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Abstract: Individual responses to diet vary but causes other than genetics are poorly understood. This
study sought to determine whether baseline values of homeostasis model assessment (HOMA-IR) was
related to changes in small, dense low-density lipoprotein (sdLDL, i.e., LDL4, d = 1.044–1.063 g/mL)
amounts quantified by isopycnic density profiling, in mildly hypercholesterolemic subjects (n = 27)
consuming one of three low saturated fatty acid (SFA) diets: Dietary Approaches to Stop Hyperten-
sion (DASH), Beef in an Optimal Lean Diet (BOLD) and BOLD plus extra protein (BOLD+) when
compared to a higher-SFA healthy American diet (HAD). The diets were consumed in random
order for 5 wk, with 1 wk between diets. BOLD+ reduced fractional abundance (%) LDL4 (p < 0.05)
relative to HAD, DASH and BOLD, and reductions in % LDL4 correlated with reductions in triglyc-
erides (p = 0.044), total cholesterol (p = 0.014), LDL cholesterol (p = 0.004) and apolipoprotein B
(p < 0.001). Responses to the four diets were similar (~12% decrease in % LDL4, p = 0.890) in the
lower (<2.73 median) HOMA-IR subgroup but differed across diet conditions in the higher HOMA-
IR subgroup (p = 0.013), in which % LDL4 was reduced with BOLD+ (−11%), was unchanged in
BOLD and increased with the HAD (8%) and DASH (6%) diets (p < 0.05 for BOLD+ vs. HAD).
Individual responses to diet interventions are influenced by presence and degree of insulin resistance
as measured by HOMA-IR.

Keywords: insulin resistance; diet response; beef consumption; saturated fat

1. Introduction

Low-density lipoprotein (LDL) particles are highly heterogeneous, and likely vary
in atherogenicity due to differences in size, composition, and physiochemical properties.
Compared with larger LDL particles, small dense LDL (sdLDL) particles have a higher
propensity to penetrate the artery wall and bind to proteoglycans [1], increased susceptibil-
ity to oxidation [2] and reduced affinity for the LDL receptor [3]. Thus, a higher level of
sdLDL particles is associated with increased risk for ischemic heart disease [4].

Lifestyle change to alter modifiable risk factors is often the first strategy to reduce
ischemic heart disease, with reductions in total and LDL cholesterol (LDL-C) being key
targets for reduction. Intervention studies demonstrate that LDL density distribution is
modulated by dietary macronutrient composition. Compared with an isocaloric high-fat
diet, low fat/high carbohydrate diets are associated with either no change or a decrease in
LDL particle diameter (i.e., a shift toward sdLDL) [5–9]. The differences among studies
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were ascribed, in part, to differences in type (simple or complex) and proportion of energy
consumed from carbohydrate (54–75% of total energy). Replacement of carbohydrate by
protein (from plant or animal sources) in moderate- or high-fat eucaloric diets is generally
associated with an improved LDL density profile, with a shift away from sdLDL toward
larger, more buoyant LDL subfractions [8,10,11].

LDL particle diameter is related to LDL density [10]. Considerable within-study
variation in individual LDL particle diameter responsiveness to diet has been consistently
observed, even under controlled feeding conditions, suggesting an influence of genetic
and other environmental factors. For example, apolipoprotein E phenotype [5] and sdLDL
subclass pattern B [9] both have been identified as determinants of LDL responses to
lower fat diets. Others have proposed that a tipping point exists where insulin resistance
becomes inflammatory insulin resistance [11], and Gower et al. [12] reported that improved
insulin sensitivity in response to 30 g of resistant starch differed depending on the subject’s
baseline insulin sensitivity. Further, the presence of sdLDL, or indirect indices of sdLDL,
were associated with insulin resistance and diabetes in a large cross-sectional study in
China [13], and with pregnancy complications in nonobese women with polycystic ovary
syndrome [14].

We could find no publications reporting the effects of baseline insulin sensitivity, as
judged by homeostasis model assessment (HOMA-IR), on lipoprotein density distribution
response to isocaloric diets that were lower in total and saturated fatty acids (SFA) that
varied in carbohydrate or protein replacement calories in subjects whose triacylglycerol,
insulin and glucose values were within normal limits [15,16].

