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Abstract

Next-generation sequencing projects continue to drive a vast accumulation of metagenomic sequence data. Given the
growth rate of this data, automated approaches to functional annotation are indispensable and a cornerstone heuristic of
many computational protocols is the concept of guilt by association. The guilt by association paradigm has been heavily
exploited by genomic context methods that offer functional predictions that are complementary to homology-based
annotations, thereby offering a means to extend functional annotation. In particular, operon methods that exploit co-
directional intergenic distances can provide homology-free functional annotation through the transfer of functions among
co-operonic genes, under the assumption that guilt by association is indeed applicable. Although guilt by association is a
well-accepted annotative device, its applicability to metagenomic functional annotation has not been definitively
demonstrated. Here a large-scale assessment of metagenomic guilt by association is undertaken where functional
associations are predicted on the basis of co-directional intergenic distances. Specifically, functional annotations are
compared within pairs of adjacent co-directional genes, as well as operons of various lengths (i.e. number of member
genes), in order to reveal new information about annotative cohesion versus operon length. The results suggests that co-
directional gene pairs offer reduced confidence for metagenomic guilt by association due to difficulty in resolving the
existence of functional associations when intergenic distance is the sole predictor of pairwise gene interactions. However,
metagenomic operons, particularly those with substantial lengths, appear to be capable of providing a superior basis for
metagenomic guilt by association due to increased annotative stability. The need for improved recognition of metagenomic
operons is discussed, as well as the limitations of the present work.
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Introduction

The ongoing prevalence of next-generation sequencing projects

continues to drive a vast accumulation of metagenomic sequence

data. As of 2011, the Sequence Read Archive [1] exceeded 100

Terabases of open-access reads produced by next-generation

sequencing efforts, with metagenomic sequences accounting for an

11% share of all bases [2]. Moreover, this trend seems unlikely to

subside with the imminent arrival of faster and less expensive

sequencing technologies [3]. Given the growth rate of metage-

nomic data, automated approaches to functional annotation are

indispensable. A cornerstone heuristic of many computational

protocols for functional annotation is the concept of guilt by

association (GBA) which asserts that genes that are associated by

way of protein interactions or expression patterns are more likely

to share a function [4]. As a result, GBA has been heavily

exploited by both gene co-expression research [5–8] and studies

involving genomic context methods [9–12].

Genomic context methods are of particular interest to

functional annotation efforts because they offer functional

predictions that are complementary to homology-based annota-

tions [13,14], thereby offering a means to extend the total

proportion of annotation. However, methods involving phyloge-

netic profiles [15,16], conserved gene orders [17,18], and gene

fusions [19,20] still require determinations of orthology that are

not possible when using metagenomic sequence fragments because

they are not equivalent to discrete and intact genomes [21]. In

contrast, operon methods that exploit co-directional intergenic

distances offer context-based predictions and have been used

previously to determine metagenomic functional associations [21–

23]. Therefore, metagenomic operons can provide homology-free

functional annotation through the transfer of functions among co-

operonic genes, assuming that GBA is indeed applicable to

metagenomic scenarios.

Although GBA remains a well-accepted annotative device, its

merit has met with both early [24] and ongoing opposition [25].

Moreover, its specific applicability to metagenomic functional

annotation has not been definitively demonstrated. In the present

work a large-scale assessment of metagenomic GBA is undertaken

where associations are predicted on the basis of co-directional

intergenic distances. Specifically, functional annotations are

compared within pairs of adjacent co-directional genes, as well

as operons of various lengths (i.e. number of member genes), in

order to reveal new information about annotative cohesion versus

operon length. The effects of multifunction genes are also

considered.
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Methods

Both metagenomic and genomic genes were parsed from

downloaded raw data and used to derive gene pair data and to

construct a database of metagenomic operons. The data were

subsequently mined to obtain individual gene pair comparisons, as

well as whole operon comparisons. All operations were compu-

tationally implemented in Java and run on a Gateway NV59

laptop using an Intel Core i3-330M processor.

