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Abstract: The analysis of cancer genomic data has long suffered “the curse of dimensionality.” Sample
sizes for most cancer genomic studies are a few hundreds at most while there are tens of thousands
of genomic features studied. Various methods have been proposed to leverage prior biological
knowledge, such as pathways, to more effectively analyze cancer genomic data. Most of the methods
focus on testing marginal significance of the associations between pathways and clinical phenotypes.
They can identify informative pathways but do not involve predictive modeling. In this article, we
propose a Pathway-based Kernel Boosting (PKB) method for integrating gene pathway information
for sample classification, where we use kernel functions calculated from each pathway as base
learners and learn the weights through iterative optimization of the classification loss function. We
apply PKB and several competing methods to three cancer studies with pathological and clinical
information, including tumor grade, stage, tumor sites and metastasis status. Our results show that
PKB outperforms other methods and identifies pathways relevant to the outcome variables.
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1. Introduction

High-throughput genomic technologies have enabled cancer researchers to study the associations
between genes and clinical phenotypes of interest. A large number of cancer genomic data sets have
been collected with both genomic and clinical information from the patients. The analyses of these data
have yielded valuable insights on cancer mechanisms, subtypes, prognosis and treatment response.

Although many methods have been developed to identify genes informative of clinical phenotypes
and build prediction models from these data, it is often difficult to interpret the results with single-gene
focused approaches, as one gene is often involved in multiple biological processes and the results are
not robust when the signals from individual genes are weak. As a result, pathway-based methods
have gained much popularity (e.g., Subramanian et al. [1]). A pathway can be considered as a set of
genes that are involved in the same biological process or molecular function. It has been shown that
gene-gene interactions may have stronger effects on phenotypes when the genes belong to the same
pathway or regulatory network [2]. There are many pathway databases available, such as the Kyoto
Encyclopedia of Genes and Genomes [3] (KEGG), the Pathway Interaction Database [4] and Biocarta [5].
By utilizing pathway information, researchers may aggregate weak signals from the same pathway
to identify relevant pathways with better power and interpretability. Many pathway-based methods,
such as GSEA [1], LSKM [6] and SKAT [7], focus on testing the significance of pathways. These methods
consider each pathway separately and evaluate statistical significance for its relevance to the phenotype.
In other words, these methods study each pathway separately without considering the effects of
other pathways.
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Given that many pathways likely contribute to the onset and progression of a disease [8–10].
It is of interest to study the contribution of a specific pathway to phenotypes conditional on the effects
of other pathways. This is usually achieved by regression models. Wei and Li [11] and Luan and Li [12]
proposed two similar models, Nonparametric Pathway-based Regression (NPR) and Group Additive
Regression (GAR). Both models employ a boosting framework, construct base learners from individual
pathways and perform prediction through additive models. Due to the additivity at the pathway
level, these models only considered interactions among genes within the same pathway but not across
pathways. Since our proposed method is motivated by the above two models, more details of these
models will be described in Section 2. In genomics data analysis, multiple kernel methods [13,14] are
also commonly used when predictors have group structures. In these methods, one kernel is assigned
to each group of predictors and a meta-kernel is computed as a weighted sum of the individual
kernels. The kernel weights are estimated through optimization and can be considered as a measure of
pathway importance. Multiple kernel methods have been used to integrate multi-pathway information
or multi-omics data sets and have achieved state-of-the-art performance in predictions of various
outcomes [15–17].

In this paper, we propose a Pathway-based Kernel Boosting (PKB) method for sample classification.
In our boosting framework, we use the second order approximation of the loss function instead of
the first order approximation used in the usual gradient descent boosting method, which allows for
deeper descent at each step. We introduce two types of regularizations (L1 and L2) for selection of base
learners in each iteration and propose algorithms for solving the regularized problems. In Section 3.1,
we conduct simulation studies to evaluate the performance of PKB, along with four other competing
methods. In Section 3.2, we apply PKB to three cancer genomics data sets, where we use gene
expression data to predict several patient phenotypes, including tumor grade, stage, tumor site
and metastasis status.

