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With the development of ever more powerful and versatile high-throughput
sequencing techniques and innovative ways to capture single cells, mapping the
multicellular tissues at the single-cell level is becoming routine practice. However, it is
still challenging to depict the epigenetic landscape of a single cell, especially the
genome-wide chromatin accessibility, histone modifications, and DNA methylation.
We summarize the most recent methodologies to profile these epigenetic marks at the
single-cell level. We also discuss the development and advancement of several multi-
omics sequencing technologies from individual cells. Advantages and limitations of
various methods to compare and integrate datasets obtained from different sources
are also included with specific practical notes. Understanding the heart tissue at
single-cell resolution and multi-modal levels will help to elucidate the cell types and
states involved in physiological and pathological events during heart development
and disease. The rich information produced from single-cell multi-omics studies will
also promote the research of heart regeneration and precision medicine on heart
diseases.
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INTRODUCTION

With the development of massively parallel DNA sequencing technologies, reading the whole
genome and transcripts in cells has become a promising approach to studying cellular states.
Transcriptomes can be amplified to sufficient quantity for high-throughput sequencing. Compared
to conventional bulk sequencing methods, single-cell analysis resolves cell heterogeneity otherwise
masked by bulk analysis. It enables new cell types and intermediate states to be discovered based on
transcriptional and epigenetic signatures of individual cells. These cells are often missed in
conventional studies using pre-defined markers or lineage tracing studies due to the lack of
known markers or precursors. This is particularly important for studying human primary tissue
samples, where knowledge frommodel organisms may not always be applicable. Recently, single-cell
analysis has been used to study cell fate changes during the reprogramming of cardiomyocytes (CMs)
(Liu et al., 2017), in the heart from gene knock-out animals (Nkx2.5 KO, Hand1 KO, etc.)
(DeLaughter et al., 2016; de Soysa et al., 2019) or mouse model of myocardial infarction (MI),
heart failure (HF), etc. (Martini et al., 2019; Wang Z. et al., 2020). Researchers could detect early
changes in the transcriptome before the phenotype and cell fate changes in all cardiac cells, including
CMs, fibroblast cells, immune cells, etc. The single-cell multi-omics atlas offers multi-modal and
panoramic views of diseased hearts, allowing scientists to analyze from many different directions.
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Moreover, cell trajectory analysis based on single-cell data could
reveal the continuum of cell fate transition, adding the temporal
information missed from samples collected at particular
timepoints.

The first single-cell whole-transcriptome profiling was
reported by Tang et al., in 2009. Single oocytes were picked by
mouth pipette, followed by reverse transcription, polyA tailing,
and second-strand synthesis (Tang et al., 2009). Later, various
single-cell capture, barcoding, and pooling strategies were
developed to handle single cells more efficiently and
automatically, which greatly facilitated the development of
single-cell multi-omics sequencing.

The cell-type-specific epigenetic landscape is shaped by
unique distributions of DNA methylation, chromatin
accessibility, key histone marks, and transcription factors
(TFs) binding across the genome. Genome-wide profiling of
these epigenetic features facilitated the mechanistic study of
the developmental process and gene function. The epigenomic
profiling technologies include Assay for Transposase Accessible
Chromatin with high-throughput sequencing (ATAC-seq)
(Buenrostro et al., 2013), Chromatin immunoprecipitation
assays with sequencing (ChIP-seq) (Park 2009) and DNA
methylome sequencing (DNAme-seq), etc. (Meissner et al.,
2005; Laird 2010). They usually require many cells because
each cell only has one set of genomic DNA, and thus the
number of the template is much less than the transcriptome.
However, with the development of more powerful tool enzymes
and a better streamlining of the procedure, chromatin analysis at
the single-cell level has become a reality. It helps to reveal the
heterogeneity in the epigenome and multi-modal regulation of
gene expression.

To capture multi-modal information of single cells, samples
can be split into multiple parts for multi-omics sequencing
separately. However, multi-omics sequence information from
the same cells can genuinely reveal the correlation between
different layers of epigenetic modification and gene expression
(Ma A. et al., 2020). With the explosion of sequencing data from
multiple modalities, many algorithms were developed to analyze
multi-modal information, compare data generated from different
platforms, and remove batch effects for single-cell datasets. Here
we will also briefly summarize the bioinformatic methods to
merge or compare single-cell datasets and cross-reference
epigenomic data derived from single cells with Genome-wide
association studies (GWAS).

This review will summarize the platforms for single-cell
capture and multi-omics sequencing, the recently emerged
technologies and analysis tools, and their potential application
in cardiovascular research.

DEVELOPMENT OF SINGLE-CELL
RNA-SEQ PLATFORMS

Several effective methods were developed to amplify the
transcriptome of a single cell, including tagging transcripts
with T7 promoter and in vitro transcription by T7 RNA
polymerase (Hashimshony et al., 2012) or template switching

by M-MLV reverse transcriptase and template switching oligo
(SMART-seq2 (Picelli et al., 2014)). These methods improved the
sensitivity and streamlined the procedure of cDNA library
generation, paving the way for higher throughput single-cell
RNA-seq.

Various platforms are engineered to capture single cells to suit
different needs. Based on where the cell barcoding takes place, the
single-cell sorting strategy can be classified into three types, cell-
per-well (CPW) strategy (Tang et al., 2009), droplet-based
strategy (Klein et al., 2015; Macosko et al., 2015; Zheng et al.,
2017; Zilionis et al., 2017; Briggs et al., 2018; Farrell et al., 2018;
Wagner et al., 2018; Zhang X. et al., 2019), and single-cell
combinatorial indexing (SCI) strategy (Cao et al., 2017;
Rosenberg et al., 2018).