The Dietary Approaches to Stop Hypertension (DASH) dietary pattern is a recom-
mended heart healthy diet that emphasizes fruits and vegetables and is low in SFA and
cholesterol [17,18]. Some epidemiological studies reported adverse health associations
for red meat intake, which may be attributable to its SFA content, varying levels of meat
processing and additives, residual confounding, or other factors [19–21]. Studies using
fresh beef in interventions did not reliably show elevations in cardiovascular risk fac-
tors [11,22,23]. The Beef in an Optimal Lean Diet (BOLD) study compared the effects
of a DASH dietary pattern with two DASH-like dietary patterns that provided different
amounts of lean beef in a mildly hypercholesterolemic study sample to assess the effects
of lean beef on cardiometabolic health markers in the context of healthy diet patterns [22].
The primary findings, reported previously, were the significant (and similar) reductions in
total and LDL cholesterol levels in the DASH and lean beef-containing (BOLD and BOLD+)
diets, compared to the healthy American control diet (HAD) [22]. In addition, the higher
protein/higher lean beef BOLD+ diet was the only dietary intervention to elicit a significant
reduction in systolic blood pressure compared to the control diet [23]. Samples from the
BOLD study provided the opportunity to examine the effect of replacing fat calories with
protein or carbohydrate calories in a well-controlled dietary setting with mildly hyperc-
holesterolemic, but otherwise healthy subjects [22]. While the BOLD study made chemical
measurements of fasting plasma lipids, it did not assess whether cholesterol reductions
were associated with reductions in sdLDL. Thus, the primary aim of this secondary analysis
was to assess the effects of dietary patterns that varied in the amount of protein provided
by lean beef on lipoprotein density distributions, with an emphasis on changes in the
abundance of sdLDL. In addition, inflammatory status and insulin sensitivity have been
associated with changes in lipoprotein particle diameter in prior studies [24]. Therefore,
secondary aims were to assess whether inflammatory status and insulin sensitivity at
baseline were related to lipoprotein density distribution response to the different diets.

2. Materials and Methods
2.1. Participants and Design

The present study is a secondary analysis, conducted in 2014, using all 27 of the com-
plete serum sample sets remaining from the original BOLD study [22]. Lack of a complete
sample set was the sole exclusion criteria for the secondary analysis. The experimental
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design and measurements of the original study were described in detail previously [22].
Briefly, a 4-period, randomized, cross-over, controlled-feeding design was used. Partic-
ipants consumed each of four diets: HAD, DASH, BOLD and BOLD+ for 5 weeks in a
random order in a controlled-feeding setting with a minimum of a 1-wk compliance break
between the diets. The macronutrient and fatty acid distributions of the four test diets
are shown in Table 1. At the beginning of the study and at the end of each diet period,
serum samples were taken from healthy men (n = 10) and women (n = 17) (36–65 years of
age) with moderately high baseline LDL-C (>2.8 mmol/L). Participants were not on any
lipid-lowering medications or dietary supplements during the study. Insulin resistance was
not a factor in subject selection. Serum glucose and insulin concentrations were available
for 25 of the 27 subjects.

Table 1. Energy and macronutrient profiles of the BOLD study diets.

HAD DASH BOLD BOLD+

95% Lean beef (g/day) 20 28 113 153
Calories (kcal) 2097 2106 2100 2104
Protein (%E) 17 18 19 27
Carbohydrate (%E) 50 55 54 45
Fat (%E) 33 27 28 28
SFA (%E) 12 6 6 6
MUFA (%E) 11 9 11 12
PUFA (%E) 7 8 7 7

The HAD was higher in SFA and total fat than the other three test diets. It also included
more refined grains, added sugars, and full-fat dairy products compared to the test diets.
The DASH, BOLD and BOLD+ diets included more whole grains, vegetables, fruits, and
low-fat dairy products. The DASH and BOLD diets were matched for macronutrient
energy distribution, but differed in the amounts of beef included, 28 g/d and 113 g/d lean
beef respectively. The BOLD+ diet contained similar proportions of total and saturated fat
as the BOLD and DASH diets but contained less carbohydrate (45% vs. 54–55% energy,
respectively) and greater amounts of lean beef (153 g/d) and total protein (27% vs. 18–19%
energy, respectively). The total energy content of the test diets was individually adjusted
to keep participants’ weight stable during the 4 feeding periods. In the original study,
participants consumed one meal per weekday in the Penn State Metabolic Diet Study
Center, with the other meals being prepared and packed for off-site consumption. Diet
adherence was monitored by daily and weekly compliance questionnaires.

2.2. Laboratory Assessment

Coded samples were received from the Penn State laboratory and analyzed for lipopro-
tein density distribution prior to revelation of treatment codes and statistical analysis.
Analytical methods for clinical chemistry and immunoassays were published in detail
previously [22]. Briefly, lipid concentrations were measured enzymatically at the MS Her-
shey Medical Center General Clinical Research Center (Hershey, Derry, PA, USA); this
same core facility measured insulin by radioimmunoassay using 125I-labeled human in-
sulin and human insulin antiserum [25] and glucose by an immobilized enzyme biosensor
for glucose [26]. Apolipoprotein B was measured by immunoturbidimetric assay at the
Oklahoma Research Institute (Oklahoma City, OK, USA) under the supervision of Petar
Alaupovic. High-sensitivity CRP (hsCRP) was measured with the use of latex-enhanced
immunonephelometric assay (Quest Diagnostics, NJ, USA).

