task, potentiating context-relevant while 

suppressing context-irrelevant properties49. Context-sensitive responding arises from the 

joint influence of representational and control systems on surface properties. Distortion of 

the control signal incorrectly potentiates context-irrelevant units, allowing them to produce 

context-inappropriate behaviour. With damaged representations the intact control signal only 

potentiates context-appropriate features, but distorted feedback from the hub activates the 

wrong features within this subset, producing context-appropriate but semantically incorrect 

behaviours.

Why separate systems for representation and control?

A broad literature in neuropsychology, functional neuroimaging2,72,73, and connectivity74,75 

suggests semantic representation and semantic control are supported by the interaction of 

anatomically and functionally segregated systems. The current work suggests why this might 

be. The hub-and-spoke theory has long suggested that the anatomy of the temporal lobe 

promotes the extraction of conceptual structure across modalities and time in the multimodal 

hub. The current work extends the set of anatomical features critical to support this function 

alongside the additional constraint of context-sensitivity. This ability is compromised when 

the hub region is strongly influenced by the immediate task context. Perhaps the gross 

segregation of systems for representation vs. control is evolution’s way of promoting 

acquisition of deep conceptual representations while preserving the flexibility required to 

think and act as the situation demands.

Method

Model Environment & Control

Each concept consisted of 12 features in each of 3 modalities (M1, M2 and M3; see Figure 

2). Concepts were constructed based on a critical aspect of conceptual structure; unimodal 

perceptual structures only weakly correlate with the conceptual structure which is more 

predictive but requires extraction across modalities. The model environment included four 

orthogonal structures; one distinct unimodal (based on 5 perfectly correlated or anti-

correlated features within a single modality) structure per modality (unimodal M1, unimodal 

M2 and unimodal M3) and a multimodal (based on 12 highly correlated features spread 

across all three modalities) structure. In each modality the unimodal structure is greater, yet 

overall, the multimodal structure is stronger. Whilst the main analyses focus on the full 

structure, highly consistent results are displayed for the unimodal and multimodal structures 
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in Supplementary Notes 3 and 4. Input was always in a single modality, with the other two 

modalities set to 0. For simulations without control, the target was the full concept, resulting 

in 48 versions of the 16 examples. For simulations with control, each concept was presented 

in one of three modalities with a control signal designating a required output in one of three 

modalities (as well as the input modality), resulting in 144 versions of the 16 examples. 

Task-irrelevant modalities had targets of 0.

Model Architecture

Code for replicating all simulations is available in the Supplementary Materials and at 

https://github.com/JacksonBecky/reverse-engineered-semantics. Additional code to process 

the results is available online. All architectures utilised a single framework, consisting of 12 

pairs of input and output units per modality (connected on a one-to-one basis with a frozen 

weight of 6 and a fixed bias of -3 for the output units), 60 hidden units and 3132 

bidirectional connections with learnable weights. All learnable weights were initialised 

using the default LENS command resulting in small random weights (mean = 0, range =1). 

All hidden units employed a sigmoidal nonlinearity, scaling their activity between 0 and 1, 

in keeping with prior explorations of semantic representation6. Matching the number of 

resources allowed clear interpretation of the differences between the architectures. All 

architectures had connections between the three modality-specific regions of the Spokes 

Layer and the six subsections of Hidden Layer 1 (with two subsections connected to each 

modality-specific spoke region) and within each portion of Hidden Layer 1. Deep 

architectures had connections from Hidden layer 1 to Hidden Layer 2 and within Hidden 

Layer 2. Whilst it may be noted that the modality-specific input-output regions are not 

technically ‘spokes’ without a hub, these sensorimotor regions are referred to as such across 

all the architectures for consistency. To match the number of connections between 

architectures, some connections were sparse (see Supplementary Method 1). Two factors 

varied between the 7 model architectures; the hidden layer configuration (shallow; a single 

layer of 60 units vs. deep; one layer of 42 units and a deeper layer of 18 units) and the 

presence or absence of four types of connections (Direct Spoke Connections; connections 

between modality-specific output units in the Spokes Layer; Bimodal Hub Connections; 

connections between pairs of Hidden Layer 1 regions that receive different modalities of 

input, resulting in the formation of bimodal hubs; Multimodal Hub Connections; 

connections between hidden units to form a single multimodal hub, either within Hidden 

Layer 1 or Hidden Layer 2; Shortcut Connections; direct but sparse shortcut connections 

between the Spokes Layer and Hidden Layer 2 that bypass Hidden Layer 1). Although none 

of these models are of the depth typically associated with deep neural networks, employing 

two vs. one hidden layers reflects a great relative increase in depth and the term ‘deep’ is 

used here in the relative sense to distinguish the shallow and relatively deeper architectures. 