CPW strategies [e.g., manual picking, integrated fluidic circuit
(IFC) system, ICELL8 platform, and Microwell-Seq] directly put
one cell into one well or tube, followed by library construction
separately. Droplet-based strategies [e.g., inDrops, Drop-seq, and
10✕Genomics Chromium et al. (10✕)] use a “co-flow” device for
cell encapsulation with barcoded microparticles to capture
mRNA. SCI strategies use the intact cell or nucleus as an
indexing unit, and each cell will, with high probability, have a
unique barcode combination after multiple rounds of split-pool
indexing (Figure 1). Here we will briefly summarize the
advantages and features of the three strategies.

Cell-Per-Well Strategy
The earliest CPW strategy relied on labor-intensive manually
picking single cells into each tube (Tang et al., 2009; Islam et al.,
2011; Wen and Tang 2016). Later, high-throughput platforms for
CPW strategy are developed. IFC system [e.g., Fluidigm C1 (Wu
et al., 2014)] and ICELL8 could perform cell isolation, lysis, and
reverse transcription in dedicated chambers for each cell in an
automated workflow, allowing profiling of several hundred cells
per run. Sampling bias should be considered if input cells have
different sizes. Technically, the IFC system is more suited for cells
less than 25 µm in diameter, while ICELL8 and flow cytometry-
based sorting have different nozzle sizes for bigger cells to pass
with minimal damage.

Microwell-based methods (agarose-based microwell or BD
Rhapsody™ microwell cartridge) offer another solution to
improve the throughput and partially overcome the
constraints in cell size. (Fan et al., 2015; Han et al., 2018).
These methods cast plates containing over 105 microwells.
Each microwell can seed one cell and one barcoded bead.
Cells are seeded into microwells by gravity, followed by beads
settling. After cell lysis in the plate, RNA transcripts are released
into the microwell and captured by beads conjugated with
barcoded primers; afterward, the beads are collected, and
subsequent reverse transcription is performed in bulk.
Compared to microfluidic-based workflows, microwell-based
workflows offer higher cell throughput, higher tolerance for
cell size variation, and gentle treatment by eliminating shear
stress frommicro-fluidic channels. Microwell-based methods can
interrogate a high volume of samples in a single assay, albeit
producing lower sequencing depth. It is an excellent choice for
large-scale single-cell profiling. For example, Han et al. depicted
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the cell atlas of mice (more than 400 thousand cells) and human
cells (more than 700 thousand cells) using the microwell platform
(Han et al., 2018; Han et al., 2020).

Droplet-Based Strategy
Droplet-based platforms pack single cells and barcoded beads
into nanoliter droplets in oil emulsions and utilize these tiny
droplets as the reaction chambers. This approach eliminates the
need for microfluidic chambers or individual tubes and
significantly improves the throughput.

There are three state-of-art droplet-based scRNA-seq
strategies, inDrops (Zilionis et al., 2017), Drop-seq (Macosko
et al., 2015), and 10✕ genomics. These three systems employ
different types of beads (deformable hydrogel beads for inDrop,
dissolvable gel beads for 10✕, and hard, brittle resin beads for
Drop-seq). All three systems perform cell lysis and mRNA
capture in a droplet. However, the reverse transcription
reaction is inside droplet for inDrops, out of droplet for 10✕
and Drop-seq. 10✕ and Drop-seq pipelines can be completed
within one day. According to a benchmark comparison among
the three droplet-based systems, 10✕ shows the highest
sensitivity and proportion of effective reads and relatively
fewer mismatches in cell barcodes, indicating good quality
control in bead fabrication and well-optimized chemistry in
DNA synthesis (Zhang X. et al., 2019). However, Drop-seq has
considerable advantages in input and cost (~$0.1 per cell for
Drop-seq, ~$0.5 for 10✕) with a slight compromise in sensitivity.

Overall, droplet-based platforms yield very high cell throughput
(103~104 cells per run) with sufficient gene coverage (average
10–50 thousand unique reads for each cell, 3000–6000 detected
genes), but they all require specific instruments for droplet
generation and have a limitation on cell size (less than 30 µm
in diameter for most pipelines).

Combinatorial Index-Based Strategy
The single-cell combinatorial indexing (SCI) method is a new
high-throughput single-cell sequencing paradigm. It takes
advantage of the intactness of the cell nucleus during reverse
transcription and Tn5 tagmentation. The nuclear membrane is a
physical barrier where the indexing reaction occurs inside. Cells
are indexed in dozens of wells simultaneously, and multiple
rounds of indexing are carried out through pooling and
splitting cells into other dozens of wells. After multiple rounds
of split-pool indexing, each nucleus will, with high probability,
have a unique barcode combination. The SCI method quickly
gained popularity because it requires no special instruments other
than conventional flow cytometry equipment, and the cost per
cell is vastly reduced.

In 2017, Junyue Cao et al. developed sci-RNA-seq that
involved two rounds of indexing: the first round during the
reverse transcription and the second round during the PCR
amplification (Cao et al., 2017). They reported over
20,000–50,000 reads per cell using human and mouse cell lines
and profiled over 50,000 C. elegans cells with a median of 575