Insulin resistance (inversely related to insulin sensitivity) was estimated by HOMA-
IR [27] calculated from previously measured serum glucose and insulin concentrations
using the following equation:

HOMA − IR =
Glucose × Insulin

22.5
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Glucose and insulin are expressed in mmol/L and mU/L, respectively.
Lipoprotein density profile was determined by imaging of fluorescently stained

lipoproteins following NaBiEDTA ultracentrifugation as previously described with modi-
fications [28]. Briefly, 6 µL serum was incubated with 10 µL 1 g/L 6-((N-(7-Nitrobenz-2-
Oxa-1,3-Diazol-4-yl)amino)hexanoyl) Sphingosine (i.e. NBD-C6-ceramide), and 1184 µL
0.18 mol/L NaBiEDTA density gradient solution. This solution (1150 µL) was then trans-
ferred to an 11 mm × 34 mm thickwall polycarbonate tube and centrifuged in a Beckman
Optima MAX-XP centrifuge equipped with an MLA-130 rotor (Beckman Coulter, Inc. Brea,
CA, USA) for 6 hr at 4 ◦C. Following gentle overlayment of hexane, the tubes were imme-
diately imaged by a CCD camera (Quantifire XI, Optronics, Muskogee, OK, USA) with
a Fiber-Lite Illuminator (MH100A, Edmund Industrial Optics, Barrington, NJ, USA) as
light source. The tube holder, digital camera and illuminator were positioned orthogonally
to each other on an optical bench. The respective filters (Semrock, Rochester, NY, USA)
were chosen to match NBD excitation (465 nm/60 nm bandwidth, part # FF01-460-60-
25) and emission (>500 nm/long pass, part # BLP01-488R-25) wavelengths, respectively.
Pixel values of the center of the tube were converted into fluorescent intensity using Ori-
gin 7.5 (OriginLab Ltd., Northampton, MA, USA) software and plotted as a function of
the tube coordinate. A total of 10 lipoprotein subclasses were identified by their den-
sity intervals [29,30], and quantified by calculation of the area under the curve (AUC),
i.e., pixel value. The major lipoprotein subclasses were triacylglycerol-rich lipoproteins
(TRL; d < 1.019 g/mL), LDL1 (d = 1.019–1.023 g/mL), LDL2 (d = 1.023–1.034 g/mL), LDL3
(d = 1.034–1.044 g/mL), LDL4 (d = 1.044–1.063 g/mL), HDL2b (d = 1.063–1.091 g/mL),
HDL2a (d = 1.091–1.110 g/mL), HDL3a (d = 1.110–1.133 g/mL), HDL3b (d = 1.133–1.156 g/mL)
and HDL3c (d = 1.156–1.179 g/mL) [31]. NBD-C6-ceramide only fluoresces in a hydropho-
bic environment. Thus, the fluorescent intensity of a particle depends on the quantity of
the hydrophobic group/molecules in lipoprotein particles and should correlate to chemical
determinations of lipids. Isopycnic density profiling used here defines sdLDL as LDL4
(d = 1.044–1.063 g/mL). The density profiling methodology was validated by measuring
intra- and inter- assay reproducibility of samples differing in triacylglycerol (TG) con-
centration. Participants were grouped into quintiles based on serum TG concentration.
Three serum samples from each of the 1st, 3rd, 5th quintiles were randomly selected and
pooled and used as low (0.63 mmol/L), medium (1.15 mmol/L) and high (2.25 mmol/L)
TG concentration samples. For intra-assay variation assessment, 3 replicates for each of the
low, medium, and high TG samples were analyzed in a single run. For inter-assay variation
assessment, 5 replicates of the samples were run on 5 separate days. On each day, a set of
low, medium, and high TG samples was analyzed.

2.3. Statistics

Statistical analysis was performed using JMP 10.0 (SAS Institute Inc., Cary, NC, USA).
Distributions were assessed for normality using the Shapiro-Wilk test. Continuous data
with a skewed distribution were log transformed before analysis. Baseline characteristics
between men and women were compared using two-sample t-tests. Further measurement
of lipoprotein subclass by NBD-C6 ceramide distribution was compared with conventional
chemical measurements from Roussell et al. [22] (see Tables 2 and 3 of this report for those
chemical values) using Pearson correlation. Forest plots were determined to visualize
data prior to further statistical analysis (Appendix A Figure A2). The lipoprotein density
distribution and HOMA-IR at baseline and after each of the four test diets were compared
by repeated measures analysis of covariance with adjustment for age, gender, and BMI,
followed by Tukey-Kramer test. The primary outcomes were the differences in absolute
and fractional abundance of LDL4 after the consumption of the BOLD+ diet compared to
the HAD diet. Pearson correlation coefficients were calculated for the BOLD+ diet induced
change in LDL4 and changes in previously reported lipid variables and apolipoprotein
concentrations. To examine the effects of baseline lipids, inflammation indicators and
HOMA-IR on LDL4 response to test diets, Pearson correlation coefficients were calculated
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for baseline TG, total cholesterol (TC), LDL-C, HDL cholesterol (HDL-C), HOMA-IR, and
CRP with percentage change of LDL4 from baseline for each test diet. When a significant
correlation was observed for baseline HOMA-IR and LDL4 percentage change, a secondary
analysis was performed to better characterize the effect of baseline HOMA-IR. Participants
with baseline HOMA-IR below the median were classified as a lower HOMA-IR subgroup
(n = 13) whereas participants with HOMA-IR equal or greater than the median were
classified as a higher HOMA-IR subgroup (n = 12). To investigate the responsiveness
to test diets within each baseline HOMA-IR subgroup, mixed model repeated measures
analysis of covariance was performed with participants entered as a random variable and
age, gender, and BMI as covariates. When a significant overall dietary effect was detected
by the mixed model, the Tukey-Kramer test was used to further investigate the pairwise
differences between diets. The level of significance was p < 0.05. Values for continuous
variables were expressed as mean ± SEM.