2. Materials and Methods

Suppose our observed data are collected from N subjects. For subject i, we use a p dimensional
vector xi = (xi1, xi2, . . . , xip) to denote the normalized gene expression profile and yi ∈ {1,−1} to
denote its class label. Similarly, the gene expression levels of a given pathway m with pm genes can be
represented by x(m)

i = (x(m)
i1 , x(m)

i2 , . . . , x(m)
ipm

), which is a sub-vector of xi.
The log loss function is commonly used in binary classifications with the following form:

l(y, F(x)) = log(1 + e−yF(x)),

and is minimized by

F∗(x) = log
p(y = 1|x)

p(y = −1|x) ,

which is exactly the log odds function. Thus the sign of an estimated F(x) can be used to classify
sample x as 1 or −1. Since genes within the same pathway likely have much stronger interactions than
genes in different pathways, in our pathway-based model setting, we assume additive effects across
pathways and focus on capturing gene interactions within pathways:

F(x) =
M

∑
m=1

Hm(x(m)),

where each Hm is a nonlinear function that only depends on the expression levels of genes in the mth
pathway and summarizes its contribution to the log odds function. Due to the additive nature of this
model, it only captures gene interactions within each pathway but not across pathways.

Two existing methods, NPR [11] and GAR [12], employed the Gradient Descent Boosting (GDB)
framework [18] to estimate the functional form of F(x) nonparametrically. GDB can be considered
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as a functional gradient descent algorithm to minimize the empirical loss function, where in each
descent iteration, an increment function that best aligns with the negative gradient of the loss function
(evaluated at each sample point) is selected from a space of base learners and then added to the target
function F(x). NPR and GAR extended GDB to be pathway-based by applying the descent step to
each pathway separately and selecting the base learner from the pathway that provides the best fit to
the negative gradient.

NPR and GAR differ in how they construct base learners from each pathway: NPR uses regression
trees and GAR uses linear models. Due to the linearity assumption of GAR, it lacks the ability to
capture complex interactions among genes in the same pathway. Using regression tree as base learners
enables NPR to model interactions, however, there is no regularization in the gradient descent step,
which can lead to selection bias that prefers larger pathways.

Motivated by NPR and GAR, we propose the PKB model, where we employ kernel functions as
base learners, optimize loss function with second order approximation [19] which gives Newton-like
descent speed and also incorporates regularization in selection of pathways in each boosting iteration.

2.1. PKB Model

Kernel methods have been applied to a variety of statistical problems, including classification [20],
regression [21], dimension reduction [22] and others. Results from theories of Reproducing Kernel
Hilbert Space [23] have shown that kernel functions can capture complex interactions among features.
For pathway m, we construct a kernel-based function space as the space for base learners

Gm = {g(x) =
N

∑
i=1

Km(x
(m)
i , x(m))βi + c : β1, β2, . . . , βN , c ∈ R},

where Km(·, ·) is a kernel function that defines similarity between two samples only using genes in the
mth pathway. The overall base learner space is the union of the spaces constructed from each pathway
alone: G = ∪M

m=1Gm.
Estimation of the target function F(x) is obtained through iterative minimization of the empirical

loss function evaluated at the observed data. The empirical loss is defined as

L(y, F) =
1
N

N

∑
i=1

l(yi, F(xi)),

where F = (F(x1), F(x2), . . . , F(xN)). In the rest of this article, we will use the bold font of a function
to represent the vector of the function evaluated at the observed xi’s. Assume that at iteration t,
the estimated target function is Ft(x). In the next iteration, we aim to find the best increment function
f ∈ G and add it to Ft(x). Expanding the empirical loss at Ft to the second order, we can get the
following approximation

Lapprox(y, Ft + f) = L(y, Ft) +
1
N

N

∑
i=1

[ht,i f (xi) +
1
2

qt,i f (xi)
2], (1)

where

ht,i =
∂L(y, Ft)

∂Ft(xi)
= − yi

1 + eyi Ft(xi)
,

qt,i =
∂2L(y, Ft)