FIGURE 1 | Graphical illustration of single-cell sorting strategy and multi-omics sequencing. The left side illustrates the principles of different cell sorting strategies,
CPW, droplet-based, and SCI. Four types of commonly adopted CPW methods include manual picking of single cells; FC and ICELL8, which are both dependent on
Hydrodynamic focusing for single-cell flow generation; microwell platform, which uses gravity and size selection for cell capture; IFC system, which integratesmulti-steps
of library construction. Droplet-based strategies use the co-flow system to generate the emulsion drops containing one cell and one uniquely barcoded bead to
barcode the cell by capturing nucleic acid. SCI strategy barcode tens of cells simultaneously and repeat the barcoding after pooling and splitting. Multiple rounds of
pooling and splitting followed by barcoding result in a high proportion of uniquely barcoded single cells. The ultimate goal of different cell capture and labeling strategies is
to give each cell or nuclei a unique barcode. Then the multi-omics library construction can be performed.
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Unique Molecular Identifiers (UMIs). Other methods employed
more complex indexing steps to increase the input or sample
multiplexing. For example, in 2018, Alexander B. Rosenberg et al.
developed SPLiT-seq that introduced four rounds of barcoding
(one round during reverse transcription, two rounds by ligation,
and the final round through PCR amplification), which yielded
over 21 million barcode combinations, vastly decreased the
probability of barcode collisions (Rosenberg et al., 2018). In
2020, Sanjay R. Srivatsan et al. first used indexed
polyadenylated single-strand DNA to tag each sample, then
pooled all samples for downstream three rounds of
combinatorial indexing, which allowed them to profile
>650,000 cells from more than 5000 independent samples,
demonstrating the power of SCI methods in High Throughput
Screen studies (Srivatsan et al., 2020). SCI strategy has also been
employed to profile chromatin accessibility (Cusanovich et al.,
2015), genome sequence (Vitak et al., 2017), 3D genome
conformation (Ramani et al., 2017), and DNA methylation
(Mulqueen et al., 2018) in an ultra-high throughput manner.

DEVELOPMENT AND ADVANCE IN
SINGLE-CELL EPIGENOMIC SEQUENCING
TECHNOLOGIES
Cell fate determination is a highly regulated process accompanied
by changes in the epigenetic landscape, including DNA
methylation, open chromatin, and histone modifications. Bulk
sequencing of these epigenomic modalities has been well-
developed and recently adapted to single-cell studies. Here we
will briefly summarize single-cell Assay for Transposase
Accessible Chromatin with high-throughput sequencing
(scATAC-seq), single-cell Chromatin immunoprecipitation
assays with sequencing (scChIP-seq), and single-cell DNA
methylome sequencing (scDNAme-seq).

Single-Cell ATAC-Seq
Open chromatin regions often harbor more transcription factor
(TF) binding sites and regulatory regions, which are of great
interest. Several enzymes preferably cut the open regions of
genome DNA [e.g. deoxyribonuclease I (DNase I),
Micrococcal nuclease (MNase), Tn5n transposase] and thus
have been used to interrogate chromatin accessibility (Jin
et al., 2015) (Schones et al., 2008; Valouev et al., 2011).
DNase-based probing combined with either restriction enzyme
cleavage (Boyle et al., 2008) or size selection (Hesselberth et al.,
2009) produced the first accessible chromatin dataset (Crawford
et al., 2006; Sabo et al., 2006; Thurman et al., 2012). Later,
Buenrostro et al. used Tn5 transposase to bind, fragment, and
tag the accessible genome region with sequencing adaptors and
developed ATAC-seq (Buenrostro et al., 2013). ATAC-seq
significantly streamlined the processes and increased the
sensitivity compared to DNase-seq.

In 2015, scATAC-seq was developed. Researchers isolated 254
GM12878 lymphoblastoid cells and used Tn5 tagmentation to
profile the accessible chromatin on the CPW platform. The
authors showed that the open chromatin profile from single

cells strongly correlated with those obtained by DNase-seq and
bulk ATAC-seq generated from tens of thousands or millions of
cells. An average of 7.3 × 104 fragments were generated from each
cell and mapped to the human genome (Buenrostro et al., 2015).
Other CPW-based scATAC-seq were also developed later to
analyze cells captured by flow cytometry (Chen et al., 2018a;
Chen et al., 2018b), Takara ICELL8 (Mezger et al., 2018), or
microwell (Chen et al., 2021).

In 2015, Cusanovich et al. developed sci-ATAC-seq based
on the SCI strategy (Cusanovich et al., 2015). The initial
version of sci-ATAC-seq analyzed hundreds of cells, and
the median reads per cell were only 2.5 × 103. However, the
theoretical barcode combination of sci-ATAC-seq is sufficient
for tens of thousands of single nuclei. In 2018, Shendure and
his colleagues performed sci-ATAC-seq on thousands of cells
in one experiment and obtained an average of 13,000 de-
duplicated unique reads per cell (Cusanovich et al., 2018a;
Cusanovich et al., 2018b). Later in 2020, sci-ATAC-seq was
upgraded to sci-ATAC-seq3 by performing three rounds of
indexing through ligation instead of one-round Tn5 indexing.
After five years of optimization, researchers reduced the
collision rate from 11% in original sci-ATAC-seq to lower
than 4% in sci-ATAC-seq3 and increased the throughput from
thousands of cells to millions of cells. With sci-ATAC-seq3,
the authors profiled 1.6 million cells from 59 fetal samples and
generated a human fetal cell atlas of chromatin accessibility
(Domcke et al., 2020).

Meanwhile, Buenrostro and his colleague developed dsc-
ATAC-seq by employing droplet-based single-cell capturing
(Lareau et al., 2019). The super-load beads strategy processed
46,000 adult mouse brain cells from 12 experiments and
generated 34,000 median unique reads per cell. 10✕
Chromium also launched a standardized commercialized
solution for scATAC-seq with a lower multiplet rate (<1%)
and high coverage (27.8 × 10̂3 mean unique reads per cell)
(Satpathy et al., 2019). In addition, dsci-ATAC-seq combined
droplet-based dsc-ATAC-seq and SCI strategy, adding another
round of indexing by split and pool, which increased the
throughput by roughly two orders of magnitude. Caleb et al.
had adopted dsci-ATAC-seq to profile more than 60,000 human
bone marrow cells with around 3,800 unique reads per cell
(Lareau et al., 2019).