Data Acquisition
The raw metagenomic data consisted of the complete set of

public metagenomes available from the Integrated Microbial

Genomes with Microbiome Samples (IMG/M) metagenomics

database [26] as of February 1st 2012. This included 305 total

datasets with the following exceptions: i) 16 datasets were

unobtainable due to their file sizes and the timeout policies of

the IMG/M; ii) four datasets were removed because they did not

contain gene coordinate information necessary for predicting gene

interactions. The remaining 285 datasets contained a total of

47,385,410 protein-coding genes distributed across 45,167,094

scaffolds. The specific features of the individual datasets (e.g.

ecosystem, scaffold count, gene count, etc.) are provided as

Supporting Information (see Table S1). In addition, the first field

(Usage Status) lists the IMG/M identifier for each metagenome in

combination with the following colour codes: GREEN = down-

loaded and used in this study; YELLOW = downloaded but

removed due to missing coordinate data; RED = unable to obtain

due to file sizes and the timeout policies.

Raw genomic data was also acquired for the construction of

genomic gene pairs (see below). Specifically, the.ptt file for the

Escherichia coli strain K-12 substrain MG1655 genome was

downloaded from the National Center for Biotechnology Infor-

mation (NCBI) FTP directory of bacterial genomes [27] on

November 15th 2012. This file included coordinate information

and functional annotations for 4,146 protein-coding genes.

Gene Pair Selection
Intergenic distances in base pairs (bp) were recorded for

adjacent pairs of protein-coding genes occurring in the same

strand within the same metagenomic scaffold or complete genome

if the following conditions were met: i) each gene had exactly one

COG functional category [28] annotation (the presence or

absence of other additional types of functional annotations had

no effect on pair selection); ii) each COG functional category

annotation was neither [R] (General function prediction only), nor

[S] (Function unknown). For the metagenomic data a total of

92,512 gene pairs were obtained from which 720 pairs (,1%)

were removed on the basis of influential observations (intergenic

distances.500 bp) leaving 91,792 remaining metagenomic gene

pairs. The metagenomic gene pair data are provided as

Supporting Information (see Dataset S1). For the genomic data

a total of 1,834 gene pairs were obtained from which 59 pairs (3%)

were removed on the basis of influential observations (intergenic

distances.500 bp) leaving 1,775 genomic gene pairs. The

genomic gene pair data are also provided as Supporting

Information (see Dataset S1).

Operon Selection
Operons were predicted using a previously published method

for identifying metagenomic operons [21,22]. Specifically, operons

were derived from scaffolds containing two or more adjacent genes

in the same strand based on intergenic distances (in base pairs)

where the likelihood for two genes to be in the same operon given

the distance between them was assigned based on the ratio of

known genes in operons to known genes in different transcription

units found at such distance [29,30]. A minimum threshold of

confidence was selected that is equivalent to a positive predictive

Figure 1. Proportion of Gene Pairs. The relative proportions (%) of gene pairs (Non-Matching versus Matching) are shown with matching gene
pairs represented according to their respective types of COG category functional annotations.
doi:10.1371/journal.pone.0071484.g001
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value of 0.85 (i.e. 85% of the predictions are expected to consist of

true positives), as evaluated against known operons of Escherichia

coli K12 found in RegulonDB [31]. In addition, operons were

retained only if each member gene had at least one COG category

annotation and each COG category annotation was neither [R],

nor [S]. While it was possible for a member gene to contain more

than one COG category annotation (i.e. a multifunction gene),

such cases also required that the additional annotations were

neither [R], nor [S]. A total of 748,099 operons were constructed

of which 115,533 contained one or more multifunction genes. The

operon data are provided as Supporting Information (see Dataset

S1).

Results

In order to evaluate the applicability of GBA to metagenomic

functional annotation, the connection between annotative cohe-

sion and functional association was examined. The first set of

analyses attempted to determine whether genes that share a

functional annotation are more likely to be predicted of having a

functional association than genes that do not share a functional

annotation. This was accomplished by comparing adjacent co-

directional metagenomic gene pairs that had either matching or

non-matching functional annotations. The second set of analyses

used the reverse approach and attempted to measure the extent to

which functionally associated genes share their functional anno-

tations. This was accomplished by measuring the ratio of unique

annotations to number of member genes in metagenomic operons

of varying lengths. For all conducted analyses functional annota-

tion was measured at the level of COG functional category [28]

annotations (COGs). COGs (e.g. [C], [D], [E], etc.) were selected

because they represent broad functional categorizations with a

small lexicon of possible annotation states, thereby permitting

straightforward and conclusive determinations of annotative

equivalence. Also, for all conducted analyses functional associa-

tions were determined based on predictions of gene interactions

calculated using co-directional intergenic distances (see Methods)

because this approach represents a homology-free protocol that is

well suited to metagenomic scenarios [21,22].