Table 2. Baseline characteristics of study participants.

Men (n = 10) Women (n = 17) Total (n = 27)

Age (years) 50.9 ± 2.6 50.9 ± 2.2 50.9 ± 1.7
BMI 26.5 ± 0.8 25.1 ± 0.9 25.6 ± 0.6
TG (mmol/L) 1.08 ± 0.10 1.10 ± 0.08 1.09 ± 0.06
TC (mmol/L) 4.98 ± 0.15 5.84 ± 0.18 * 5.52 ± 0.15
LDL-C (mmol/L) 3.26 ± 0.13 3.89 ± 0.14 * 3.65 ± 0.12
HDL-C (mmol/L) 1.23 ± 0.07 1.45 ± 0.10 1.37 ± 0.07
ApoB (mg/dL) 89.0 ± 2.73 97.9 ± 1.82 * 94.5 ± 8.46
Glucose (mmol/L) 4.94 ± 0.08 4.50 ± 0.07 4.68 ± 0.05
Insulin (mU/L) 12.70 ± 1.50 13.20 ± 0.70 13.00 ± 0.70
HOMA-IR 2.79 ± 0.34 2.65 ± 0.16 2.71 ± 0.17
hsCRP (mg/L) 1.00 ± 0.16 1.09 ± 0.22 1.06 ± 0.15

Data are expressed as mean ± SEM. * p <0.05 vs. men. Skewed data were log transformed before statistical
analysis.

Table 3. Effect of diets on clinical and biochemical parameters.

HAD (n = 27) DASH (n = 27) BOLD (n = 27) BOLD+ (n = 27)

BMI 24.5 ± 0.70 25.3 ± 0.60 25.5 ± 0.60 25.4 ± 0.60
TG (mmol/L) 1.02 ± 0.07 1.04 ± 0.06 1.01 ± 0.06 0.98 ± 0.06
TC (mmol/L) 5.26 ± 0.16 5.01 ± 0.16 * 5.04 ± 0.17 * 4.96 ± 0.16 *,†

LDL-C (mmol/L) 3.51 ± 0.12 3.30 ± 0.11 * 3.34 ± 0.13 * 3.29 ± 0.12 *
HDL-C (mmol/L) 1.28 ± 0.06 1.19 ± 0.06 *,† 1.22 ± 0.06 * 1.20 ± 0.06 *,†

ApoB (mg/dL) 95.1 ± 2.8 92.2 ± 2.8 92.0 ± 3.5 91.8 ± 2.9
Glucose (mmol/L) 4.83 ± 0.08 4.75 ± 0.07 4.83 ± 0.07 4.91 ± 0.08
Insulin (IU/mL) 12.8 ± 0.8 12.3 ± 0.7 13.6 ± 0.8 13.4 ± 0.7
HOMA-IR 2.76 ± 0.20 2.64 ± 0.14 2.93 ± 0.17 2.94 ± 0.17
hsCRP (mg/L) 1.07 ± 0.25 0.99 ± 0.19 0.92 ± 0.13 0.93 ± 0.12

Data are expressed as mean ± SEM. n = 25 for HOMA-IR; n = 24 for CRP. * p <0.05 vs. baseline; † p < 0.05 vs.
HAD (Tukey HSD). Skewed data were log transformed before statistical analysis.

3. Results
3.1. Baseline Characteristics

Baseline characteristics of the 27 participants in the original BOLD study [22] for
whom complete sample sets were available are shown in Table 2. The participants were
mildly hypercholesterolemic but were within the normal range for TG (<1.7 mmol/L) and
HDL-C (>1.04 mmol/L for men and >1.30 mmol/L for women). Baseline serum glucose
and insulin concentrations did not exceed normal limits [15,16].

Females had a significantly higher average TC (p = 0.003) and LDL-C (p = 0.007) than
males. No differences were observed for TG, HDL-C, CRP and HOMA-IR between men
and women. Despite the difference in total LDL-C concentration between men and women,
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the difference was mainly due to the presence of more large and medium LDL, but not
LDL4, in women (Appendix A Figure A1). No significant gender effect on LDL4 response
to the test diets was observed. Baseline HOMA-IR values varied from 1.27 to 4.73 with a
median of 2.73.

3.2. Post-Diet Characteristics

Table 3 summarizes previously reported [22] clinical and biochemical parameters
used in lipoprotein density distribution correlation analyses. Mean values for BMI, TG,
apolipoprotein B (ApoB), HOMA-IR and CRP were similar across dietary treatments. TC
was reduced compared to baseline by DASH, BOLD and BOLD+; only BOLD+ reduced TC
compared to HAD. Values for LDL-C were reduced by DASH, BOLD and BOLD+ when
compared to baseline; no differences were observed compared to HAD. All diets lower in
total and SFA reduced HDL-C compared to baseline, and both DASH and BOLD+ reduced
HDL-C compared to HAD.