∂Ft(xi)2 =
eyi Ft(xi)

(1 + eyi Ft(xi))2
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are the first order and second order derivatives with respect to each Ft(xi), respectively. We propose a
regularized loss function that incorporates both the approximated loss and a penalty on the complexity
of f :

LR(f) = Lapprox(y, Ft + f) + Ω( f ) (2)

=
1
N

N

∑
i=1

qi,t

2
(

hi,t

qi,t
+ f (xi))

2 + Ω( f ) + C(y, Ft), (3)

where Ω(·) is the penalty function. Since f ∈ G is a linear combination of kernel functions calculated
from a specific pathway, the norm of the combination coefficients can be used to define Ω(·).
We consider both L1 and L2 norm penalties and solutions regarding each penalty option are presented
in Sections 2.1.1 and 2.1.2, respectively. C(y, Ft) is a constant term with respect to f . Therefore, we only
use the first two terms of Equation (3) as the working loss function in our algorithms. We will also
drop C(y, Ft) in the expression of LR(f) in the following sections for brevity. Such a penalized boosting
step has been employed in several methods (e.g., Johnson and Zhang [24]). Intuitively, the regularized
loss function would prefer simple solutions that also fit the observed data well, which usually leads to
better generalization capability to unseen data.

We then optimize the regularized loss for the best increment direction

f̂ = arg min
f∈G

LR(f).

Given the direction, we find the deepest descent step length by minimizing over the original
loss function

d̂ = arg min
d∈R+

L(y, Ft + d̂ f̂ ),

and update the target function to Ft+1(x) = Ft(x) + νd̂ f̂ , where ν is a learning rate parameter.
The above fitting procedure is repeated until a certain pre-specified number of iterations is reached.
The complete procedure of the PKB algorithm is shown in Table 1.

Table 1. An overview of the Pathway-based Kernel Boosting (PKB) algorithm.

1. Initialize target function as an optimal constant:

F0(x) = arg min
r∈R

1
n

N

∑
i=1

l(yi, r)

For t from 0 to T-1 (maximum number of iterations) do:

2. calculate the first and second derivatives:

ht,i = −
yi

1 + eyi Ft(xi)
, qt,i =

eyi Ft(xi)

(1 + eyi Ft(xi))2

3. optimize the regularized loss function in the base learner space:

f̂ = arg min
f∈G

LR(f)

4. find the step length with the steepest descent:

d̂ = arg min
d∈R+

L(y, Ft + d f̂ )

5. update the target function:

Ft+1(x) = Ft(x) + νd̂ f̂ (x)

End For
return FT(x)
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2.1.1. L1 Penalized Boosting

The core step of PKB is the optimization of the regularized loss function (see step 3 of Table 1).
Note that G is the union of the pathway-based learner spaces, thus

f̂ = arg min
G

LR(f)

= arg min
f̂m

{LR( f̂m) : f̂m = arg min
f∈Gm

LR(f), m = 1, 2, . . . , M}.

To solve for f̂ , it is sufficient to obtain the optimal f̂m in each pathway-based subspace. Due to
the way we construct the subspaces, in a given pathway m, f takes a parametric form as a linear
combination of the corresponding kernel functions. This helps us further reduce the optimization
problem to

min
f∈Gm

LR(f) = min
β,c

1
N

N

∑
i=1

qi,t

2
(

hi,t

qi,t
+ KT

m,iβ + c)2 + Ω( f ) (4)

= min
β,c

1
N
(ηt + Kmβ + 1Nc)TWt(ηt + Kmβ + 1Nc) + Ω( f ), (5)

where

ηt = (
h1,t

q1,t
,

h2,t

q2,t
, . . . ,

hN,t

qN,t
)T ,

Wt = diag(
q1,t

2
,

q2,t

2
, . . . ,

qN,t

2
),

Km =
[
Km(x

(m)
i , x(m)

j )
]

i,j=1,2,...,N
.