Single-Cell ChIP-Seq
Modification of histone tails regulates the structure of chromatin
and significantly influences gene expression. Several well-known
histone modifications are associated with active transcription,
including H3K4me1 [active and primed enhancers (Local et al.,
2018)], H3K4me2 [active and primed promoter (Pekowska et al.,
2010)], H3K4me3 [active promoter, mainly at regions flanking
transcription starting sites (Liu et al., 2016)], H3K27ac [active
enhancers and promoters (Creyghton et al., 2010)], H3K36me3
[actively transcribed genes (Musselman et al., 2013)]. Histone
modifications associated with transcription repression are also of
great importance, especially H3K27me3 [repressed loci (Liu et al.,
2016)] and H3K9me3 (marking heterochromatin) (Consortium,
Encode Project, 2012; Nicetto and Zaret 2019).
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ChIP-seq has been widely adopted to profile different types of
histone modification and define various regulatory elements in
cardiovascular development and disease studies (Creyghton et al.,
2010; Shen et al., 2012; Akerberg et al., 2019; Nakato et al., 2019;
Reyes-Palomares et al., 2020). Henikoff and his colleagues
developed Cleavage Under Targets & Release Using Nuclease
(CUT&RUN), where antibodies of specific histone modifications
were bound by protein A which was covalently linked to MNase.
TheMNase cleavages DNA on either side of the antibody binding
site. CUT&RUN combined the endonuclease activity of MNase
and the specificity of the antibody. It also bypassed the
immunoprecipitation step and significantly simplified the
ChIP-seq process. Henikoff group showed that CUT&RUN
generated a dataset with a higher signal-to-noise ratio. Rotem
et al. adopted CUT&RUN to the droplet-based single-cell
capturing platform to profile H3K4me3 and H3K4me2 of
mouse embryonic cells, demonstrating that the sensitivity of
CUT&RUN is sufficient for single-cell profiling (Rotem et al.,
2015). Henikoff group further developed Cleavage Under Targets
and Tagmentation (CUT&Tag), where MNase was replaced by
Tn5 transposase, which offers the advantage of direct
tagmentation of the antibody binding site. CUT&Tag was
widely used to profile the genome-wide association of TFs and
histone modifications. Although CUT&RUN and CUT&Tag
avoided the immunoprecipitation procedure, some researchers
still use the term ChIP-seq to nominate these two methods.
CUT&Tag has been combined with different single-cell
capture strategies to profile histone modification at the single-
cell level (e.g., CPW: ChIL-seq (Harada et al., 2019), SCI: itChIP-
seq (Ai et al., 2019) and droplet-based strategy: scChIP-seq,
scCUT&Tag (Grosselin et al., 2019; Kaya-Okur et al., 2019;
Bartosovic et al., 2021)).

Single-Cell DNA Methylation Sequencing
DNA methylation is a fundamental epigenetic modality closely
linked to cell identity and transcriptional regulation. Methylation
at the promoter region often marks silenced genes, while
methylation in the gene body is a feature of actively
transcribed genes (Jones 2012). Bisulfite conversion leads to
the deamination of unmethylated cytosines into uracil. Whole-
genome bisulfite sequencing (WGBS) can profile methylated CpG
sites across the genome at the single-nucleotide resolution but
require a large amount of input DNA and deep sequencing. In
comparison, reduced representative bisulfite sequencing (RRBS)
used the MspI restriction enzyme to enrich CpG sites, thus
reducing the sequencing cost at the expense of relatively lower
genome coverage.

Based on bulk WGBS and RRBS methods, scRRBS (Guo
et al., 2013; Guo et al., 2015) and scBS-seq (Smallwood et al.,
2014; Clark et al., 2017) are the first two scDNAme-seq
methods. Importantly, scBS-seq is the first method to use
the post bisulfite adaptor tagging (PBAT) strategy to
minimize the impact of DNA degradation during the
bisulfite conversion step. A scDNAme-seq database of more
than 8,000 cells across 29 cell types was obtained and provided
a valuable database for DNA methylome study (Zong et al.,
2022).

Several methods have been developed to profile DNA
methylome, transcriptome, and other epigenetic information
simultaneously. Most methods physically separate the nucleus
and the cytoplasm for bisulfite sequencing and RNA-seq, such as
scMT-seq (Hu et al., 2016) and scTrio-seq (Hou et al., 2016).
Other methods [scNOMe-seq (Pott 2017) and scCOOL-seq (Li
et al., 2018)] utilized GpC methylase, M.CviPI, which specifically
methylate GpC sites in the open chromatin regions. This
approach enabled profiling DNA methylation and chromatin
accessibility simultaneously.

SING-CELL MULTI-OMICS SEQUENCING
TECHNOLOGIES
Single-Cell Multi-Omics Sequencing
Platform
In recent years, it has become feasible to simultaneously profile
chromatin accessibility, histone modification, TF binding, DNA
methylation, and transcriptome from the same cell, namely
single-cell multi-omics sequencing (scMulti-omics-seq).
ScMulti-omics-seq avoids the need to match datasets from
parallel samples, reducing the technical variations. ScMulti-
omics-seq can potentially be used to distinguish fluctuation in
gene expression and different cell states due to a typical larger
feature set than scRNA-seq, which is limited by the number of
genes expressed and sequenced (Corces et al., 2016; Chen H. et al.,
2019).