3.3. Lipoprotein Density Distribution

The AUC of core-lipid rich TRL, LDL and HDL2 were strongly correlated with chemi-
cally determined values for serum TG, LDL-C and HDL-C respectively (r ≥ 0.66, p < 0.0001
for all, Figure 1A–C). For cholesterol-poor HDL3, there was a significant, but weaker asso-
ciation with HDL-C (r = 0.27, p = 0.007, Figure 1D). The lipoprotein density distribution
demonstrated that technical variations across different lipoprotein subclasses were similar
for samples containing differing amounts of TG, with the highest variation occurring at
the top and bottom of the regions of the tube (i.e., TRL, LDL1, and HDL3c subclasses).
The increase in variability was likely due to the specific solution redistribution condition
at these positions during centrifuge deceleration. For other lipoprotein subclasses, the
average coefficient of variation (CV) was as low as 5% with 3 replicates for intra-assay
assessments and 4% with 5 replicates for inter-assay assessments (Appendix A Table A1).
Compared with baseline, no absolute or fractional change was observed for any lipoprotein
subclass after the consumption of the HAD diet (Table 4). These observations support the
conclusion that the macronutrient distribution of the participants’ baseline diet was similar
to HAD.

While the lack of differences in lipoprotein density distributions observed during
baseline and HAD periods lead to the conclusion that the macronutrient compositions of
baseline and HAD were similar, statistical comparisons were made relative to outcomes
from the HAD controlled feeding period. Compared with the control, HAD diet, BOLD+
significantly reduced total LDL4 AUC by ~9.2% which also caused a reduction in the
fractional abundance (%) of LDL4 (p < 0.05), indicating a shift in LDL particle diameter
distribution towards larger sizes. Further analysis demonstrated that when participants
consumed the BOLD+ dietary pattern, the induced decreases in %LDL4 paralleled the
decreases in TC (r = 0.48, p = 0.014), LDL-C (r = 0.55, p = 0.004) and ApoB (r = 0.68, p < 0.001),
with the strongest association observed for ApoB. Despite the lack of a significant difference
in mean TG after the consumption of the HAD vs. the BOLD+ diet, we observed a positive
correlation between the change in TG and LDL4 (r = 0.41, p = 0.044). The BOLD+ diet did
not result in decreases in the AUC of larger diameter LDL2 and LDL3 particles, while both
DASH and BOLD decreased the AUC of these LDL subclasses by an average of ~4.6% and
~8.8%, respectively. Total HDL2b AUC was significantly decreased by ~5.6% and ~6.8%
after the consumption of the DASH and BOLD diets, respectively (p < 0.05), but not after
consumption of the BOLD+ diet. The fractional abundance of HDL3a increased following
consumption of all three test diets low in SFA (i.e., DASH, BOLD and BOLD+) compared
to the proportion present following consumption of the HAD (p < 0.05).
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Table 4. Lipoprotein density distribution at baseline and after the test diets.

Baseline
(n = 27)

HAD
(n = 27)

DASH
(n = 27)

BOLD
(n = 27)

BOLD+
(n = 27)

Lipoprotein distribution calculated as absolute AUC
TRL 216 ± 16 204 ± 22 214 ± 14 181 ± 14 195 ± 23

LDL1 56 ± 5 44 ± 3 47 ± 4 45 ± 4 52 ± 5
LDL2 274 ± 15 240 ± 15 232 ± 14 * 226 ± 14 * 253 ± 21
LDL3 780 ± 49 730 ± 47 665 ± 48 * 667 ± 48 * 687 ± 38
LDL4 844 ± 39 822 ± 35 797 ± 21 761 ± 21 723 ± 33 *,†

HDL2b 369 ± 28 370 ± 28 337 ± 22 *,† 331 ± 22 *,† 345 ± 29
HDL2a 438 ± 22 422 ± 24 406 ± 20 408 ± 20 420 ± 26
HDL3a 422 ± 12 395 ± 12 408 ± 12 394 ± 12 399 ± 12
HDL3b 364 ± 9 343 ± 9 353 ± 8 * 329 ± 8 * 336 ± 9 *
HDL3c 128 ± 5 127 ± 5 129 ± 4 118 ± 4 124 ± 5

Lipoprotein distribution calculated as % total AUC
TRL 5.5 ± 0.4 5.6 ± 0.6 5.9 ± 0.4 5.3 ± 0.4 5.6 ± 0.6

LDL1 1.5 ± 0.1 1.2 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.5 ± 0.1
LDL2 7.1 ± 0.3 6.4 ± 0.3 6.4 ± 0.3 6.5 ± 0.3 7.0 ± 0.3
LDL3 19.8 ± 0.9 19.4 ± 0.8 18.3 ± 1.0 18.9 ± 1.0 19.1 ± 0.7
LDL4 21.8 ± 0.8 22.5 ± 0.8 22.4 ± 0.4 22.4 ± 0.4 20.8 ± 0.5 †,‡,§
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Table 4. Cont.

