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Experimentally reducing the quantum
measurement back action in work distributions
by a collective measurement

Kang-Da Wu1,2, Yuan Yuan1,2, Guo-Yong Xiang1,2*, Chuan-Feng Li1,2,
Guang-Can Guo1,2, Martí Perarnau-Llobet3,4*
In quantum thermodynamics, the standard approach to estimating work fluctuations in unitary processes is based on
twoprojectivemeasurements, oneperformedat thebeginningof theprocess andone at the end. The firstmeasurement
destroys any initial coherence in the energy basis, thus preventing later interference effects. To decrease this back action,
a schemebasedon collectivemeasurements hasbeenproposedbyPerarnau-Llobet et al. Here,we report its experimental
implementation inanoptical system.Theexperiment consistsof adeterministic collectivemeasurementon two identically
prepared qubit states, encoded in the polarization and path degree of a single photon. The standard two-projectivemea-
surement approach is also experimentally realized for comparison. Our results show thepotential of collective schemes to
decrease the back action of projective measurements, and capture subtle effects arising from quantum coherence.
INTRODUCTION
Quantum coherence lies at the heart of quantum physics. Yet, its
presence is subtle to observe, as projective measurements inevitably
destroy it. In the context of quantum thermodynamics, this tension
becomes apparent in work fluctuations:Whereas projective energymea-
surements are commonly used to measure them (1, 2), they also lead
to work distributions that are independent of the initial coherence in
the energy basis. This limitation has motivated alternative proposals
for defining and measuring work in purely coherent evolutions (3–18),
which include Gaussian (5–8), weak (14–16), and collective measure-
ments (CMs) (17). These different theoretical proposals aim at reducing
the back action induced by projective measurements, thus allowing the
preservation of some coherent interference effects. This quest is partic-
ularly relevant as, when the system is left unobserved, quantum
coherence can play an important role in several thermodynamic tasks,
e.g., in work extraction (19, 20) and heat engines (21–24). Quantum
coherence can be seen as a source of free energy, which is destroyed
by projective energy measurements (25, 26).

Here, we report the experimental investigation of reducing quantum
measurement back action in work distribution using CMs on two iden-
tically prepared qubit states. We implement the proposal of (17) in an
all-optical setup, which can be used to efficiently simulate quantum co-
herent processes. The standard two-projective energy measurement
(TPM) scheme (1, 2) to measure work is also experimentally simulated
for comparison. The experimental results show the capability of CM to
capture coherent effects and reduce the measurement back action,
which is quantified as the fidelity between the probability distributions
of the final measured and unmeasured states.

Moreover, the potential application of these results goes beyond
quantum thermodynamics, as deterministic CMs play a key role in quan-
tum information, being relevant for numerous tasks such as quantum
metrology (27, 28), tomography (29, 30), and state manipulation (31).
RESULTS
Theoretical framework
The scenario considered here consists of a quantum state r and a
HamiltonianH. The system is taken to be thermally isolated, and it can
only be modified by externally driving H. We consider processes in
whichH is transformed up toH′, and as a consequence, the state evolves
under a unitary evolution U, r → UrU†. The average energy for this
process is given by

〈W〉 ¼ TrðHrÞ � TrðH′UrU†Þ ð1Þ

where the energy difference can be identified with unmeasured aver-
age work. However, when one attempts to measure it, the average mea-
sured work usually differs from Eq. 1 due to measurement back action
(1, 3, 6, 17, 32).

In the standard approach to measuring work in quantum systems
(1, 2), one implements two energymeasurements, ofH andH′, before
and after the evolution U. More precisely, expanding the Hamiltonians
in the bra-ket representation, as H = ∑iEi|i〉〈i| and H′ ¼ ∑j′E′

j′jj′i j′jh ,
the TPM consists of the following:

1) Projective measurement of H on r, yielding outcome Ei with
probability rii = 〈i|r|i〉

2) A unitary evolution U of the postmeasured state, |i〉 → U|i〉
3) A projective measurement of H′ on the evolved state, yielding