The first single-cell RNA-ATAC co-assay method is sciCAR-
seq, published in 2018 by Jay Shendure and his colleagues, who
had adopted the concept of SCI to scMulti-omics-seq by
performing reverse transcription and tagmentation
consecutively in the same nuclei before the second round of
indexing (Cao et al., 2018). This research provided the proof-of-
concept for sciMulti-omic-seq; however, low sensitivity led to a
relatively imperfect correlation between gene expression and
chromatin accessibility. Paired-seq (Zhu et al., 2019) and
SHARE-seq (Ma S. et al., 2020) significantly upgraded the
throughput by multiple rounds of indexing. In addition,
tagmentation of the genome before reverse transcription
prevented cDNA contamination in ATAC libraries due to the
potential tagmentation of RNA/DNA hybrids (Di et al., 2020; Lu
et al., 2020). Another strategy for transcriptomic chromatin
accessibility co-assay is to use splint oligo to bridge tagmented
DNA and oligo (dT) bearing barcoded beads so that they can be
barcoded with captured RNA and sequenced together (Chen S.
et al., 2019). Other studies try to segregate cytosol and nucleus
from the same cell and perform scRNA-seq together with
scATAC-seq (Liu L. et al., 2019) or scDNAme-seq based on
either scBS-seq (Angermueller et al., 2016) or RRBS method (Hu
et al., 2016).

Recently published Paired-tag (Zhu et al., 2021) and CoTECH
(Xiong et al., 2021) have accomplished the co-assay of single
histone modification and transcriptome by performing
CUT&Tag and reverse transcription sequentially utilizing the
SCI strategy. CoTECH adopted one round of split-pool, leading
to relatively lower throughput (theoretical barcode complexity is
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about 104). Paired-tag adopted three rounds of barcoding
through ligation, reaching a theoretically thousand folds higher
complexity. Unique reads generated by Paired-tag varied among
different histone markers but generally fell within 1-10k,
sufficient for analyzing differentially modified regulatory
elements. CoTECH generates a dataset with a slightly lower
number of unique reads. Zhu et al. profiled ~70,000 mouse
brain cells on H3K4me1, H3K4me3, H3K27ac, H3K27me3,
and H3K9me3 genome-wide association and the
transcriptome. They successfully partitioned cells into different
neuron types using H3K4me1 and H3K27ac modals alone, but
H3K4me3, H3K27me3, and H3K9me3 modals failed to resolve
the cellular heterogeneity and only clustered cells into broad brain
cell types, indicating that it may be unfeasible to link different
histone modification modalities directly if matched RNA
information is not profiled. Using the transcriptome to bridge
with other modalities, they assembled five histone modification
datasets to form a comprehensive epigenetic landscape of mouse
neurons.

Paired-tag and CoTECH can only profile transcriptome and
one single histone modification at a time, so it is not possible to
study the relationship between different histone modifications
around the same genomic region. To map multiple histone
modifications simultaneously in the same cell, multi-
CUT&Tag (Gopalan et al., 2021) and MulTI-Tag (Meers et al.,
2021) are developed. Both used indexed pA-Tn5 to connect with
antibodies of different histone modifications. Multi-CUT&Tag
used pre-assembled indexed pA-Tn5 and antibodies for different
histone modifications, while MulTI-Tag adopted a covalently
conjugated Tn5-antibody complex. According to the preliminary
result from Gopalan et al., covalent conjugation significantly
removed the cross-contamination between different histone
modification maps. Interestingly, MulTI-Tag reported that
about 10% of reads would have a different index in each end,
which indicated that this region is co-occupied by two histone
modifications in the same cell. However, the mix-indexed ratio
reported by multi-CUT&Tag is higher (18–20%), possibly due to
cross-contamination of histone modalities. Generally, Multi-
CUT&TAG and MulTI-Tag are promising tools to investigate
the relationship between different histone modifications and their
influence on the transcriptome.

Integrative Analysis of Multiple Modalities
New bioinformatics methods are needed to analyze the vast
amount of data generated from scMulti-omics sequencing
experiments. Comparative analysis of the same modality, e.g.,
scATAC-seq, from different experiments turns out to be
challenging, as researchers often need to remove batch effects
due to different cell capturing strategies, library construction
methods, or sequencing platforms. The choice of batch-removal
strategy can be significantly determined by the research topic.
According to a benchmark study (Luecken et al., 2022), if cell
identities are known, that is, one is not expecting novel cell types,
then it should be beneficial to integrate scRNA-seq batches via
scANVI (Xu et al., 2021) or scGen(Lotfollahi et al., 2019).
However, Scanorama (Hie et al., 2019) and scVI (Lopez et al.,
2018) are recommended for the large unlabeled dataset, while

Harmony (Korsunsky et al., 2019) seems more beneficial for the
unlabeled smaller dataset with distinct biological signal (Tran
et al., 2020).

Multi-omics data analysis needs to consider distinct
modalities’ different sizes and unique nature. Chromatin
accessibility and DNA methylome datasets contained
information across the whole genome, and histone
modifications also mark a significant fraction of the genome.
These datasets are significantly larger than the transcriptome
(usually nomore than 5% of the genome) and TF binding regions.
Dozens of computational strategies have been developed to
perform integrative analysis of multi-modal datasets, including
matched (multi-omics data from the same cell) or unmatched
datasets (different modalities profiled from different cells) (Miao
et al., 2021). For matched datasets, scAI (Jin et al., 2020), and
MOFA+ (Argelaguet et al., 2020) could integrate scRNA and
scATAC data. There are more algorithms developed to integrate
unmatched scATAC-seq and scRNA-seq. MAESTRO (Wang C.
et al., 2020) performs well on a dataset after manually annotating
cell types and then analyzing the clustered cell-type level. LIGER
(Welch et al., 2019) and Seurat 3.0 (Stuart et al., 2019) integrate
scATAC-seq and scRNA-seq data by first predicting putative
gene expression by nearest accessibility peak and integrating
predicted and observed expression data. SCOT (Demetci et al.,
2022) constructed similarity matrixes for each modality
separately and integrated them through an optimal transport
algorithm. LIGER also performs well for integrative analysis of
transcriptome and DNA methylome data but needs a converted
feature set, while MMD-MA (Liu J. et al., 2019), UnionCom (Cao
et al., 2020) do not require feature matching.