Baseline
(n = 27)

HAD
(n = 27)

DASH
(n = 27)

BOLD
(n = 27)

BOLD+
(n = 27)

Lipoprotein distribution calculated as % total AUC
HDL2b 9.3 ± 0.4 9.9 ± 0.4 9.3 ± 0.3 9.4 ± 0.3 9.5 ± 0.5
HDL2a 11.2 ± 0.2 11.3 ± 0.2 11.3 ± 0.2 11.7 ± 0.2 11.8 ± 0.3
HDL3a 10.9 ± 0.2 10.7 ± 0.2 11.5 ± 0.2 *,† 11.5 ± 0.2 *,† 11.5 ± 0.3 †

HDL3b 9.5 ± 0.2 9.4 ± 0.3 9.9 ± 0.2 9.6 ± 0.2 9.7 ± 0.3
HDL3c 3.4 ± 0.1 3.5 ± 0.2 3.6 ± 0.1 3.5 ± 0.1 3.6 ± 0.1

Data are expressed as mean ± SEM. n = 27. * p <0.05 vs. baseline; † p <0.05 vs. HAD; ‡ p <0.05 vs. DASH; § p <0.05
vs. BOLD (Tukey HSD). Skewed data were log transformed before statistical analysis.

3.4. LDL4 Responsiveness

To identify possible predictors for individual LDL subclass responses to the HAD,
DASH, BOLD and BOLD+ diets, univariate correlations were calculated for the percentage
change in LDL4 from baseline with baseline lipid variables, HOMA-IR, and CRP. The
results showed that increased baseline HOMA-IR was associated with a less favorable
LDL4 response to the HAD (r = 0.36, p = 0.065), DASH (r = 0.56, p = 0.003) and BOLD
(r = 0.47, p = 0.018) diets (Table 5). No such clear relationship existed for baseline HOMA-IR
with LDL4 response to BOLD+ (r = 0.13, p = 0.533).

Table 5. Correlations between percent LDL4 change from baseline and baseline lipid, HOMA-IR, and
CRP for four test diets.

HAD DASH BOLD BOLD+

r p r p r p r p

TG 0.16 0.428 0.02 0.922 0.15 0.445 0.16 0.427
TC 0.16 0.412 0.27 0.161 0.13 0.502 0.21 0.300

LDL-C 0.12 0.536 0.22 0.271 0.24 0.222 0.25 0.205
HDL-C 0.21 0.299 0.21 0.288 0.18 0.356 0.05 0.813

HOMA-IR 0.36 0.065 0.56 0.003 0.47 0.018 0.13 0.533
hsCRP 0.35 0.093 0.23 0.282 0.32 0.125 0.18 0.395

Pearson correlation coefficients. For each intervention diet, n = 27 for lipid variables; n = 25 for HOMA-IR; n = 24
for CRP.

To further assess the effect of baseline HOMA-IR on the LDL4 response, participants
were grouped into lower and higher baseline HOMA-IR subgroups by median split (< or
≥2.73). Baseline subject characteristics following regrouping by median split are shown
in Appendix A Table A2. The responses for %LDL4 for these two groups are shown in
Figure 2. The responsiveness to the four diets, expressed as the change in %LDL4 from
baseline, showed no significant difference (p = 0.890) in direction among participants with
baseline HOMA-IR values ≤ 2.73; and all showed reductions in %LDL4. However, within
this subgroup, as indicated by unbracketed asterisks, comparison of baseline to individual
test diet endpoints demonstrated a significant decrease in %LDL4 after the consumption
of the BOLD (p = 0.003) and BOLD+ (p = 0.046) diets and no significant decrease after the
consumption of the DASH (p = 0.069) or HAD (p > 0.1) diets. In contrast, directionality of
responses to the test diets differed among participants with baseline HOMA-IR > 2.73. The
%LDL4 decreased in response to the BOLD+ diet, a direction that was significantly different
from those for the HAD and DASH diets in the high HOMA-IR group (p = 0.013). Indeed,
following the consumption of BOLD+ diet, %LDL4 was numerically lowered in the higher
HOMA-IR subgroup (p < 0.1), with a magnitude comparable to that observed with all of
the diets among subjects with lower HOMA-IR. However, among subjects with higher
HOMA-IR values, no trend of decrease in %LDL4 from baseline was observed following
the consumption of other three test diets.
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4. Discussion

The participants in the original BOLD study, while being mildly hypercholesterolemic,
were normotensive [23] with serum concentrations of TG, glucose, insulin, and HDL-C
within normal limits [15,16,24] (and Table 2). Further, subjects maintained their starting
bodyweights within 2.2 kg [22] while consuming the four isocaloric test diets over the
>23 wk experimental period. Despite the lack of overt evidence of insulin resistance or
metabolic syndrome, the ability of three different diets low in total and SFA to reduce the
amounts of sdLDL varied in relation with HOMA-IR. Specifically, we found that increasing
dietary protein, mainly from 153 g/day of lean beef in the BOLD+ diet, while decreasing
carbohydrate within a DASH-like dietary pattern improved the lipoprotein density profile
by decreasing the absolute and proportional abundance of sdLDL, (i.e., LDL4) compared
to a HAD diet. The degree of improvement was significant in individuals with HOMA-
IR values ≤ 2.73; with BOLD+, the difference versus HAD was significant regardless of
baseline HOMA-IR. The DASH and BOLD diets also appeared to have beneficial effects on
the LDL density profile for some individuals, albeit improvements were less than those
observed following the BOLD+ diet. The effects of these two diets appeared to also be
influenced by baseline HOMA-IR value. To the best of our knowledge, this is the first study
to show that baseline HOMA-IR provides predictive information regarding LDL4 response
to a low SFA dietary intervention in normoglycemic individuals.