Gene Pair Analyses
In order to determine if genes that share a functional annotation

are more likely to be predicted of having a functional association

than genes that do not share a functional annotation, the

intergenic distances of 91,792 adjacent co-directional gene pairs

were recorded, along with their COGs (see Methods). The data

were divided into two categories based on the COGs within each

gene pair (Non-matching or Matching) with the goal of observing

potential differences in the intergenic distances between the

categories that would be indicative of different likelihoods of being

functionally associated. Non-matching gene pairs (N = 69,761)

represented 76% of the total cases, while Matching gene pairs

(N = 22,031) comprised the remaining 24% (see Figure 1).

Intergenic distances were compared with respect to match

category and both categories exhibited similar right-skewed non-

normal distributions (see Figure 2) where Non-matching gene pairs

had M = 49.29 bp and SD = 81.85 bp, while Matching gene pairs

had M = 40.40 bp and SD = 69.61 bp. Table 1 provides an

overview of the descriptive statistics for each match category and

includes bootstrapped confidence intervals for each reported

statistic.

To test whether the recorded intergenic distances exhibited

discernible differences in range with respect to match category,

two binning experiments were conducted using the minimum

description length principle [32] for the discretization of scale

variables [33,34] as implemented in [35]. First, all gene pairs were

assigned into one of two categories of functional interaction based

on their log-likelihood scores (see Methods): Non-interacting or

Interacting. Gene pairs were then binned by their intergenic

distances to optimize the distinction between Non-interacting

versus Interacting pairs. The resulting four bins exhibited a highly

resolved categorization where interacting gene pairs were charac-

Figure 2. Distribution of Gene Pair Intergenic Distances. The relative proportions (%) of intergenic distances between members of respective
gene pairs are shown in 10 base pair (bp) windows for Non-Matching versus Matching pairs. The upper panel shows the distribution of intergenic
distances for the Escherichia coli K12 MG1655 genome as a reference comparison where Non-Matching pairs are shown in solid black and Matching
pairs are shown in broken grey. The lower panel shows the distribution of intergenic distances for the metagenomic gene pairs where Non-Matching
pairs are shown in solid black and Matching pairs are shown in broken grey.
doi:10.1371/journal.pone.0071484.g002

Table 1. Descriptive Statistics by Match Category.

Match
Category Statistic Bootstrapped Values

Std.
Error

95% Confidence
Interval

Lower Upper

Non-Matching Mean 49.29 0.32 48.63 49.92

Median 16.00 0.41 15.00 16.00

Std. Deviation 81.85 0.44 80.97 82.76

Skewness 2.12 0.02 2.08 2.16

Matching Mean 40.40 0.46 39.52 41.34

Median 13.00 0.39 12.00 13.00

Std. Deviation 69.61 0.75 68.15 71.05

Skewness 2.34 0.06 2.20 2.46

For each Match Category (Non-Matching vs. Matching) values are reported for
the mean, median, standard deviation, and skewness. Bootstrapped values
were obtained using 1,000 samples.
doi:10.1371/journal.pone.0071484.t001

Table 2. Optimal Binning of Distances by Interaction
Category.

Bin Bounds
Gene Pairs by Interaction
Category Bin Total

Lower Upper Non-interacting Interacting

1 Unbound 223 1,805 (100%) 1 (0%) 1,806

2 223 44 0 (0%) 58,632 (100%) 58,632

3 44 46 395 (53%) 354 (47%) 749

4 46 Unbound 30,605 (100%) 0 (0%) 30,605

The intergenic distances (bp) between gene pair members were used to create
optimal bins with respect to Interaction Category (Non-interacting vs.
Interacting) where each bin is demarcated as lower bound#distance ,upper
bound. The number of gene pairs in each bin is listed by interaction category,
as well as the category proportion (%) of the bin total.
doi:10.1371/journal.pone.0071484.t002
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terized by intergenic distance ranging from 223 bp to 43 bp (see

Table 2). The only exception was a small bin (Bin 3) of ambiguous

categorizations at 44 bp and 45 bp but this represented less than

1% of the total data. Next, the procedure was repeated and gene

pairs were then binned by their intergenic distances to optimize

the distinction between Non-matching versus Matching pairs. In

contrast to the previous experiment, the result was five highly

ambiguous bins where Bin 5 had the greatest resolution with 84%

Non-matching pairs and 16% Matching pairs (see Table 3).