GWAS has identified hundreds of thousands of genetic
variants associated with the broad spectrum of human traits
and diseases, most of which are noncoding (Claussnitzer et al.,
2020). It is challenging but informative to link the noncoding
GWAS variants to specific biological processes, pathways, or
putative target genes. VAMPIRE has tried to cross-reference
datasets of different modalities (e.g., epigenome, transcriptome,
and 3D genome conformation) to annotate GWAS loci (Sun et al.,
2022). scATAC-seq and scChIP-seq can also bridge noncoding
GWAS variants with specific cell types, which provides valuable
insights into the etiology and pathology of diseases (Ord et al.,
2021). In addition, Cicero could predict cis-regulatory DNA
interactions and construct chromatin co-accessibility networks,
then correlated GWAS loci to specific genes within the network
(Pliner et al., 2018).

APPLICATION OF MULTI-MODAL
SINGLE-CELL SEQUENCING IN
CARDIOVASCULAR RESEARCH
Application of scRNA-Seq to Study the
Development of the Cardiovascular System
In recent years, increasing numbers of studies employed scRNA-
seq to depict the cell atlas of embryonic, adult, and diseased heart
and vasculatures, such as dilated cardiomyopathy (See et al., 2017;
Nomura et al., 2018; Rao et al., 2021), congenital heart defect
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TABLE 1 | Research adopting scRNA-seq for in vivo human heart.

Year Topic Organ/Tissue Sequencing Trait/Disease Strategy Throughput Main findings/
Contribution to the

field

Analyzing
methods

2017 Single
cardiomyocyte
nuclear
transcriptomes
reveal a lincRNA-
regulated de-
differentiation and
cell cycle stress-
response in vivo

Adult heart (LV) scRNA-seq End-stage dilated
cardiomyopathy
(DCM)

Fluidigm
C1

116 nuclei Sub-populations of
cardiomyocytes displays
upregulation of cell cycle,
and de-differentiation
genes during the
endogenous myocardial
stress response; Nodal
lincRNAs act as key
regulators of CM cell
cycle during myocardial
stress response

WGCNA for gene
module detection;
Quadrant analysis
for cell heterogeneity
analysis; Coding
Potential
Assessment Tool
(CPAT) for LncRNA
analysis

2018 Cardiomyocyte
gene programs
encoding
morphological and
functional
signatures in
cardiac
hypertrophy and
failure

Adult heart scRNA-seq Dilated
cardiomyopathy
(DCM)

manually
picked cell
follow by
SMART-
seq2

10 DCM (340
cells) 1 Healthy
(71 cells)

Trajectory of CM
remodeling in repsons to
pathological stimuli;
Gene modules for CM
hypertrophy and filure;
Molecular and
morphological dynamics
of CM leading to heart
failure

Random Forest for
gene module
detection; Weighted
gene co-expression
network analysis
(WGCNA) for gene
module detection;
Pseudo-time
analysis for trajectory
modeling

2019 A Spatiotemporal
Organ-Wide Gene
Expression and Cell
Atlas of the
Developing Human
Heart

embryonic heart
(4.5–5PCW,
6.5–7PCW,
9PCW)

spatial RNA-
seq
scRNA-seq

Healthy in situ
RNA-
seq 10×

3,115 spots
3,717 cells

Spatiotemporal gene
expression of human
heart development at
single-cell resolution;
Distribution, spatial
organizaiton, and roles of
diverse cell types in
embryonic heart

pciSeq for creating
probilistic spatial
cell map

2019 Single-Cell
Transcriptome
Analysis Maps the
Developmental
Track of the Human
Heart

embryonic/fetal
heart
(5PCW–25PCW)

scRNA-seq Healthy modified
STRT-seq

4,948 cells Transcriptonal profiling of
human heart at single-
cell level from early to late
developmental stage

Pseudo-time
analysis for trajectory
modeling; Gene set
enrichment analysis
(GSEA) and Kyoto
Encyclopedia of
Genes and
Genomes (KEGG)
for signaling pathway
enrichment

2020 Cell atlas of the
foetal human heart
and implications for
autoimmune-
mediated
congenital heart
block

fetal heart
(19–21PCW)

scRNA-seq Congenital heart
block (CHB)

10× 3 Healthy
(12,461 cells) 1
CHB (5,286
cells)

Several uncharacterized
cell subpopulations are
identified; CHB heart
shows diversity in
interferon-stimulated
gene expression across
cell types and increased
matrisome expression in
stromal cells

TF enrichment
analysis; Interferon
response score
calculation for CHB
characterization;
Matrisome
enrichment analysis

2020 Intrinsic
Endocardial
Defects Contribute
to Hypoplastic Left
Heart Syndrome

fetal heart
ventricular free
wall (12 PCW)

scRNA-seq Hypoplastic left
heart syndrome
(HLHS)

10× 4,523 CD144+
cells 5,477
CD144- cells

Endocardial defect in
HLHS lead to impaired
endocardial to
mesenchymal transition
and angiogenesis, as
well as reduced
proliferation and
maturation of CM by
disrupting fibronectin-
integrin signaling

Receptor-ligand
analysis

(Continued on following page)
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TABLE 1 | (Continued) Research adopting scRNA-seq for in vivo human heart.