E′j with probability pi;j′ ¼ j〈 j′jU ji〉j2
The TPM work statistics are then given by the random variable

wðij′Þ ¼ Ei � E′j′ with a corresponding probability Pðij′Þ
TPM ¼ riipi;j′ as-

signed to the transition |i〉 → |j′〉. The average measured work,
〈WTPM〉 ≡ ∑ijP

ðij′Þ
TPMw

ðij′Þ, can be written as

〈WTPM〉 ¼ TrðHDH ½r�Þ � TrðH′UDH ½r�U†Þ ð2Þ

whereDH ½r� is the dephasing operator, removing all the coherence of r,
which yields a classical mixture of energy states of H. Hence, 〈WTPM〉

differs from the unmeasured average work in Eq. 1 when r is coherent
(and [H,U†H′U]≠ 0). Furthermore, the extractable work fromDH ½r� is
lower than that from r, as the latter is generally more pure. This can be
seen by noting that the nonequilibrium free energy, which characterizes
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the extractable work from a state, decomposes into a contribution
arising from DH ½r� and one from the coherent part of r (25, 26) [see
also appendix A of (18)].

To reduce the back action of the TPM scheme, a CM has been
proposed (17). To describe these measurements, let us now introduce
the formalism of generalizedmeasurements, which extends the standard
quantum projective measurements. A generalized measurement is
defined by a positive operator–valued measure (POVM) (33), which
is a set of non-negativeHermitianoperators {M(i)} satisfying the complete-
ness condition ∑figMðwiÞ ¼ I. Each operatorM(i) is associated to a mea-
surement outcome w(i) of the experiment. Then, given a quantum state r,
the probability to obtain the w(i) is given by the generalized Born rule

PðiÞ ¼ TrðrMðiÞÞ ð3Þ

Note that the completeness condition ensures that the sum of probability
obtained from each outcome i is equal to 1. CMs can then be naturally
introduced by taking r to be a collection of n independent systems, r =
r1 ⊗ r2 ⊗…⊗ rn, so that

PðiÞ ¼ Trðr1⊗ r2⊗…⊗ rnM
ðiÞÞ ð4Þ

That is, the measurement acts globally on the n systems. In this work, we
consider systems made up of two qubits so that the CMs act globally on a
Hilbert space of four dimensions.

At this point, it is useful to express the TPM scheme as a POVM,
with elements Mðij′Þ

TPM ¼ j〈 j′jU ji〉j2jii ijh and probability-assigned
Pðij′Þ
TPM ¼ TrðMðij′Þ

TPMrÞ, where |i〉〈i| denotes a projection on energy basis i.
On the other hand, the CM scheme is defined by a POVM with el-
ementsMðij′Þ

CM that act on two copies of the state, r⊗2, with associated
probability Pðij′Þ

CM ¼ TrðMðij′Þ
CMr

⊗2Þ. The POVM elements read

Mðij′Þ
CM ¼ Mðij′Þ

TPM ⊗ Iþ ljii〈ij⊗ T off�diag
j′ ð5Þ

whereT off�diag
j′ is the off-diagonal part ofTj′ ¼ U†j j′i j′jUh in the {|i〉}

basis. This measurement satisfies two basic properties:
1) When acting upon states with zero coherence, r ¼ DðrÞ, the

CM scheme reproduces exactly the same statistics of the standard
TPM scheme. This is followed by noting thatTrðT off�diag

j′ DðrÞÞ ¼ 0
and TrðDðrÞÞ ¼ 1 in Eq. 5.

2) When acting upon general r, the second term of Eq. 5 brings
information about the purely coherent part of the evolution. This
can be seen by computing the average measured work, 〈WCM〉 ¼
∑i;j′wðij′ÞPðij′Þ

CM, leading to

〈WCM〉 ¼ ð1� lÞ〈WTPM〉þ l〈W〉 ð6Þ

Hence, the parameter l ∈ [0, 1] quantifies the degree of measure-
ment back action. In general, l is given by an optimization procedure,
which is described inMaterials andMethods, and it can be controlled in
our experiment. We also note that other proposals of work measure-
ments in stateswith quantum coherence, in particularweak orGaussian
measurements, can interpolate between properties 1 and 2 described
above. In the limit of strong (weak) measurements, property 1 (2) is
satisfied, whereas for intermediate couplings with the apparatus, a
tradeoff appears [see (5–8) for discussions].
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With the probabilities Pðij′Þ, which can be obtained by either the
TPM or CM scheme, the full work distribution is constructed as

PðwÞ ¼ ∑
ij
Pðij′Þdðw� wðij′ÞÞ ð7Þ

where d is a Dirac delta function, which accounts for possible de-
generacies in w(ij′).