In the original report from the BOLD study, consumption of the BOLD+ diet reduced
LDL cholesterol by 6% compared to HAD. We now show that cholesterol decrement was
associated with a 9.2% decrease in the sdLDL (i.e., LDL4) species that is thought to be the
most atherogenic, consistent with a shift toward a less atherogenic distribution of LDL
particles [32,33].
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In this analysis, LDL4 particles were defined as those with a density range of
1.044–1.063 g/mL, which roughly corresponds to LDL particles with a diameter smaller
than 24.2 nm as measured by non-denaturing gradient gel electrophoresis [29]. The prospec-
tive Quebec Cardiovascular Study (n = 2034 men) found that participants whose absolute
or relative cholesterol concentration in LDL particles with a diameter smaller than 25.5 nm
had the strongest association with the risk of ischemic heart disease (relative risk = 4.6 in
men in the third vs. first tertile of the distribution, p < 0.001), after adjustments for other
lipid and non-lipid risk factors [34]. These observations suggest that the 9.2% decrease
in sdLDL on the BOLD+ diet might elicit a clinically relevant benefit for cardiovascular
disease risk.

Our finding that consistent directional reduction of %LDL4 (i.e., sdLDL) only occurred
in the BOLD+ intervention, not the DASH and BOLD diets, suggests that the BOLD+ diet
improvement in LDL density profile was at least partially mediated by the replacement
of carbohydrates with protein (mixed source, mainly lean beef), in addition to the effects
of SFA reduction. Despite the difference in protein source, this finding is consistent with
earlier observations that replacement of carbohydrate by protein in a low SFA diet can
improve the lipoprotein profile by shifting LDL distribution to a larger average particle
size in overweight and hypertensive subjects [8,35–38]. The underlying mechanism for
the decrease in LDL4 by the BOLD+ diet is unknown but may involve alterations in ApoB
metabolism. Higher VLDL ApoB secretion, lower VLDL ApoB fractional conversion rate,
as well as a lower LDL ApoB fractional catabolic rate have been observed in healthy men
with a predominance of sdLDL (pattern B) (25).

HOMA-IR is a validated measurement of insulin sensitivity in healthy participants
with normal glucose tolerance. A value of 1.00 was considered to define healthy normal [39],
while a HOMA-IR of ≥2.6 has been previously used as a threshold for classification of
low insulin sensitivity [40], which is close to the median value of 2.73 in our sample. Our
results are a secondary analysis of samples from the BOLD study [22]. That study did not
control for baseline HOMA-IR, and baseline values calculated as a part of the secondary
analysis reported for the first time herein ranged from 1.27 to 4.73. Thus, our comparisons
were made on participants whose insulin sensitivity varied from near normal to markedly
elevated despite having fasting glucose concentrations within normal limits. The range
of values improved our ability to detect the differences in response patterns in this small
study.

In this population HAD, DASH, BOLD and BOLD+ produced similar numerical
reductions %LDL4 in the subset with baseline HOMA-IR below the median, although only
the BOLD and BOLD+ diets showed statistically significant reductions relative to baseline.
In contrast, %LDL4 responses varied significantly across diet conditions in the subset
with higher baseline HOMA-IR, increasing with the HAD and DASH diets, remaining
essentially unchanged with the BOLD diet, and decreased with the BOLD+ diet. The
BOLD+ diet elicited a reduction in %LDL4 in the higher HOMA-IR subgroup numerically
similar (p > 0.05) to that observed with DASH, BOLD or BOLD+ test diets among subjects
with lower HOMA-IR. The limited effect of BOLD+ in the higher HOMA-IR may relate
to their higher BMI compared to the lower HOMA-IR group (24.2 ± 0.6 vs. 26.9 ± 0.9,
p < 0.001, Appendix A Table A2). Recent studies by some of our group demonstrated that
weight loss is the primary driver of metabolic syndrome resolution [41,42].

Changes were observed in additional lipoprotein density subfractions. Consistent
with other findings that decreases in large HDL2, i.e., HDL2b, are the most pronounced
HDL response in healthy subjects who are shifted to diets low in total fat and SFA [43], is
the reduction in HDL2b following consumption of the DASH and BOLD diets compared to
HAD. BOLD+ appeared to modestly reverse the significant decrease in absolute HDL2b
concentration induced by the DASH and BOLD dietary patterns as amounts were not
different from those found on the HAD dietary pattern. Apolipoprotein measurements in
the original BOLD study showed that HDL ApoC-III was significantly reduced by BOLD+
compared with HAD [22]. ApoC-III preferentially associates with large HDL2b subfrac-
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tions [44] and when enriched in ApoCIII, the anti-inflammatory functionality of HDL2b
can be compromised [45] and increase risk of cardiovascular disease [46]. A reduction in
ApoC-III combined with no change in HDL2b amount may suggest an improvement in
HDL functionality by the BOLD+ dietary pattern.