Km,i is the ith column of kernel matrix Km and 1N is an N by 1 vector of 1’s. We use the L1 norm
Ω( f ) = λ‖β‖1, as the penalty term, where λ is a tuning parameter adjusting the amount of penalty we
impose on model complexity. We also prove that after certain transformations, the optimization can be
converted to a LASSO problem without intercept

min
β

1
N
‖η̃ + K̃mβ‖2

2 + λ‖β‖1, (6)

where

η̃ = W
1
2

t

[
IN −

1N1T
NWt

tr(Wt)

]
ηt

K̃m = W
1
2

t

[
IN −

1N1T
NWt

tr(Wt)

]
Km.

Therefore, β can be efficiently estimated using existing LASSO solvers. The proof of the
equivalence between the two problems is provided in Section 1 of the Supplementary Materials.
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2.1.2. L2 Penalized Boosting

In the L2 penalized boosting, we replace Ω( f ) in the objective function of (5) with λ‖β‖2
2.

Following the same transformation as that in Section 2.1.1, the objective can also be converted to
a standard Ridge Regression (see Section 1 of Supplementary Materials)

min
β

1
N
‖η̃ + K̃mβ‖2

2 + λ‖β‖2
2, (7)

which allows closed form solution

β̂ = −(K̃T
mK̃m + NλIN)

−1K̃T
mη̃.

Both the L1 and L2 boosting algorithms require the specification of the penalty parameter λ,
which controls step length (the norm of fitted β) in each iteration and additionally controls solution
sparsity in the L1 case. Feasible choices of λ might be different for different scenarios, depending on
the input data and also the choice of the kernel. Either too small or too large λ values would lead to
big leaps or slow descent speed. Under the L1 penalty, poor choices of λ can even result in all-zero β,
which makes no change to the target function. Therefore, we also incorporate an optional automated
procedure to choose the value of λ in PKB. Computational details of the procedure are provided
in Section 2 of the Supplementary Materials. We recommend the use of the automated procedure
to calculate a feasible λ and try a range of values around it (e.g., the calculated value multiplies
1/25, 1/5, 1, 5, 25) for improved performance.

Lastly, the final target function at iteration T can be written as

FT(x) =
M

∑
m=1

N

∑
i=1

Km(x
(m)
i , x(m))β

(m)
i + C,

where β(m) = (β
(m)
1 , β

(m)
2 , . . . , β

(m)
N ) are the combination coefficients of kernel functions from pathway

m. We use ‖β(m)‖2 as a measure of importance (or weight) in the target function. It is obvious that
only the pathways that are selected at least once in the boosting procedure will have non-zero weights.
Because FT(x) is an estimation of the log odds function, sign[FT(x)] is used as the classification rule to
assign x to 1 or −1.

3. Results

3.1. Simulation Studies

We use simulation studies to assess the performance of PKB. We consider the following three
underlying true models:

- Model 1:
F(x) = 2x(1)1 + 3x(1)2 + exp(0.8x(2)1 + 0.8x(2)2 ) + 4x(3)1 x(3)2

- Model 2:
F(x) = 4 sin(x(1)1 + x(1)2 ) + 3|x(2)1 − x(2)2 |+ 2x(3)1

2
− 2x(3)2

2

- Model 3:

F(x) = 2
10

∑
m=1
‖x(m)‖2

where F(x) is the true log odds function and x(m)
i represents the expression level of the ith gene

in the mth pathway. We include different functional forms of pathway effects in F(x), including
linear, exponential, polynomial and others. In models 1 and 2, only two genes in each of the
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first three pathways are informative to sample classes; in model 3, only genes in the first ten
pathways are informative. We generated a total of six datasets, two for each model, with different
numbers of irrelevant pathways (M = 50 and 150) corresponding to different noise levels. We
set the size of pathways to 5 and sample size to 900 in all simulations. Gene expression data
(xi’s) were generated following standard normal distribution. We then calculated the log odds
F(xi) for each sample and use the median-centered F(xi) values to generate corresponding binary
outcomes yi ∈ { −1, 1} (We usethe median-centered F(xi) values to generate outcome, so that
the proportions of 1’s and −1’s are approximately 50%.).