Whilst long-range connections are likely to be relatively sparse, their precise sparsity is not 

known. Shortcut Connections were included at a sparse but non-trivial proportion of 1 in 24 

(although see Supplementary Note 9 for an assessment of systematically varying the sparsity 

within the Multimodal Hub-plus-Shortcut architecture).

Figure 1 represents each architecture. Three architectures were constructed from the shallow 

configuration; a ‘Spokes-Only’ architecture employing Direct Spoke Connections only, a 
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‘Bimodal Hubs’ architecture with Bimodal Hub Connections only and a ‘Shallow 

Multimodal Hub’ architecture with Multimodal hub Connections only, resulting in Hidden 

Layer 1 forming a single multimodal hub. All four deep architectures have Multimodal Hub 

Connections resulting in a multimodal hub in Hidden Layer 2. The ‘Deep Multimodal Hub’ 

architecture has no additional connections, thus three modality-specific routes connect via a 

deep multimodal hub. The ‘Multimodal Hub-plus-Shortcut’ architecture also included 

Shortcut Connections and the ‘Convergent Hubs’ architecture included additional Bimodal 

Hub connections, resulting in hierarchical convergence as multiple bimodal hubs connect to 

a single deep multimodal hub. The ‘Convergent Hubs-plus-Shortcut’ architecture combined 

the Bimodal Hub Connections, Multimodal Hub Connections and Shortcut Connections. 

The seven architectures allowed contrasts separating the effect of each architectural feature; 

the effects of a hub (Spokes-Only vs. Bimodal Hubs), a multimodal hub (Bimodal Hubs vs. 

Shallow Multimodal Hub), depth (Shallow Multimodal Hub vs. Deep Multimodal Hub), 

shortcut connections (Deep Multimodal Hub vs. Multimodal Hub-plus-Shortcut and 

Convergent Hubs vs. Convergent Hubs-plus-Shortcut) and hierarchical convergence (Deep 

Multimodal Hub vs. Convergent Hubs and Multimodal Hub-plus-Shortcut vs. Convergent 

Hubs-plus-Shortcut).

In Phase 2, a ‘Control Layer’ consisting of three units (each corresponding to one modality) 

was added to provide a context signal. The models had unidirectional learnable connections 

from the control units to the Spokes Layer, Hidden Layer 1 and Hidden Layer 2 (where 

present). Initially, no assumptions were made as to where control should connect, allowing a 

fair comparison across architectures. Following this analysis, the emergent reliance on the 

connections to each layer was investigated using an equal number of connections to all 

layers (81 per layer if shallow, 54 per layer if deep). Then, the effectiveness of this emergent 

pattern was verified by contrasting versions of the model where the Control Layer was 

connected to each single layer (with the same number of connections).

Training Parameters

The models were constructed and trained using the Light Efficient Network Simulator 

(LENS, version 2.63) software 76. Each simulation employed a fully recurrent network with 

24 activity updates per example (6 time intervals and 4 ticks per time interval). Inputs were 

presented for the first 3 time intervals. Each training batch consisted of all examples 

presented once in a random order. At the end of each batch, error derivatives were calculated 

and all weights in the model adjusted by a small amount. All simulations employed the same 

training parameters, found to allow learning in pilot simulations. The models were trained 

using gradient descent with a learning rate of 0.001 and a weight decay parameter of 0.0001 

with no momentum. Training ended when all output feature units were within 0.2 of their 

target. Thus, all architectures were matched on accuracy. Analyses were performed using the 

final time step of a test trial. Each simulation was performed 80 times. No power analysis 

was used to determine this sample size, however, it is much higher than typical modelling 

simulations (e.g.41).
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Assessment Metrics