Year Topic Organ/Tissue Sequencing Trait/Disease Strategy Throughput Main findings/
Contribution to the

field

Analyzing
methods

2020 Single-cell
reconstruction of
the adult human
heart during heart
failure and recovery
reveals the cellular
landscape
underlying cardiac
function

Adult heart
(LV, LA)

scRNA-seq Heart failure (HF) ICELL8-
scRNA-
seq

14 Healthy
(12,266 cells) 6
HF (5,933
cells)

Inter- and
intracompartemental CM
heterogeneity;
Compartment-specific
NCM works as major
cell-communication
hubs Cellular
composition and
interaction networks of
the adult human heart
from normal to disease
state

Pseudo-time
analysis for trajectory
modeling; Regulon
analysis for
regulatory network
activity accessment;
Receptor-ligand
analysis; Cell
similarity calculation

2020 Cell-Type
Transcriptome
Atlas of Human
Aortic Valves
Reveal Cell
Heterogeneity and
Endothelial to
Mesenchymal
Transition Involved
in Calcific Aortic
Valve Disease

Adult heart (aortic
valve leaflets)

scRNA-seq Calcific aortic
valve disease
(CAVD)

10× 4 CAVD
(31,043 cells) 2
Healthy (3,589
cells)

Endothelial to
mesenchymal transition
of vascular EC plays
important roles in
thickening of calcified
aortic valve leaflets

Pseudo-time
analysis for trajectory
modeling; KEGG for
signaling pathway
enrichment

2020 Single-Cell
Transcriptome
Analysis Reveals
Dynamic Cell
Populations and
Differential Gene
Expression
Patterns in Control
and Aneurysmal
Human Aortic
Tissue

Adult heart
(ascending aorta)

scRNA-seq Ascending
thoracic aortic
aneurysm (ATAA)

10× 8 ATAA 3
Healthy (total
48,128 cells)

A comprehensive
evaluation of the
expression landscape of
ascending aortic wall
revealed that ERG
played an important role
in maintaining aortic wall
function

Cell-cell junction
score and cell-ECM
junction score; Cell
cycle analysis for cell
proliferation state
accessment

2020 Transcriptional and
Cellular Diversity of
the Human Heart

Adult heart (RA,
RV, LA, LV)

snRNA-seq Healthy 10× 287,269 nuclei A Large snRNA-seq
dataset of healthy human
heart from different
chamber and sex;
Chamber-, laterality- and
sex-specific
transcriptional programs
were identified; Specific
cell types were linked to
common and rare
genetic variants of CVD

CellBender for
background
removal; scVI model
for subgroup
detection; eQTL
mapping to detect
disease-associated
cell types

2020 Cells of the adult
human heart

Adult heart (RA,
RV, LA, LV,
Septum, Apex)

scRNA-seq
snRNA-seq

Healthy 10× 45,870
unsorted cells
78,023
CD45+cells
363,213 nuclei

The research defined the
cellular and molecular
signatures of the adult
healthy heart, and
functional plasticity in
response to varying
physiological conditions
and diseases

Deep variational
autoencoder for
batch alignment;
Cell-cell interaction
analysis; RNA
velocity analysis for
cell state evaluation

2021 Resolving the
intertwining of
inflammation and
fibrosis in human
heart failure at
single-cell level

Adult heart
(LV,RV)

scRNA-seq
scTCR-seq

Ischemic
cardiomyopathy
(ICM) Dilated
cardiomyopathy
(DCM)

10× 3 DCM 3 ICM
2 Healthy (total
165,999 cells)

AEBP1 is a noval crucial
cardiac fibrosis regulator
in ACTA2+ myofibroblst;
CXCL8+CCR2+HLA-DR
+ macrophages in
fibrotic area interact with

RNA velocity
analysis; Cell-cell
interaction analysis;
Psudo-time analysis
for trajectory
modeling; TCR

(Continued on following page)
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(Suryawanshi et al., 2020), hypoplastic left heart syndrome (Miao
et al., 2020), aortic stenosis (Nicin et al., 2020; Nicin et al., 2022),
heart failure (Nicin et al., 2020), calcific aortic valve disease (Xu
et al., 2020), Ascending thoracic aortic aneurysm (Li et al., 2020),
and ischemic cardiomyopathy (Rao et al., 2021) (Table 1).

Sampling on cardiovascular tissues, especially from the heart,
requires special cautions. The size of CM (100–150 μm by
20–35 μm) poses a significant challenge for single-cell analysis.
Cui et al. adopted modified STRT-seq (Li et al., 2017; Cui et al.,
2019) to construct single-cell transcriptome libraries, where
mouth pipetting was adopted to capture single cells. ICELL8
platform offers an automated solution to harvest giant cells such
as CMs. Another widely adopted solution is to construct libraries
on single-nucleus and single-cell simultaneously for heart
profiling, and the transcriptome data of CM are primarily
derived from snRNA-seq (Litvinukova et al., 2020; Tucker
et al., 2020). Several other features of the human heart
(i.e., compactness, compartmentalization, and heterogeneity)
make it even harder to isolate all types of cells unbiasedly with
minimal damage. Li Wang et al. adopted both CM-enriched

digestion (Guo et al., 2018) and conventional enzyme digestion of
the left ventricle and left auricle/left atrial appendage to harvest
large quantities of CMs and non-cardiomyocytes (NCMs) and
performed single-cell RNA-seq through ICELL8 platform.

Some studies have adopted scRNA-seq to profile human
pluripotent stem cell (hPSC) derived CMs. Data mining in the
scRNA-seq helped optimize hPSC differentiation protocols (Zhang
H. et al., 2019). Yang et al. employed RNA velocity and SLICER-
based trajectory reconstruction to identify the critical fate decision
process during cardiac reprogramming. They also developed a cell
fate index (CFI) algorithm to assess reprogramming progression
and provide valuable insights into how to optimize the
differentiation methods (Zhou et al., 2019). Based on hPSC-
derived CMs, scRNA-seq was also used to measure the gene
regulatory network in drug screening (Ballan et al., 2020),
cellular processes under physiological (Cyganek et al., 2018;
Gambardella et al., 2019; Schmid et al., 2021; Esfandyari et al.,
2022) and pathological conditions (Guo et al., 2019) (Kathiriya
et al., 2021) and developmental progression (Hulin et al., 2019;
Ruan et al., 2019; Sahara et al., 2019).