We divided the generated datasets into three folds and each time used two folds as training data
and the other fold as testing data. The number of maximum iterations T is important to PKB, as using
a large T will likely induce overfitting on training data and poor prediction on testing data. Therefore,
we performed nested cross validation within the training data to select T. We further divided the
training data into three folds and each time trained the PKB model using two folds while monitoring
the loss function on the other fold at every iteration. Eventually, we identified the iteration number T∗

with the minimum averaged loss on testing data and applied PKB to the whole training dataset up to
T∗ iterations.

We first evaluated the ability of PKB to correctly identify relevant pathways. For each simulation
scenario, we calculated the average optimal weights across different cross validation runs and the
results are shown in Figure 1, where the X-axis represents different pathways and the length of bars
above them represents corresponding weights in the prediction functions. Note that for the underlying
Model 1 and Model 2, only the first three pathways were relevant to the outcome, and in Model 3,
the first ten pathways were relevant. In all the cases, PKB successfully assigned the largest weights to
relevant pathways. Since PKB is an iterative approach, at some iterations, certain pathways irrelevant
to the outcome may be selected by chance and added to the prediction function. This explains
the non-zero weights of the irrelevant pathways and their values are clearly smaller than those of
relevant pathways.

0 10 20 30 40 50
0.0

0.1

0.2

0 25 50 75 100 125 150
0.0

0.1

0.2

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0 25 50 75 100 125 150
0.0

0.1

0.2

0 10 20 30 40 50
0.0

0.2

0.4

0 25 50 75 100 125 150
0.0

0.2

0.4

M=50 M=150

M
od

el
 3

M
od

el
 2

M
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el
 1

Figure 1. Estimated pathway weights by PKB in simulation studies. The X-axis represents pathways
and the Y-axis represents estimated weights. Based on the simulation settings, the first three pathways
are relevant in Models 1 and 2 and the first ten pathways are relevant in Model 3. M represents the
number of simulated pathways.
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We also applied several commonly used methods to the simulated datasets and compared their
prediction accuracy with PKB. These methods included both non-pathway-based methods: Random
Forest [25] and SVM [20] and pathway-based methods: NPR [11] and EasyMKL [14]. Model parameters
we used for the above methods are listed in Section 3 of the Supplementary Materials. We used the
same three-fold split of the data, as we used when applying PKB, to perform cross-validations for each
competing method. The average prediction performance of the methods is summarized in Table 2. It
can be seen that the pathway-based methods generally performed better than the non-pathway-based
methods in all simulated scenarios. Among the pathway-based methods, the one that utilized kernels
(EasyMKL) had comparable performances with the tree-based NPR method in Models 1 and 2 but had
clearly superior performance in Model 3. This was likely due to the functional form of the log odds
function F(x) of Model 3. Note that genes in relevant pathways were involved in F(x) in terms of their
L2 norms, which is hard to approximate by regression tree functions but can be well captured using
kernel methods. In all scenarios, the best performance was achieved by one of the PKB methods. In four
out of six scenarios, the PKB-L2 method produced the smallest prediction errors, while in the other
two scenarios, PKB-L1 was slightly better. Although PKB-L1 and PKB-L2 had similar performances,
PKB-L1 was usually computationally faster, because in the optimization step of each iteration, the L1

algorithm only looked for sparse solution of β’s, which can be done more efficiently than PKB-L2,
which involves matrix inverse.

Table 2. Classification error rate from PKB and competing methods in simulation studies. The numbers
below each model represent the number of pathways simulated in the data sets.

Method Model 1 Model 2 Model 3

50 150 50 150 50 150

PKB-L1 0.151 0.196 0.198 0.189 0.179 0.21
PKB-L2 0.158 0.185 0.201 0.183 0.157 0.173
Random Forest 0.305 0.331 0.290 0.328 0.341 0.400
SVM 0.353 0.431 0.412 0.476 0.431 0.492
NPR 0.271 0.321 0.299 0.317 0.479 0.440
EasyMKL 0.253 0.284 0.268 0.330 0.212 0.300

3.2. Real Data Applications

We applied PKB to gene expression profiles to predict clinical features in three cancer studies,
including breast cancer, melanoma and glioma. The clinical variables we considered included tumor
grade, tumor site and metastasis status, which were all of great importance to cancer.