Experimental protocol
We consider the experimental realization of the CM in Eq. 5 on a two-
qubit system in a quantum optics setup. The core idea is to encode the
first (second) copy into the path (polarization) degree of freedom of a
single photon, as illustrated in Fig. 1. Single photons have degenerate
Hamiltonians for both polarization and path degree, i.e., w(ij′) = 0 for
all i, j′, leading to a priori trivial work distributions P(w) in Eq. 7. Yet,
P(w) is a coarse-grained version of the transition probabilitiesPðij′Þ, and
the latter contains all information about the quantum stochastic pro-
cess. Therefore, we focus onPðij′Þ and attempt to capture the subtle effect
of quantum coherence in the process byworking on the experimentally,
highly nontrivial two-copy space.

We consider unitary process of the form U(q) = cos qsz + sin qsx,
where sx and sz are Pauli operators and the parameter q is tunable. For
such U(q)’s, we have l = tanq (q ∈ [0, p/4]), leading to

Mð000Þ
CM ¼ j0〉〈0j⊗ ðcos2qIþ sin2qsxÞ

Mð010Þ
CM ¼ 2sin2qj0i〈0j⊗ j � 〉〈� j

Mð100Þ
CM ¼ 2sin2qj1〉〈1j⊗ j þ 〉〈þ j

Mð110Þ
CM ¼ j1i〈1j⊗ ðcos2qI� sin2qsxÞ ð8Þ

with j±〉 ¼ ðj0〉± j1〉Þ= ffiffiffi
2

p
. These measurement operators Mðij′Þ

CM, asso-
ciated to the transitions |i〉→ |j′〉, are the ones implemented in the ex-
periment (together with the TPM scheme).

Experimental setup
The whole experimental setup is illustrated in Fig. 1 and can be divided
into three modules: state preparation module (A), CM module (B),
and TPM module (C). In module A, a single-photon state is generated
through a type II beam-like phase-matching b-barium borate crystal
pumped by an 80-mWcontinuous-wave laser (with a central wavelength
of 404nm) via spontaneous parametric down-conversion (34). The initial
state can be written as |0〉⊗2, with the first (second) state encoding the
path (polarization) of the photon. Then, the combined action of BD1

and H1,2,3 transforms the initial state into a two-copy state |F〉⊗2, with

jF〉 ¼ ffiffiffiffiffi
p0

p j0〉þ ffiffiffiffiffi
p1

p j1〉 ð9Þ

where p0(p1) is tunable in our experiments, denoting the population of
photons initialized in state |0〉(|1〉), and p0 + p1 = 1. Details of this
transformation are provided in the Supplementary Materials. Module
A also allows the generation of a one-copy qubit state in Eq. 9, which
is fed into the TPM measurement.

The CM scheme is deterministically realized in module B of Fig. 1.
When |F〉⊗2 enters the CMmodule, the projector |i〉〈i| (i = 0, 1) in Eq. 5
on the first copy (path-encoded) is implemented. The information
obtained is then fed into a two-element POVM on the second copy
(polarization-encoded). If the outcome of the path measurement
2 of 6
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reads 0, then the POVM elements on the second copy are cos2qIþ
sin2qsx and 2sin2q|−〉〈−| with outcomes 00′ and 01′; this is done by
H8, H9, b-H10, BD4, and BD5. Note that b-H10 implements the unitary
transformation U(q) through a tunable angle b, satisfying cos22b =
2sin2q. Similarly, if the outcome reads 1, then the POVM elements
2sin2q|+〉〈+| and cos2qI� sin2qsx are realized through H5, H6,
b-H7, BD2, and BD3 (see Fig. 1). As in the previous case, b-H7 imple-
ments the unitaryU(q), with arbitrary q, by setting q to cos22b = 2sin2q.
See Materials and Methods for more details on module B.

A comparative experiment is performed inmodule C for simulating
the TPM scheme. After the preparation of the one-copy state, the
polarization-encoded photon directly enters the TPMmeasurement,
which is conducted by a first polarization measurement, followed by
g-H11 and g-H12 implementing the unitaryU(q) (q = 2g), and finally
sequential projections on the polarization. The parameter g is tunable
and set to q = 2g to implement U(q). In summary, the four Mðij′Þ

TPM
POVM elements can be experimentally realized in this setup, which
can simulate coherent processes U(q) with arbitrary q.