Data processing was performed in MATLAB and statistics in the Statistical Package for the 

Social Science (SPSS, 2013). The similarity structure of the models representations were 

compared to the ground-truth similarity structure to determine each architectures ability to 

accurately discover and represent the full structure in the environment. The critical example 

structure used to form this conceptual abstraction score is the ‘context-independent’ 

semantic representation structure (the relationships between examples based on the full set 

of features regardless of the current input or output domain). For the simulations with 

control it is also possible to look at the similarity of the representations to the context signal 

(context-only) or the full structure varying by context and concept (context-sensitive), see 

Supplementary Note 10.

Correlation-based similarity matrices were constructed from the activity in a model region 

across all examples after learning. Model regions were defined as portions of the model with 

the same potential connections (before sparsity is taken in to account) as connectivity 

constrains function44,78,79. This resulted in 3 Hidden Layer 1 regions in the Spokes-Only, 

Shallow Multimodal Hub, Deep Multimodal Hub and Multimodal Hub-plus-Shortcut 

architectures and 6 in the Bimodal Hubs, Convergent Hubs and Convergent Hubs-plus-

Shortcut architectures. The similarity between each result-based similarity matrix and the 

example-based similarity matrix was determined using a correlation. This resulted in a value 

per model run and layer subregions for statistical comparisons, although these equivalent 

values are averaged when reported. The values for the region with the highest similarity to 

the context-independent semantic representation were used to contrast the models (although 

for comparison of all regions and consideration of the effect of the number of units see 

Supplementary Note 1). Additionally, the number of epochs taken to train each architecture 

to criterion was determined for 15 runs of each model. For the simulations with and without 

control, a repeated measures ANOVA assessed the differences between the 7 architectures 

and a priori two-sided between-samples t-tests (with Levene’s tests for equality of variance) 

were used to compare the effect of each architectural feature with Bonferroni correction for 

the seven multiple comparisons. All p values for significant contrasts are below .001 unless 

specified otherwise. As a difference of any magnitude may reach significance with a 

sufficient number of observations, we complement the statistical analyses by reporting an 

Hedges g (a measure of effect size for t-tests that is weighted by sample size) or eta squared 

(for ANOVAs) effect size and 95% confidence intervals.

To determine how the Control Layer should connect to the rest of the model, two 

assessments were used. Firstly, 40 models were ran with connectivity to each layer. The 

emergent preference for receiving and employing the control signal in each layer was 

examined by contrasting the sum absolute magnitude of the weights to each layer using 3 t-

tests (Spokes vs. Hidden Layer 1, Spokes vs. Hidden Layer 2, Hidden Layer 1 vs. Hidden 

Layer 2) in the deep architectures and one (Spokes vs. Hidden Layer 1) in the shallow 

architectures. Bonferroni multiple comparison correction for 3 contrasts was applied to the 

deep architectures. Secondly, the effectiveness of this emergent pattern was verified by only 

connecting the models to one layer (either the Spokes Layer, Hidden Layer 1 or, where 

possible, Hidden Layer 2). These model versions were compared on their extraction of the 
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context-independent representation structure using two-sided between-samples t-tests and 

Bonferroni correction applied.

Lesioning the Model

To assess the effect of lesions to representation and control regions, the models were 

constructed and trained using the optimal architecture identified within Phase 2 (including 

connections from control to the Spokes Layer only). To damage representational processes, 

the connections to, from and within Hidden Layer 2 were removed as this region had the 

greatest conceptual abstraction score and thus, showed the greatest specialisation for 

representation processes. In the Control Damage simulations, Gaussian noise was added to 

the input to the control units (this noise was stable across a trial and varied between trials 

and model runs). This addition of noise was intended to simulate damage within the control 

system that produces this signal. Thus, a different mechanism of damage was employed to 

simulate a similar effect within the control system proper and the representation system (see 

Figure 6.A.). Three types of errors may be made; omission of a feature that is correct both 

for that concept and that context, commission of a feature that is in the correct context but 

incorrect for that concept and commission of a feature in the incorrect context. To allow 

comparison across damage type, controlling for the effect of damage severity, each 

simulation was performed at a variety of levels with the proportion of weights removed (for 