A logistic regression was carried out to determine the following

equation that predicts whether or not the COGs in a given gene

pair match (i.e. have a value of 1 instead of 0), based on the

intergenic distance between its members: ln(Odds of

Match) = 21.084–0.002(Distance). For example, given an inter-

genic distance of zero a gene pair is only 0.34 times as likely to

have matching COGs as it is to have non-matching COGs (e.g.

Odds of Match = ê (21.084–0)). This value can be converted to a

probability, P(Match) = Odds of Match/1+Odds of

Match = 0.254, that predicts that 25% of gene pairs with an

intergenic distance of zero will have matching COGs. The

regression equation was subsequently used to attempt a classifi-

cation of the gene pairs with respect to match and showed an

overall success rate of 76%. However, this outcome was the result

of classifying all gene pairs as Non-matching, thereby yielding a

sensitivity of 0% and a specificity of 100% (see Table 4).

Operon Analyses
In order to measure the extent to which functionally associated

genes share their functional annotations, the annotative cohesion

of operons was measured. A large collection of metagenomic

operons (N = 748,099) was used to ensure source diversity,

however the majority (63%) of operons were aquatic (see

Figure 3). Operon lengths (i.e. the number of member genes

comprising an operon [36,37]) ranged from 2–32 genes (no

operons were observed with a length of 31 genes) with 87% of

operons having a length of 2 genes and only 4% of operons having

lengths greater than 3 genes (see Figure 4). It should be pointed out

that gene pairs from the previous section were equivalent to

operons with a length of 2 genes if the pair members were in

sufficient proximity to one another (see Methods). In addition,

15% of the operons contained at least one member gene that had

more than one COG (see Figure 4).

Annotative cohesion was measured by comparing the length of

each operon against its unique COG count and several models

were fit to the data (see Figure 5). While no clear relationship was

found, two key properties were observed: i) annotation count (i.e.

unique COG count) grows more slowly than operon length; ii) the

relationship for annotation count versus operon length is nonlinear

(see Table 5). Because the sample was dominated by short-length

operons, the individual cases were reweighted to increase the

proportion of longer operon cases. Specifically, each case was

weighted by the product of its length and a frequency normali-

zation factor, where the frequency normalization factor was the

quotient of the actual number of cases divided by the weighted

sum of cases, where the weighted sum of cases was the overall total

of each operon length. Also, the annotation count was normalized

by dividing the raw annotation count for each operon by its

corresponding length. The same models were fitted to the

transformed data and the previously observed properties were

again evident (see Figure 5). However, this time a clearer

relationship (r2 = 0.15, p,0.001) was observed in the form of an

exponentially decreasing trend where the normalized annotation

count decreased rapidly with increasing weighted operon length

(see Table 5). Furthermore, to identify effects stemming from the

inclusion of operons where at least one member gene had more

than one COG (i.e. multifunction genes) the data were split into

two sets: single function versus multifunction. The previous models

were fitted against each level of function for both raw and

transformed versions of the data and again the exponential model

was the best fit for the transformed version for both the single

function group (r2 = 0.18, p,0.001) and the multifunction group

(r2 = 0.51, p,0.001) (see Table 5). Interestingly each of decom-

posed datasets had a better value for r2 than the combined dataset

suggesting that the relationship for annotation count versus operon

length is similar for operons containing only single function genes

and operons containing multifunction genes, however the rate of

change differs with the multifunction trend being initially higher

but decreasing more rapidly until it converges with the single

function trend.

To illustrate how properties such as operon length and the

presence of multifunction genes can affect the availability of

functional linkages, two metagenomic annotation networks [22]

were constructed and subsequently analyzed using Cytoscape

3.0.0 [38]. Specifically the keyword ‘‘metal’’ was used to select

target operons from the nine Wastewater metagenomes used in

this study (see Methods). The first metagenomic annotation

network used relaxed constraints that placed no restrictions on

operon lengths or multifunction genes. The relaxed network was

derived from 503 operons and contained 21 nodes and 100 edges

(see Figure 6). In addition, the normalized annotation count was

measured for operons where each member gene had at least one

COG and each COG was neither [R], nor [S] (112 operons) and

the mean was found to be 0.79 annotations. In contrast, the

second metagenomic annotation network was more stringent and

Table 3. Optimal Binning of Distances by Match Category.