TABLE 1 | (Continued) Research adopting scRNA-seq for in vivo human heart.

Year Topic Organ/Tissue Sequencing Trait/Disease Strategy Throughput Main findings/
Contribution to the

field

Analyzing
methods

activated EC via DARC,
which potentially facilitate
leukocyte recruitment
and infiltration in human
heart failure

analysis for immune
cell; Regulatory
analysis for TF-target
interactions

2021 Single-Cell
Transcriptomic
Atlas of Different
Human Cardiac
Arteries Identifies
Cell Types
Associated With
Vascular
Physiology

Adult heart (aorta,
pulmonary artery,
coronary artery)

scRNA-seq Healthy 10× 3 aortas 2
pulmonary
arteries 9
coronary
arteries (total
125,253 cells)

An atlas of human
nondiseased cardiac
arteries and cell
heterogenity analysis

pySCENIC for TF
inference and AUCell
for regulon activity
analysis; Psudo-time
analysis for trajectory
modeling; CCInx for
intercellular
communication
analysis

2021 Cardiac cell
type–specific gene
regulatory
programs and
disease risk
association

Adult heart (RA,
RV, LA, LV)

scRNA-seq
snATAC-seq

Healthy 10× 35,936 nuclei A cell type–resolved atlas
of cCREs in human
hearts; Chamber-
specific differences in
chromatin accessibility
between ventricles and
atria as well as left and
right atria

SnapATAC for
scATAC data
dimensionality
reductionMACS2 for
identification of
accessible
chromatin sites
Cicero for
coaccessibility
analysis edgeR for
the identification of
cell type-specific
CRE GWAS variant
enrichment analysis

2022 A human cell atlas
of the pressure-
induced
hypertrophic heart

Adult heart
(interventricular
septum)

snRNA-seq Cardiac
hypertrophy
caused by aortic
valve stenosis

10× 88,536 nuclei EFNB2 inhibition, which
is expressed by EC,
inhuced CM hypertrophy
in vivo and in vitro

Harmony for batch
align; Cell-cell
interaction analysis;
Receptor-ligand
analysis
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Application of Epigenomic Sequencing in
the Cardiovascular System
ScATAC-seq, combined with scRNA-seq, provides valuable
insights into characteristics underlying developmental
plasticity. Information from single-cell chromatin accessibility
during the cardiovascular system development can predict the
cell-type-specific regulatory TFs through motif enrichment
analysis. Furthermore, researchers are more convinced by the
more stable epigenetic landscape of the cell for cell-type
identification, while RNA expression can be variable and
change rapidly (Depuydt et al., 2020; Alexanian et al., 2021;
Hocker et al., 2021).

Only a few published research used scATAC-seq to profile
embryonic or adult human hearts. Most of them focus on
constructing the regulome atlas (Domcke et al., 2020; Zhang
et al., 2021). Hocker et al. performed sci-ATAC-seq of around
80,000 cells from adult human hearts without known
cardiovascular disease (CVD) and constructed a human
cardiac cis-regulatory element (CRE) atlas of different cell
types. Apart from CMs, four types of NCMs (cardiac
fibroblasts, endothelial cells, smooth muscle cells, and
macrophages) were profiled with specific cardiac chamber
annotated. Thus, this research depicted a chromatin
accessibility map at single-cell resolution with spatial
information. scRNA-seq were performed simultaneously,
aiding cell type and subtype annotation. In addition,
transcriptome profiling also helped to verify and refine the
conclusions derived from scATAC-seq. Enrichment of binding
motif for the macrophage TF SPI1/PU.1 combined with high
SPI1 expression in macrophage helps to define SP1 as the specific
TF in cardiac macrophage. The binding motifs of GATA-family
TF were enriched in open chromatin regions of EC, CM, and
cardiac fibroblast. GATA6 is highly expressed in cardiac
fibroblast, while GATA4 and GATA6 in CM and GATA2 in
EC) (Hocker et al., 2021). Such combined analysis helps identify
active TFs in the development of different lineages.

The human cardiac CRE atlas derived from the scATAC-seq
can be a valuable reference to advance our understanding of gene
regulatory mechanisms. For example, for cardiac fibroblasts,
there is more differential accessible CREs between right and
left ventricles than between atriums and ventricles. Researchers
have detected several fibroblast-specific CREs at FN1 gene and

adjacent to MMP2 and FBLN2 genes, which all showed higher
accessibility in the left atrium. These findings may indicate a more
activated fibroblast state associated with higher ECM production
in the left atrium (Hocker et al., 2021).

SUMMARY AND FUTURE PERSPECTIVES

The technology to acquire and analyze multi-omics information
from a single cell is rapidly evolving. Single-cell analysis has
already provided an unprecedented amount of information about
the cellular composition of the heart during development,
homeostasis, and diseased conditions. However, there are
many pending questions. How does the epigenetic landscape
change in different parts of the heart and cell types during embryo
development? How do different cardiac cells interact with
immune cells during myocardial infarction and heart failure?
Are there intermediate cell states during heart regeneration? How
do drugs affect different types of cells in the heart? Answering
these complex questions requires full resolution of cardiac cell
heterogeneity at multiple layers. The multi-modal information at
the single-cell level will significantly improve our effort to
understand the molecular mechanism regulating cell fate and
states in healthy and diseased conditions and find better
biomarkers and drug targets to treat cardiovascular diseases.
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