Representation Damage) or the amount of noise added (for Control Damage simulations) 

varied systematically. Then, points at which the number of errorful features (those further 

than 0.2 from the correct output) were matched across the damage types were identified. At 

the chosen levels, t-tests showed the three damage types did not have significantly different 

numbers of errors (each p>.25). This resulted in the identification of four damage levels at 

which the effect of damage type on the three possible error types could be assessed; 

Representation Damage with the removal of connections at proportions of 0, 0.1, 0.25, 0.3 

and 0.35, and Control Damage with Gaussian noise added to the control signal with ranges 

of 0, 0.625, 1, 1.25 and 1.375. For each error type (Correct Feature-Type Commission, 

Incorrect Feature-Type Commission, Omission) an ANOVA was performed to assess the 

effects of damage type (Representation Damage, Control simulations) and damage level (No 

damage, Level 1, Level 2, Level 3, Level 4). Error types were compared across the damage 

types using two-sided independent samples t-tests at each level. As the proportion of errors 

of each type is highly similar across damage levels, only Level 3 is presented in Figure 6. 

The full pattern of results across damage levels is provided in Supplementary Note 8. The 

simulation data were compared to item-level error patterns in picture naming and fluency 

tasks. The picture naming data were previously published by Jefferies & Lambon Ralph13 

and included 10 patients with SA and 10 with SD. Intrusion errors are associative, and 

context-appropriate errors are all other semantic errors (including category coordinate and 

superordinate errors). Intrusion, context-appropriate and omission errors are provided as a 

proportion of these errors, excluding phonological errors and perseverations. The category 

fluency data were previously presented in Rogers et al.63 (without the present split of 

intrusion and context-appropriate errors). The data includes responses from 7 SD and 8 SA 

patients to 8 basic categories (e.g., birds). Omissions are based on comparison to the average 

correct responses of 16 age-matched neurologically-intact control participants. Intrusions 

include semantic associates, responses to a prior category and unrelated words. Context-
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appropriate errors include concepts from similar categories and specific-level responses. All 

errors are shown as a proportion of these semantic and omission errors, excluding 

phonological errors and repetitions (which could have a non-semantic cause).

Simulating Dynamic Changes in Activation and Functional Connectivity of the Semantic 
Network

Martin et al.,14 performed H2O15-PET on 12 participants viewing word stimuli and a further 

12 participants viewing line drawings. To simulate the univariate activation differences they 

identified, two conditions were contrasted using the same data presented in Phase 2 – a 

‘colour’ context (modality 1 input and modality 2 output) and an ‘action’ context (modality 

1 input and modality 3 output). An independent-samples t-test was used to compare 

activation in each output or hidden unit between the two conditions. The p-values presented 

are Bonferroni-corrected for the number of units contrasted.

The differential connectivity of hub and spoke regions based on varying output requirements 

in Wang et al.15 was simulated in the reverse-engineered model. Simulations were identical 

to Phase 2, except for the addition of a negative bias of -4 on each hidden unit to simulate 

the metabolic cost of activating neurons, as in prior imaging simulations41. The model was 

ran 80 times and activity at the final time point of each trial in context 1 (modality 1 ‘face’ 

input, modality 2 output, or ‘status’) and context 2 (modality 1 ‘face’ input, modality 3 

output, or ‘trait’) was concatenated in a different random order per model run to create a 

time series for each voxel, per context. Each run of the model is treated as a different 

participant. To collapse across units within a region, a PCA was performed per region for 

each context in each run, analogous to extracting an ROI time course for a 

psychophysiological interaction analysis as in Wang et al.15. The correlation between the 

time course in Hidden Layer 2 and each spoke region was calculated and (as a PCA result is 

equivalent to its reverse) the absolute value of this correlation taken as a measure of the 

functional connectivity of these regions in this context for this model run. The correlation 

values for each run were compared between context 1 and 2 for each pair of regions using an 

independent-samples t-test to assess whether there was a significant change in the 

connectivity of the hub and a spoke between the two contexts. The p-values were 

Bonferroni-corrected for the three connections assessed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code Availability