Experimental results
We conduct both two schemes for different initial states and unitary
processes, with the aim of characterizing the measurement back
action. To characterize coherent states and coherent evolutions, we
use l-1 norm coherence Cl1(r) (35) and cohering power of a unitary
CðUÞ (36). The l-1 norm coherence measures the degree of interference
between different energy bases, and the cohering power quantifies the
maximal coherence that can be generated from incoherent states (for
more details, see the Supplementary Materials).

The experiments are divided into two parts. In the first part, both
measurement schemes are implemented on a pure maximally coherent
input state |+〉 undergoing different unitary processesU(q). In the second
part, we test the above two measurements on various input |F〉 while
fixing U(q).
A

C

B

Fig. 1. Experimental setup for both CM and TPM schemes. The setup is divided into three modules: state preparation (A), CM (B), and TPM (C). Module A can
generate an arbitrary one-copy polarization-encoded state |F〉 or a two-copy polarization path–encoded state |F〉⊗2 of a single photon. Module B implements the
CM on |F〉⊗2. The rotation angle of two b–half-wave plates (HWPs) is adjustable for different unitary processes U(q) with cos22b = 2sin2q. The rotation angles of the other
four HWPs are fixed as follows: H5, 22.5°; H6, 45°; H8, 67.5°; H9, 45°. Module C implements the TPM schemes on |F〉, and the rotation angle of the two g-HWPs is
adjustable and can implement different U(q) with q = 2g. SPD, single-photon detector; FC, fiber coupler; BD, beam displacer; M, mirror; BBO, b-barium borate; IF,
interference filter.
Wu et al., Sci. Adv. 2019;5 : eaav4944 1 March 2019
A

B

Fig. 2. Transition probabilities for the initial state |+〉 and the unitary U(p/4) from
experimental data. Experimental results for the transition probabilities of the CM
and TPM measurements correspond to the red and blue cylinders, respectively.
(A) The factual transition U(p/4) takes an initial maximally coherent state |+〉 to an
incoherent pure state |0〉, and thequantum states are shownbyBloch representation.
(B) The transition probabilities for the CM are ~Pð00′ÞCM ¼ 0:464; ~Pð10′ÞCM ¼ 0:532; ~Pð10′ÞCM ¼
0:001; and ~Pð11′ÞCM ¼ 0:003, and the results of the TPM are ~P

ð00′Þ
TPM ¼ 0:244; ~P

ð10′Þ
TPM

¼
0:254; ~Pð10′ÞTPM ¼ 0:275; and ~Pð11′ÞTPM ¼ 0:227. The theoretical fitting values are shown
by black-edged transparent cylinders.
3 of 6



SC I ENCE ADVANCES | R E S EARCH ART I C L E
Tomake a quantitative analysis on the back action, we compare the
probability distributions of ending in state | j′〉, with j′ = {0, 1}, for the
unmeasured andmeasured states—by either TPM or CM. The strength
of the measurement back action is quantified by the fidelity F be-
tween both distributions so that, for F = 1, there is no back action.
The probability distribution of the unmeasured final state can be
computed asPðj′Þ

Id ¼ j〈 j′jUðqÞjF〉j2 with j′ = 0, 1, whereas themeasured
final distribution is obtained as ~Pð j′Þ

CM ¼ ∑i~P
ðij′Þ
CM and ~Pðj′Þ

TPM ¼ ∑i~P
ðij′Þ
TPM for

the CM and TPM schemes, respectively, where the superscript in ~P
indicates that it is obtained from experimental data.

To illustrate our results, we first consider the evolution of jþ〉 ≡
ðj0〉þ j1〉Þ= ffiffiffi

2
p

toward |0〉 throughU(p/4). The measured probabilities
~P
ðij′Þ

are shown in Fig. 2, plotted as red and blue cylinders for the CM
and TPM schemes, respectively. The theoretical values for both
schemes are shown with a black-edged transparent cylinder. We ob-
serve strong differences between the TPM and CM distributions,
with the latter results naively expected from the unmeasured evolu-
tion |+〉→ |0〉. The probabilities for ending in 0′ and 1′ are given by
~Pð0′Þ
CM ¼ 0:996 and ~Pð1′Þ

CM ¼ 0:004 for the CM and by ~Pð0′Þ
TPM ¼ 0:498 and

~Pð1′Þ
TPM ¼ 0:502 for the TPM, while the unmeasured evolution yields

Pð0′Þ
Id ¼ 1:0 and Pð1′Þ

Id ¼ 0:0. The fidelity, which measures the back

action, for the above two schemes reads FCM = 0.998 and FTPM =
0.706, respectively.