We used three commonly used pathway databases: KEGG, Biocarta and Gene Ontology
(GO) Biological Process pathways. These databases provide lists of pathways with emphasis on
different biological aspects, including molecular interactions and involvement in biological processes.
The number of pathways from these databases ranges from 200 to 700. There is considerable overlap
between pathways. To eliminate redundant information and control the overlap between pathways,
we applied a preprocessing step to the databases with details provided in the Supplementary Materials
Section 4.2.

Similar to the simulation studies, we compared the performances from different methods based
on three fold cross validations following the same procedure as elaborated in Section 3.1. Most of
the methods we considered have tuning parameters. We searched through different parameter
configurations and reported the best result from cross-validation for each method. More details of the
data sets and the implementations can be found in the Supplementary Materials Section 4. Table 3
shows the classification error rates from all methods. The numbers in bold are the optimal error rates
for each column separately. In four out of five classifications, PKB was the best method (usually with
the L1 and L2 methods being the top two). In the other case (melanoma, stage), NPR yielded the best
results, with the PKB methods still ranking second and third.
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We provide more detailed introductions to the data sets and clinical variables and interpretations
of results by PKB in the following. For brevity of the article, we focus on presenting results for three
outcomes, one from each data set and leave the other two in the Supplementary Materials (Section 4.4).

Table 3. Classification error rates on real data. The names in the parenthesis of each data set are
the variables used as classification outcome. The best error rates are highlighted with bold font for
each column.

Method
Data Sets

Metabric
(Grade)

Glioma
(Grade)

Glioma
(Site)

Melanoma
(Stage)

Melanoma
(Met)

PKB-L1 0.274 0.283 0.168 0.304 0.081
PKB-L2 0.304 0.283 0.154 0.307 0.083
Random Forest 0.306 0.302 0.306 0.320 0.136
SVM 0.285 0.292 0.185 0.314 0.083
NPR 0.306 0.298 0.197 0.282 0.110
EasyMKL 0.297 0.302 0.291 0.314 0.100

3.2.1. Breast Cancer

Metabric is a breast cancer study that involved more than 2000 patients with primary breast
tumors [26]. The data set provides copy number aberration, gene expression, mutation and long-term
clinical follow-up information. We are interested in the clinical variable of tumor grade, which measures
the abnormality of the tumor cells compared to normal cells under a microscope. It takes a value
of 1, 2, or 3. Higher Grade indicates more abnormality and higher risk of rapid tumor proliferation.
Since grade 1 contained the fewest samples, we pooled it together with Grade 2 as one class and treated
Grade 3 as the other class.

We then applied PKB to samples in subtype Lum B, where the sample sizes for the two classes
were most balanced (259 Grade 3 patients; 211 Grade 1,2 patients). For input gene expression data,
we used the normalized mRNA expression (microarray) data for 24,368 genes provided in the data
set. The model using GO Biological Process pathways and radial basis function (rbf) kernel yielded
the best performance (error rate 27.4%). To obtain the pathways most relevant to tumor grade, we
calculated the average pathway weights from the cross validation and sorted them from highest to
lowest. Top fifteen pathways with the highest weights are presented in the first columns of Table 4.

Among all pathways, the cell aggregation and sequestering of metal ion pathways are the top
two pathways in terms of the estimated pathway weights. Previous research has shown that cell
aggregation contributes to the inhibition of cell death and anoikis-resistance, thereby promoting tumor
cell proliferation. Genes in the cell aggregation pathway include TGFB2, MAPK14, FGF4 and FGF6,
which play important roles in the regulation of cell differentiation and fate [27]. Moreover, the majority
of genes in the sequestering of metal ion pathway encode calcium-binding proteins, which regulates
calcium level and different cell signaling pathways relevant to tumorigenesis and progression [28].
Among these genes, S100A8 and S100A9 have been identified as novel diagnostic markers of human
cancer [29]. The results suggest that PKB has identified pathways that are likely relevant to breast
cancer grade.