Code for replicating all simulations is available in the Supplementary Materials and online at 

https://github.com/JacksonBecky/reverse-engineered-semantics. Code for further analysis is 

available online.
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Figure 1. 
The seven different architectures. Each architecture is based on the shallow or deep 

configuration and has one or more of the four types of variable connections (Direct Spoke 

Connections, Bimodal Hubs Connections, Multimodal Hub Connections and Shortcut 

Connections). The presence or absence of each connection type is demonstrated using + 

(where present) or - (where absent). The connection is also shown diagrammatically using 

arrows in the same colour. Black arrows represent the connections that are stable between 

architectures. Although only a subset of these connections may be displayed, the Shallow 
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Multimodal Hub architecture has connections between all Hidden Layer 1 subregions. 

Connections between Hidden Layer 1 regions with projections from the same modality are 

shown in grey; these are part of the connectivity changes needed to construct architectures 

without hubs in this layer and are not shown in the same colour as the other changes simply 

as this change is necessary for different connections and may cause confusion as to where 

the key change is. Many of the connections shown create coherent regions in Hidden Layer 1 

- these are visualised as separate regions so that the correspondence between the 

architectures is apparent. The resulting 7 architectures are provided with labels (italics) for 

reference within the text. All employ the same total number of weights and units. M = 

modality.
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Figure 2. 
The model environment. A. The full set of features for each concept. Each row is a concept 

and each column is a feature. A black box indicates that the feature is present and a white 

box that it is absent for that concept. All 16 concepts are shown here. Red boxes show 

features that covary strongly across modalities (multimodal structure) whilst the orange, 

yellow and green boxes highlight features that covary reliably within each modality 

(unimodal structure). The structures expressed by the multimodal and each unimodal feature 

set are mutually orthogonal. B. A matrix showing the context-independent conceptual 

similarity structure across all modalities for the 16 items for Phase 1. Colours show the 

correlation (ranging from -1 to 1) for all pairs of vectors based on each full row of Panel A. 

C. Matrices showing correlations amongst examples used in the context-sensitive 

simulations in Phase 2, including (left) the full context-sensitive example structure for all 

144 input/output patterns, (middle) the example structure based on all features of a concept 

regardless of task context (same as panel B), and (right) similarities based on the control 

signal alone regardless of the features of a concept. The 144 patterns arise from crossing 16 

items with the 9 possible task contexts. The context-sensitive example structure is a blend of 

the context-independent conceptual structure used to measure conceptual abstraction 

(middle; based on the features of each concept only) and the context-only similarity 
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structure (right) that indicates the appropriate input and output modalities regardless of 

concept.
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Figure 3. 
Comparing the conceptual abstraction across the architectures without (in Phase 1) and with 

(in Phase 2) the additional demand of context-appropriate output. The similarity between the 

context-independent example structure and the representations in Hidden Layer 1 (green) 

and Hidden Layer 2 (orange) in 80 observations of each architecture are displayed. The 

higher box reflects the conceptual abstraction score for that model architecture. The middle 

bar shows the median similarity value and the cross reflects the mean across the different 

runs of the model (additional bars show the first and third percentile, values more than 1.5 
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times the interquartile range are displayed as dots, otherwise the minimum and maximum 

values are reflected by the whiskers). Planned contrasts with significant differences in the 

conceptual abstraction score are highlighted with a black line (p<.05).
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Figure 4. 
Comparing the training time across the architectures without (in Phase 1) and with (in Phase 

2) the additional demand of context-appropriate output. The time taken to learn the examples 

as the number of epochs of training is displayed for 15 observations of each architecture. 