Experimental results for different coherent processes are shown in
Fig. 3. The cohering power is tuned by the rotation angle b of H7 and
H10 from 0° to 45°, resulting in a variation from 0 to 1, taking |+〉 to
various ending states (Fig. 3A). The fidelity between the probability dis-
tributions of the unmeasured and measured cases, represented by red
Wu et al., Sci. Adv. 2019;5 : eaav4944 1 March 2019
and blue discs, respectively, is plotted against the cohering power (Fig.
3B). The experimental data agree very well with theoretical predictions,
represented by solid lines (details on the calculation ofF are provided in
the Supplementary Materials). As the cohering power increases, the
TPM scheme becomes more invasive, while the fidelity provided by
the CM remains high. The experimentally observed minimal F via
the CM scheme is 0.963, with a cohering power of 0.834, while in the
standard TPM approach, the minimal fidelity drops to 0.706. The
results show that CM predicts transition probabilities that are closer
to the unmeasured evolution.

In the secondpart of the experiments, the above protocol is tested for
a fixed U with a cohering power

ffiffiffi
3

p
=2 on input states with various in-

itialized coherence Cl1(|F〉) corresponding to different p0 ranging from
0 to 1 (Fig. 4A). The fidelity for both the CM and TPM schemes is
plotted against p0 in Fig. 4B. In both cases, the experimentally observed
minimal fidelity occurs when p0 = 0.75, with 0.906 and 0.799, respec-
tively. The data match those of theoretical fittings very well.
CONCLUSION
Describingwork fluctuations in genuinely coherent processes remains a
subtle and open question in quantum thermodynamics, although rele-
vant progress has been achieved recently (3–18, 37–39). Here, we report
the first experimental observation of work distributions, or more pre-
cisely of transition probabilities, using an implementation based on a
CM scheme (17). Our experimental results show how the CM scheme
can reduce the measurement back action, as compared to the standard
TPM scheme, yielding transition probabilities that are closer to the un-
measured evolution.However, a full understanding of theCMapproach
A

B

Fig. 3. Measurement back action (obtained from experimental data) for various
coherent processes. Experimental results for the measurement back action, quanti-
fied by the fidelity between measured and unmeasured final energy distributions, of
the TPM (blue) and CM (red) schemes. The results are obtained by fixing the initial state
to a maximally coherent state |+〉 and for various unitary processes U(q) with q be-
tween 0° and 45°, mapping a fixed input to a class of pure states, as shown in (A). The
fidelity in (B) is plotted against the cohering power of U(q).
A

B

Fig. 4. Measurement back action (obtained from experimental data) for dif-
ferent initial states. Experimental results for the fidelity between the measured
and unmeasured final energy distributions, for both the TPM (blue) and CM (red)
schemes. The results are obtained for input states of the form jF〉 ¼ ffiffiffiffiffi

p0
p j0〉þffiffiffiffiffi

p1
p j1〉 for various values of p0 between 0 and 1, and p0 + p1 = 1. The unitary
is fixed to U(p/6) with a cohering power of

ffiffiffi
3

p
=2, mapping a class of pure states

to another class of pure states, as shown in (A). The experimental results in (B) agree
well with theoretical predictions.
4 of 6
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is still in progress. For example, while relatively elegant schemes come
up in unitary processes, similar constructions for open processes remain
a challenging task.