3.2.2. Lower Grade Glioma

Glioma is a type of cancer developed in the glial cells in brain. As glioma tumor grows,
it compresses normal brain tissue and can lead to disabling or fatal results. We applied our method to
a lower Grade glioma data set from TCGA, where only grades 2 and 3 samples were collected (Grade 4
glioma, also known as glioblastoma, is studied in a separate TCGA study.) [30]. After removal of
missing values, the numbers of patients in the cohort with grades 2 and 3 tumors were 248 and 265,
respectively. We used Grade as the outcome variable to be classified and applied PKB with different
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parameter configurations. After cross validation, PKB using the third order polynomial (poly3) kernel
and the GO Biological Process pathways yielded an error rate of 28.3%, which was the smallest among
all methods. The top fifteen pathways selected in the model are listed in the second column of Table 4.

Table 4. Top fifteen pathways with the largest weights fitted by PKB. In each column, pathways
are sorted in descending order from top to bottom. Pathways in the first two columns are from GO
Biological Process pathways and the third column from Biocarta.

Metabric (Grade) Glioma (Grade) Melanoma (Met)

1 Cell aggregation
Homophilic cell adhesion via
plasma membrane adhesion
molecules

Lectin induced complement
pathway

2 Sequestering of metal ion Neuropeptide signaling
pathway Classical complement pathway

3
Glutathione derivative
metabolic process

Multicellular organismal
macromolecule metabolic
process

Phospholipase c delta in
phospholipid associated cell
signaling

4
Antigen processing and
presentation of exogenous
peptide antigen via mhc class i

Peripheral nervous system
neuron differentiation

Fc epsilon receptor i signaling
in mast cells

5 Sterol biosynthetic process Positive regulation of hair cycle Inhibition of matrix
metalloproteinases

6
Pyrimidine containing
compound salvage Peptide hormone processing

Regulation of map kinase
pathways through dual
specificity phosphatases

7 Protein dephosphorylation Hyaluronan metabolic process
Estrogen responsive protein efp
controls cell cycle and breast
tumors growth

8
Homophilic cell adhesion via
plasma membrane adhesion
molecules

Positive regulation of synapse
maturation

Chaperones modulate
interferon signaling pathway

9 Cyclooxygenase pathway Stabilization of membrane
potential

Il-10 anti-inflammatory
signaling pathway

10
Establishment of protein
localization to endoplasmic
reticulum

Lymphocyte chemotaxis Reversal of insulin resistance
by leptin

11
Negative regulation of
dephosphorylation Insulin secretion Bone remodeling

12 Xenophagy Positive regulation of osteoblast
proliferation

Cycling of ran in
nucleocytoplasmic transport

13
Attachment of spindle
microtubules to kinetochore

Negative regulation of
dephosphorylation

Alternative complement
pathway

14 Fatty acyl coa metabolic process Trophoblast giant cell
differentiation Cell cycle: g2/m checkpoint

15 Apical junction assembly Synaptonemal complex
organization

Hop pathway in cardiac
development

The estimated pathway weights indicate that the cell adhesion pathway and the neuropeptide
signaling pathway have the strongest association with glioma grade. Genes in the cell adhesion
pathways generally govern the activities of cell adhesion molecules. Turning off the expression
of cell-cell adhesion molecules is one of the hallmarks of tumor cells, by which tumor cells can
inhibit antigrowth signals and promote proliferation. Previous studies have shown that deletion of
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carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) gene can contribute to cancer
progression [31]. Cell Adhesion Molecule 1 (CADM1), CADM2, CADM3 and CADM4, serve as tumor
suppressors and can inhibit cancer cell proliferation and induce apoptosis. Neuropeptide signaling
pathway has also been implicated in tumor growth and progression. Neuropeptide Y is highly relevant
to tumor cell proliferation and survival. Two NPY receptors, Y2R and Y5R, are also members of the
neuropeptide signaling pathway. They are considered as important stimulatory mediators in tumor
cell proliferation [32].