The middle bar shows the median number of epochs across different runs of the model and 

the cross reflects the mean (additional bars show the first and third percentile, values more 

than 1.5 times the interquartile range are displayed as dots, otherwise the minimum and 

maximum values are reflected by the whiskers). A single outlier from the Convergent Hubs 
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architecture is not shown as it was greater than 60000 epochs. Significant differences in the 

planned contrasts are highlighted with a line (p<.05).
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Figure 5. 
Consequences of the location of the connection to control. For all plots, the middle bar 

shows the median number of epochs across different runs of the model and the cross reflects 

the mean (additional bars show the first and third percentile, values more than 1.5 times the 

interquartile range are displayed as dots, otherwise the minimum and maximum values are 

reflected by the whiskers). Significant differences in the planned contrasts are highlighted 

with a line (p<.05). A. The different ways control was connected to the Multimodal Hub-

plus-Shortcut architecture. This diagram is equivalent to Figure 1, yet simplified as the 
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correspondence between architectures is not being highlighted. The modalities to attend to 

(i.e., those where an input is received or an output expected) are input to the 3 units in the 

Control Layer. Learnt unidirectional connections from the Control Layer allow the control 

signal to enter the semantic system at different points. Connections to all layers were present 

in initial simulations and the magnitude of weights to each layer compared. Then, the 

Control Layer was selectively connected to either the Spokes Layer (black arrow), Hidden 

Layer 1 (green arrow) or Hidden Layer 2 (orange arrow) and the results of these simulations 

compared. B. The emergent pattern of the absolute value of the weights from the control 

units to each layer in 40 observations of the Multimodal Hub-plus-Shortcut architecture. C. 

The effect of connecting the Control Layer to each layer of the Multimodal Hub-plus-

Shortcut architecture on the similarity between the context-independent example structure 

and the representations in Hidden Layer 1 (green) and Hidden Layer 2 (orange) across 80 

different runs of the model. The highest box reflects the conceptual abstraction score. D. The 

time taken to learn the examples is shown as the number of epochs of training across 15 

different runs of the model when the control signal is connected to the Spokes Layer (black), 

Hidden Layer 1 (green) or Hidden Layer 2 (orange).
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Figure 6. 
Simulating different error patterns in SD vs SA. A. The connections and inputs affected in 

the different patterns of damage. The Representation Damage simulation involved removing 

a proportion of all connections within, to and from Hidden Layer 2 (shown in green). The 

Control Damage simulation involved adding noise to the input to the control units (shown in 

red). B. The left panel shows the total proportion of errors that were omissions (“don’t 

know” or no response) for a cohort of 20 patients with damage to control regions (in SA) or 

representation regions (in SD) in a picture naming task, together with proportion of item-

level error types that were omissions (target units that did not activate) in 80 observations of 

the model under control vs. representation damage. The remaining panels show the total 

proportion of commission errors that involved producing context-appropriate vs context-

inappropriate intrusion errors, for cohort of SD and SA patients in a picture naming task (20 

participants) and in a semantic fluency task (15 participants), and for the model under 

damage simulating these disorders (80 observations of each). As different damage levels 
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result in a highly similar proportion of each error type only the intermediate level is shown 

here (see Supplementary Note 8 for further details). The two syndromes show equal 

probability of omissions in naming, but differential probability of producing context-

appropriate and intrusion errors in both fluency and naming. The pattern of changes 

following both control and representation damage are captured by the corresponding pattern 

of damage in the model.
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Figure 7. 
Simulating dynamic changes in univariate activation and functional connectivity across 

contexts. A. Martin et al.,14found differences in and around the regions responsible for 

perception of colour and action (black) demonstrated greater activation when colour (red) or 

action knowledge (green) was required for a task. B. The reverse-engineered model 

simulates this effect successfully; across 80 observations of a context where the features in 

modality 2 are required there is greater activation of units in and around this ‘colour’ spoke 

(red), and for 80 observations where modality 3 is the required output, there is greater 

activation of units in and around this ‘action’ spoke (green). There are no changes in the 

involvement of the input spoke or Hidden Layer 2. C. Wang et al.15 used a 

psychophysiological interaction analysis to demonstrate dynamic connectivity between the 

ATL hub and the spoke regions involved in trait or status processing when the required 

output shifted between these contexts. Functional connectivity with the input spoke did not 

vary. D. The reverse-engineered model demonstrated the same dynamic functional 

connectivity – whilst connectivity between Hidden Layer 2 and the input spoke (M1) stayed 

constant, the requirement to produce modality 2 features (‘status’) as output increased its 

functional connection with the hub and reduced the connectivity of the modality 3 spoke 

with the hub compared to the production of modality 3 features (‘traits’).
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