Bin Bounds Gene Pairs by Match Category Bin Total

Lower Upper Non-matching Matching

1 Unbound 21 17,841 (78%) 5,047 (22%) 22,888

2 21 23 20,342 (72%) 7,922 (28%) 28,264

3 23 118 21,151 (76%) 6,625 (24%) 27,776

4 118 193 5,817 (79%) 1,533 (21%) 7,350

5 193 Unbound 4,610 (84%) 904 (16%) 5,514

The intergenic distances (bp) between gene pair members were used to create
optimal bins with respect to Match Category (Non-matching vs. Matching)
where each bin is demarcated as lower bound#distance ,upper bound. The
number of gene pairs in each bin is listed by match category, as well as the
category proportion (%) of the bin total.
doi:10.1371/journal.pone.0071484.t003

Table 4. Match Category Classification Table.

Predicted Correct

Non-Matching Matching

Observed Non-Matching 69,761 0 100%

Matching 22,031 0 0%

Overall Percentage 76%

A regression equation was used to classify gene pairs with respect to Match
Category (Non-matching vs. Matching). The resulting counts are listed by match
category where row totals equal the observed counts and column totals equal
the predicted counts. The proportion (%) of correct predictions is also shown.
doi:10.1371/journal.pone.0071484.t004
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required that operons had at least three member genes where each

member gene was required to be a single function gene. The

stringent network was derived from 112 operons and contained 17

nodes and 64 edges (see Figure 6). The normalized annotation

count was measured for operons as described above (18 operons)

and the mean was found to be 0.58 annotations.

Discussion

The results of the gene pair analyses showed only a slight

difference between the intergenic distances of genes that shared a

functional annotation versus those that did not share a functional

annotation. The distributions of gene pair member intergenic

distances for Non-matching versus Matching gene pairs were

practically indistinguishable with a mean difference of only a few

base pairs. As a result, this precluded the establishment of a

‘golden window’ for pairwise gene interactions based on co-

directional intergenic distance and this was reflected in the

inability to define boundaries for binning gene pairs with respect to

match category. Moreover, the success of binning with respect to

interaction type reaffirmed that the binning algorithm was well

suited for the classification of a dichotomous variable on the basis

of intergenic distance, thereby eliminating any concerns about its

applicability. Finally, the results of the logistic regression showed

that the derivation of a formulaic prediction rule was not achieved

using intergenic distance as the only predictor for match category.

Overall, this suggests that co-directional gene pairs offer reduced

confidence for metagenomic GBA due to difficulty in resolving the

existence of functional associations when intergenic distance is the

sole predictor of pairwise gene interactions.

In contrast to gene pairs, metagenomic operons, particularly

those with substantial lengths, appear to be capable of providing a

Figure 3. Diversity of Metagenomic Operons. The relative proportions (%) of metagenomic operons are shown with respect to IMG/M Phylum
category (A). Within the Engineered phylum, the relative proportions (%) of operons are shown with respect to IMG/M Class category (B). Within the
Environmental phylum, the relative proportions (%) of operons are shown with respect to IMG/M Class category (C). Within the Host-associated
phylum, the relative proportions (%) of operons are shown with respect to IMG/M Class category (D).
doi:10.1371/journal.pone.0071484.g003
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superior basis for metagenomic GBA. Operon length has been

previously used as a metric in operon detection protocols [36,37].

Here, it was demonstrated that the proportion of distinct

annotations within an operon decreases exponentially with

increasing operon length. This suggests a progression toward

annotative stability indicating that longer operons seem to provide

more cohesive functional associations than their shorter counter-

parts, like interacting gene pairs (i.e. operons of length 2). If we

consider a simplified scenario where the probability of two co-

directional and proximal genes being falsely predicted as

functionally interacting is equal to p, then we can see that

P(,O2) = p, where ,O2 is a false operon of length 2. If we further

assume independence in subsequent pairwise predictions then

P(,O3) = p2 and in general, P(,On) = p(n21), where n$2. Although

lacking in empirical elaboration, the previous example demon-

strates why it is generally parsimonious to conclude that the

probability of predicting an operon by random chance diminishes

rapidly with increasing operon length. Such a phenomenon might

account for the increased annotative cohesion in longer operons

that was observed in the present work because it predicts that

shorter operon predictions will collectively contain a greater

proportion of spurious operons that will subsequently diminish

measurements of annotative cohesion. In other words, while some

co-directional and proximal gene pairs represent true operons they

exist as an indistinguishable (on the basis of intergenic distance)

subset due to the noise caused by random chance occurrences of

co-functional annotations in non-operonic gene pairs. Further-

more, the current results indicate that multifunction genes amplify

the reduction in annotative cohesion because short-length

multifunction containing operons have greater proportions of

annotation than their single function counterparts.