3.2.3. Melanoma

The next application of PKB is to a TCGA cutaneous melanoma dataset [33]. Melanoma is most
often discovered after it has metastasized and the skin melanoma site is never found. Therefore,
the majority of the samples are metastatic. In this data set, there are 369 metastatic samples and
103 primary samples. It is of great interest to study the genomic differences between the two types,
thus we applied PKB to this data using metastatic/primary as the outcome variable. Using the Biocarta
pathways and rbf kernel produced the smallest classification error rate (8.1%) among all methods.
Fifteen pathways that PKB found most relevant to the outcome are presented in the third column
of Table 4.

Two complement pathways, lectin induced complement pathway and classical complement
pathway, came out from the PKB model as the most significant pathways. Proteins in complement
system participate in a variety of biological processes of metastasis, such as epithelial-mesenchymal
transition (EMT). EMT is an important process in the initiation stage of metastasis, through which
cells in primary tumor lose cell-cell adhesion and gain invasive properties. Complement activation by
tumor cells can recruit stromal cells to the tumor and induce EMT. Furthermore, complement proteins
can mediate the degradation of extracellular matrix, thereby promoting tumor metastasis [34].

4. Discussion

In this paper, we have introduced the PKB model as a method to perform classification analysis
of gene expression data, as well as identify pathways relevant to the clinical outcomes of interest.
PKB usually yields sparse models in terms of the number of pathways, which enhances interpretability
of the results. Moreover, the pathway weights as defined in Section 2 can be used as a measure of
pathway importance and provides guidance for further experimental verifications.

Two types of regularizations are introduced in the optimization step of PKB, in order to select
simple model with good fitting. Computation efficiency of the two methods depends on the
regularization strengh: when regularization is strong, the L1 method enjoys a computational advantage
due to the sparsity of its solution; when regularization is weak, it requires more iterations to converge
and yields worse run time than the L2 . In simulations and real data applications, both methods
yielded comparable prediction accuracy. It is worth mentioning that the second-order approximation
of the log loss function is also necessary for efficiency of PKB. The approximation yields an expression
that is quadratic in terms of coefficients β, which allows the problem to be converted to LASSO or
Ridge Regression after regularizations are added. If the original loss function was used, solving β

would be more time consuming. In the applications, we only considered gene expression data as
model input. However, our method can be easily generalized to use other continuous inputs, such as
gene methylation measurements. By incorporating other properly designed kernel functions, it is also
possible to handle discrete inputs (for example, the weighted IBS kernel for SNP data [7]).

There are several limitations of the current PKB approach. First of all, when constructing base
learners from pathways, we use fixed bandwidth parameters (inverse of the number of genes in each
pathway) in the kernel functions. Ideally, we would like the model to auto-determine the parameters.
However, the number of such parameters is equal to the number of pathways, which is often too
large to tune efficiently. Therefore, it remains a challenging task for future research. Second, we
currently only use pathway as a criterion to group genes and within each pathway, all genes are treated
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equally. It is conceivable that the genes interact with each other through an underlying interaction
network and intuitively, genes in the hub should get more weights compared to genes on the periphery.
With the network information available, it is possible to build more sensible kernel functions as base
learners [17]. Third, the pathway databases only cover a subset of the input genes. Both KEGG and
Biocarta only include a few thousands of genes, while the number of input genes is usually beyond
15,000. Large number of genes, with the potential to provide additional prediction power, remain
unused in the model. In our applications, we tried pooling together all unused genes and consider
them as a new pathway but it did not significantly improve the results. Although genes annotated with
pathways are supposed to be most informative, it is still worth looking for smarter ways of handling
unannotated genes.

Supplementary Materials: Supplementary materials and reproduction code are available online at
https://github.com/zengliX/PKB. Reproduction-related input data sets are available upon request from the
corresponding author (hongyu.zhao@yale.edu).
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