Our experimental results show that quantum coherence can have
an effect on the statistics, which complements previous experimental
studies of work fluctuations for diagonal states (40–43). Furthermore,
by experimentally demonstrating the strength of the CM scheme for
reducing the measurement back action, we hope that our results will
stimulate new conceptual and technological developments in quantum
thermodynamics and quantum information science, where CMs play
an important role in numerous tasks (28–31).
MATERIALS AND METHODS
Details on the CM scheme
Here, we provided more details on the CM scheme in Eq. 5. Making
explicit the dependence on l

Mðij′Þ
CMðlÞ ¼ Mðij′Þ

TPM ⊗ Iþ ljii〈ij⊗ T off�diag
j′ ð10Þ

l is found by the following optimization procedure

l ¼ max
a

a : Mðij′Þ
CMðlÞ≥ 0 ∀i; j

� �
ð11Þ

That is, l is chosen so that the back action isminimized. FromEq. 6,
it is clear that, for l = 1, the back action is minimized and the average
measured work by the CM coincides with the unmeasured one in Eq. 1.
However, in general, we have the result that 0 < l < 1, which ensures the
positivity of the POVM elements so that this measurement scheme is
operationally well defined and can be experimentally implemented.

Details on the experimental CM
In the CMmodule B, the CM scheme is deterministically realized using
six half-wave plates (HWPs) and four beam displacers (BDs), as shown
in module B of Fig. 1. In particular, a BD displaces the horizontal (H)–
polarized photons about 3 mm away from the original path, while the
vertical (V)–polarized photons remain unchanged. The action of an
HWP with rotation angle x implements a unitary transformation on
polarization-encoded states

j0〉→ cos2x j0〉þ sin2x j1〉
j1〉→ sin2x j0〉� cos2x j1〉 ð12Þ

Note that we have taken 0 ≡ H and 1 ≡ V.
When |F〉⊗2 enters the CM module, the projector |i〉〈i| (i = 0, 1)

in Eq. 5 on the first copy (path-encoded) is implemented as the
photon enters into the 0 or 1 path. Then, the photon goes through a
two-element POVM on the second copy (polarization-encoded)
according to themeasurement outcome of the first copy. If the outcome
reads 0 (the path 1), the POVM elements on the second copy are
cos2qIþ sin2qsx and 2sin2q|−〉〈−| with outcomes 00′ and 01′.

To realize these POVMs, the rotation angle for H8 was set to 67.5°,
resulting in coherent decomposition of a pure polarization-encoded
state in the |+〉 and |−〉 basis. In particular, we represented the state of
Eq. 9 in the | ± 〉basis, i.e.,jF〉 ¼ ffiffiffiffiffiffi

p0′
p jþ〉þ ffiffiffiffiffiffi

p1′
p j�〉. Then, fromEq. 12,

H8 transforms |F〉 into jF′〉 ¼ ffiffiffiffiffiffi
p0′

p jV〉þ ffiffiffiffiffiffi
p1′

p jH〉. Note that j±〉 ¼
Wu et al., Sci. Adv. 2019;5 : eaav4944 1 March 2019
1ffiffi
2

p ðj0〉 ± j1〉Þ, so p0 ¼ 1
2 ð

ffiffiffiffiffiffi
p0′

p þ ffiffiffiffiffiffi
p1′

p Þ2 and p1 ¼ 1
2 ð

ffiffiffiffiffiffi
p0′

p � ffiffiffiffiffiffi
p1′

p Þ2.
Then, after passing BD4, the H-polarized photon (aforementioned |−〉
component of |F〉) is displaced by BD4 and goes through a b-HWP
(H10), with a tunable angle b controlling the parameter q of the unitary
process (cos22b = 2sin2q). b-HWP10 transforms the H-polarized
photon (|0〉) into a linearly polarized photon state cos 2b|0〉 + sin
2b|1〉. Then, BD7 displaces the cos

22b fraction of the aforementioned
|−〉 component (now H-polarized) for the measurementMð01′Þ

q . The
remaining sin22b part of |−〉 component (now V-polarized) is com-
binedwith the aforementioned |+〉 component of |F〉 (nowH-polarized)
by BD5 to obtain the measurementMð00′Þ

q . Similarly, the POVM ele-
mentsMð10′Þ

q andMð11′Þ
q can be realized by decomposing the polariza-

tion input into |±〉 and letting the |+〉 component go through anH7with
angle b. The two b-HWPs are highlighted in red in Fig. 1, as this setup is
capable of realizing arbitrary unitary operations U(q), where we recall
that cos22b = 2sin2q.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/3/eaav4944/DC1
Section S1. Theoretical aspects
Section S2. Experimental aspects
Table S1. Experimental data for different coherent processes.
Table S2. Experimental data for states with various initial coherence.
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