The obtained results have a strong bearing on the suitability of

using functional associations predicted on the basis of co-

directional intergenic distances. For example, broad exploratory

networks where fuzziness is desirable might benefit from including

operons of any length with no control for multifunction genes.

However, the assignment of functional annotation to a gene on the

basis of the functions of its operonic co-members requires

maximum cohesion thus precluding the use of short-length

operons which in turn greatly diminishes the proportion of

operons available for such undertakings. Moreover, this type of

annotation by GBA must be careful to control for the presence of

Figure 4. Features of Metagenomic Operons. The main panel shows the distribution of metagenomic operon lengths with respect to frequency
of occurrence using a log (base 10) scale. Note, no operons of length 31 were observed. The inset shows the proportion of operons that contain
member genes with exactly one COG category annotation (Single Function) versus operons where at least one member gene has more than one
COG category annotation (Multiple Functions).
doi:10.1371/journal.pone.0071484.g004
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multifunction genes based on both the current findings as well as

other recent work [39]. Interestingly, the metagenomic annotation

networks constructed here showed that while selection stringency

had an effect on the annotative cohesion of the accepted operons it

had only a moderate impact on the number of different nodes and

edges in each network, instead greatly affecting the maximum

observed node degree. Factors such as the specificity of the

keyword and the inherent diversity of the source data are likely to

be stronger moderators of network cohesion than operon selection

stringency.

The results and interpretation of the present study are

predicated on the assumption that it is possible to identify

metagenomic operons using the direction and proximity of their

member genes. However, such a model [29,30] is rooted in

empirical data from known Escherichia coli K12 operons [31] and its

extensibility to metagenomic scenarios remains unclear at this

juncture. Although it is likely applicable to some taxonomic radius

extending from an Enterobacteriales centroid, its effectiveness at

encompassing broad and diverse taxa is unknown. Given that a

primary motivation for using metagenomic data is its accessibility

to unculturable and possibly unknown organisms, then it seems of

paramount importance to establish a better understanding of the

possible configurations for metagenomic operons. One approach

might be to examine metagenomic directons to establish

correlations between recurring conserved gene groupings and

specific taxonomic loci that could provide a clue about alternative

operon configurations. An improved ability to recognize metage-

nomic operons would benefit not only functional annotation

efforts but also bioprospecting and other applied and commercial

interests. In fact, operon recognition could also provide simulta-

Figure 5. Annotation Count versus Operon Length. Scatterplots are shown for Annotation Count versus Operon Length with four different
models superimposed on the observed data. The upper panel displays the models and data for Raw Annotation Count versus Unweighted Operon
Length while the lower panel displays the models and data for Normalized Annotation Count versus Weighted Operon Length.
doi:10.1371/journal.pone.0071484.g005
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neous taxonomic indicators by revealing unique polygenic

signatures, especially since operon architecture (i.e. gene order)

is only weakly conserved across bacterial and archaeal genomes

[17,18].

In addition to potential limitations in recognizing metagenomic

operons, the present work used several implementational assump-

tions that could be addressed by future research. The methods

used to determine annotative cohesion considered only the

number of different annotation values versus the length of a given

operon but not the prevalence of the individual annotations. For

example, let us consider two operons, O1 and O2, each with six

member genes, each having one COG, where O1 = {[C], [C], [D],

[D], [E], [E]} and O2 = {[C], [C], [C], [C], [D], [E]}. Both

operons will have an equal ratio of annotation because they each

reduce to the same set of unique elements {[C], [D], [E]}.

However, it is clear that O2 is more cohesive than O1 and therefore

the metrics used in this work might have reduced the true

magnitude of cohesion that occurs in metagenomic operons.

Therefore, it is recommended that future appraisals of annotative

cohesion consider more sophisticated metrics such as calculations

Table 5. Models for Annotation Count versus Operon Length.