The DASH diet emphasized inclusion of complex carbohydrates, plant and lean
animal protein sources in the context of dietary pattern rich in fruit, whole grains, and
vegetables that is lower in total and SFA. The results of our secondary analysis suggest that
recommendations for lifestyle change to alter modifiable risk factors and reduce ischemic
heart disease that include reductions in total and SFA intakes should consider increasing
protein at the expense of carbohydrate while retaining a fiber intake greater than 30 g/day
to achieve a BOLD+-type dietary pattern. This dietary pattern seems most appropriate for
individuals with elevated HOMA-IR. The lean, unprocessed beef (153 g/day) included
in the BOLD+ diet pattern provides a complete protein and is rich in iron, zinc, and the
vitamins niacin, B6, and B12 [47]. These vitamins and minerals are important for antioxidant
defenses and tissue repair processes [48,49] and may contribute to the results reported.
Daily consumption of this quantity of beef in the context of a BOLD+ dietary pattern and
weight maintenance resulted in reduced sdLDL total and fractional amounts in the absence
of a reduction in HDL2b.

5. Conclusions

In summary, we found that increasing dietary protein, at the expense of carbohydrate,
in a low-SFA, heart healthy diet had favorable effects on LDL particle distribution. A low
SFA, moderate protein diet including lean beef (BOLD+) improved the LDL density profile
by decreasing the absolute and proportional abundance of sdLDL (LDL4), compared to
a higher-SFA HAD, in a mildly hypercholesterolemic study cohort. The results are also
consistent with the hypothesis that the %LDL4 response to dietary modifications may differ
according to baseline level of insulin resistance as assessed by HOMA-IR. Among subjects
with higher baseline HOMA-IR values, the two low-SFA diets did not elicit reductions in
%LDL4 relative to the HAD, whereas levels were reduced with the BOLD+ diet to a degree
that was similar to that produced by all three of the low-SFA diets among subjects with
lower HOMA-IR values.
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Figure A1. Lipoprotein density profile for male and female participants at baseline (A) and after
dietary intervention (B). The BOLD+ diet was used as an example. No significant difference was
detected for a gender effect on LDL4 distribution.
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Figure A2. Forest plot. Subgroup analysis for LDL4 response after the 4 test diets. Data are mean ± SEM. * p < 0.05 between
subgroup categories within each diet group as assessed using t test. Skewed data were log transformed before statistical
analysis.

Table A1. Reproducibility for intra- and inter- assays.

Intra-Assay (n = 3) Inter-Assay (n = 5)

TG Low Medium High Low Medium High

Lipoprotein distribution calculated as absolute AUC
TRL 18.6 13.9 14.9 19.8 11.3 10.6
LDL1 33.6 21.8 12.9 32.6 21.7 8.2
LDL2 10.1 5.7 8.6 11.3 6.8 4.1
LDL3 2.4 5.1 8.0 2.9 4.4 4.7
LDL4 6.2 9.4 8.4 5.4 5.1 7.6
HDL2b 1.5 4.6 6.4 0.2 1.4 2.9
HDL2a 3.4 4.7 6.1 2.0 1.5 0.4
HDL3a 3.2 4.6 4.4 1.9 1.7 1.9
HDL3b 4.3 3.3 1.8 3.0 3.4 6.8
HDL3c 13.9 10.8 9.3 14.4 9.5 13.4
Average 9.7 8.4 8.1 9.3 6.7 6.1
Lipoprotein distribution calculated as % total AUC
TRL 10.8 8.8 22.9 9.6 8.8 19.1
LDL1 21.9 19.2 12.2 21.4 18.1 11.2
LDL2 5.9 4.3 8.0 4.4 3.4 4.1
LDL3 5.0 5.6 3.9 5.1 4.9 5.5
LDL4 4.3 4.3 5.9 3.4 3.5 4.5
HDL2b 3.2 1.9 7.2 2.2 1.9 5.9
HDL2a 8.7 4.2 3.8 7.7 5.0 5.8
HDL3a 6.1 2.3 4.3 5.5 3.4 3.8
HDL3b 4.6 2.0 7.3 4.2 0.8 4.0
HDL3c 11.7 8.4 9.9 9.9 8.2 6.1
Average 8.2 6.1 8.5 7.3 5.8 7.0

Coefficients of variation for intra-assay and inter-assay. Low TG = 0.63 mmol/L, medium TG = 1.15 mmol/L,
high TG = 2.25 mmol/L.
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Table A2. Subject characteristics following reclassification according to HOMA-IR median split.

Lower HOMA-IR Higher HOMA-IR

HOMA-IR 2.1 ± 0.1 3.4 ± 0.2 *
SEX, M:F, n 5:8 5:9
Age (years) 51.1 ± 2.3 50.8 ± 2.5
BMI 24.2 ± 0.6 26.9 ± 0.9 *
Triacylglycerol (mg/dL) 86.1 ± 5.9 106.2 ± 8.2
Total cholesterol (mg/dL) 219.8 ± 7.6 207.2 ± 8.5
LDL cholesterol (mg/dL) 145.3 ± 5.5 137.2 ± 7.2
HDL cholesterol (mg/dL) 57.3 ± 4.2 48.9 ± 3.3
hsCRP (mg/L) 1.1 ± 0.3 1.6 ± 0.4

Values are means ± SEM. * p < 0.001 vs. lower HOMA-IR group using unpaired t test. Values for HOMA-IR and
hsCRP were log transformed for analysis.
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