Member Gene Type Model Unweighted Weighted

Raw Normalized Raw Normalized

r2 p r2 p r2 p r2 p

Both Types Combined
(N = 748,099)

Linear 0.07 ,0.001 0.03 ,0.001 0.09 ,0.001 0.06 ,0.001

Logarithmic 0.08 ,0.001 0.04 ,0.001 0.12 ,0.001 0.08 ,0.001

Quadratic 0.08 ,0.001 0.04 ,0.001 0.12 ,0.001 0.08 ,0.001

Exponential 0.04 ,0.001 0.07 ,0.001 0.06 ,0.001 0.15 ,0.001

Single Function Genes
Only (N = 632,566)

Linear 0.06 ,0.001 0.04 ,0.001 0.08 ,0.001 0.07 ,0.001

Logarithmic 0.08 ,0.001 0.04 ,0.001 0.12 ,0.001 0.09 ,0.001

Quadratic 0.07 ,0.001 0.04 ,0.001 0.11 ,0.001 0.09 ,0.001

Exponential 0.04 ,0.001 0.09 ,0.001 0.05 ,0.001 0.18 ,0.001

At Least One Multifunction
Gene (N = 115,533)

Linear 0.10 ,0.001 0.22 ,0.001 0.14 ,0.001 0.33 ,0.001

Logarithmic 0.12 ,0.001 0.25 ,0.001 0.16 ,0.001 0.39 ,0.001

Quadratic 0.11 ,0.001 0.25 ,0.001 0.16 ,0.001 0.38 ,0.001

Exponential 0.08 ,0.001 0.37 ,0.001 0.11 ,0.001 0.51 ,0.001

Pearson’s Correlation Coefficient values (r2) are reported along with significance values (p) for four different types of models for Annotation Count versus Operon
Length. Both the Raw and Normalized Annotation Count were modeled with respect to both Unweighted and Weighted Operon Length. The presence of multifunction
was also controlled for and the table displays the results for each group (i.e. Single Function versus Multifunction), as well as the results for the combined data.
doi:10.1371/journal.pone.0071484.t005

Figure 6. Metagenomic Annotation Networks. Two metagenomic annotation networks were constructed using nine Wastewater metagenomes
and the keyword ‘‘metal’’. The Relaxed network used operons of any length and did not control for multifunction genes while the Stringent network
used only operons containing at least three member genes where each member gene was required to be a single function gene. Each node
represents a COG category and the node degree is indicated by colour according to the respective legends.
doi:10.1371/journal.pone.0071484.g006
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of entropy. In fact, the study of annotative cohesion itself could

represent a generally useful pursuit for better understanding the

cooperative and co-occurring properties of functional annotations.

Similarly, other metrics should be introduced as covariates in an

attempt to improve models of annotative cohesion. Repeating this

study using alternative annotation hierarchies (e.g. Pfam [40],

TIGRFAMs [41], etc.) would also be of potential interest.

Functional associations predicted on the basis of co-directional

intergenic distances represent an important homology-free ap-

proach for the functional annotation of metagenomic data. Here,

evidence for annotative cohesion in metagenomic operons

supports the underlying assumption that GBA is indeed applicable

to the intergenic distance paradigm. However, depending on the

type application caution should be exercised in determining a

minimum threshold for operon length, as well as controlling for

the potential presence of multifunction genes [39]. Although

operonic genes represent only a portion of metagenomic genes,

improved operon recognition could increase the utility of

metagenomic operons for functional annotation. Moreover, the

homology-free nature of intergenic distance permits the assign-

ment of function to genes that do not have corresponding

homologs in the various sequence databases. In turn, this would

provide a cascading method to expand the breadth of sequence

databases beyond their current biases [42], thereby allowing the

homology-based annotation of previously unreachable genes.

Overall, metagenomic operons offer a largely untapped resource

that can drive a variety of annotative and applied interests.

Supporting Information

Table S1 Metagenome Properties. The specific properties

of each IMG/M source metagenome are listed with column

headers provided in the first row. In addition, the first field (Usage

Status) lists the IMG/M identifier for each metagenome in

combination with the following colour codes: GREEN = down-

loaded and used in this study; YELLOW = downloaded but

removed due to missing coordinate data; RED = unable to obtain

due to file sizes and the timeout policies.

(XLSX)

Dataset S1 Experimental Data. The experimental data used

in this study are organized as an Excel workbook with genomic

gene pairs listed in the first worksheet, metagenomic gene pairs

listed in the second worksheet, and metagenomic operons listed in

the third worksheet. Column headers are provided in the first row

of each respective worksheet.

(XLSB)
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