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Symmetry perception with spiking 
neural networks
Jonathan K. George1, Cesare Soci2, Mario Miscuglio1 & Volker J. Sorger1*

Mirror symmetry is an abundant feature in both nature and technology. Its successful detection is 
critical for perception procedures based on visual stimuli and requires organizational processes. 
Neuromorphic computing, utilizing brain-mimicked networks, could be a technology-solution 
providing such perceptual organization functionality, and furthermore has made tremendous 
advances in computing efficiency by applying a spiking model of information. Spiking models 
inherently maximize efficiency in noisy environments by placing the energy of the signal in a 
minimal time. However, many neuromorphic computing models ignore time delay between nodes, 
choosing instead to approximate connections between neurons as instantaneous weighting. With 
this assumption, many complex time interactions of spiking neurons are lost. Here, we show that 
the coincidence detection property of a spiking-based feed-forward neural network enables mirror 
symmetry. Testing this algorithm exemplary on geospatial satellite image data sets reveals how 
symmetry density enables automated recognition of man-made structures over vegetation. We 
further demonstrate that the addition of noise improves feature detectability of an image through 
coincidence point generation. The ability to obtain mirror symmetry from spiking neural networks 
can be a powerful tool for applications in image-based rendering, computer graphics, robotics, photo 
interpretation, image retrieval, video analysis and annotation, multi-media and may help accelerating 
the brain-machine interconnection. More importantly it enables a technology pathway in bridging the 
gap between the low-level incoming sensor stimuli and high-level interpretation of these inputs as 
recognized objects and scenes in the world.

In neuromorphic computing the architecture of the biological brain is applied to artificial computers to both 
increase the efficiency of computing and to mimic the intelligence of the human mind. While artificial neural 
networks have become increasingly complex, they have largely modeled the connections between neurons as 
synaptic weighting and summing through a nonlinear activation function. However, biological neurons exist 
physically in a three-dimensional space implying that information in the brain is, in its most basic form, dis-
tributed in at least three dimensions. Furthermore, communication between neurons is not instantaneous and 
depends not only on the distance in the three-dimensional space but on the density and type of connections, 
including neurophil, axons and dendrites, between them, creating a rich N-dimensional time dependent space 
in addition to the traditional N-dimensional weight dependent space. Here, we show how these simple time 
interactions applied to an elementary spiking model of the neuron can result in complex outcomes, such as the 
identification of mirror symmetry, extending our conference presentation1.

The ability to rapidly identify symmetry and anti-symmetry is an essential attribute of intelligence. Symme-
try perception is a central process in human vision and may play a key role in human 3D visualization2. While 
previous work in understanding neuron symmetry perception has concentrated on the neuron as an integrator3 
and midpoint linearity4, here we show how the coincidence detecting property of the spiking neuron can be 
used to reveal symmetry density in spatial data. We develop a method for synchronizing symmetry-identifying 
spiking artificial neural networks to enable layering and feedback in the network, to form a recurrent neural 
network (RNN). We show a method for building a network capable of identifying symmetry density between 
sets of data and present a digital logic implementation demonstrating an 8× 8 leaky-integrate-and-fire symmetry 
detector in a field-programmable gate array. Our results show that the efficiency of spiking neural networks can 
be harnessed to rapidly identify symmetry in spatial data with applications in image processing, 3D computer 
vision, and robotics.

The human visual system is able to detect mirror symmetry rapidly5. Furthermore, symmetry detection in 
human vision is being hypothesized to be essential for 3D visualization6. Symmetry preference is also found in 
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insects and birds7,8. These examples point to a neurological origin of symmetry detection. While line integration 
has been proposed as a method for symmetry perception in human vision9 and in spiking neural networks3, a 
more fundamental role may be played by neural coincidence detection; in biology the spiking neural networks 
of the brain have been shown to be capable of both integration and coincidence detection10,11. These spiking 
neurons have been observed to fire in a time-dependent manner forming strongly connected clusters12 known as 
polychronous neural groups (PNGs)9. Both pattern recognition and computing have been achieved in artificial 
neural networks with polychronous behavior13. However, the connection between symmetry and coincident 
spiking polychronous neural networks has not been explored, nor has symmetry detection using only single layer 
delay in spiking artificial neural networks been demonstrated. While many algorithms for finding symmetry 
in images and feature sets of images have been developed14–19, it is difficult to translate them to run on power-
efficient neuromorphic hardware platforms20,21. Here we present a formal definition of geometric symmetry as 
the amplitude of a tensor space of the distribution of distance. We then show how a specific configuration of a 
spiking neural network can act on its inputs in a manner identical to a threshold applied to the tensor symmetry 
space, firing at the points of high mirror symmetry. As an example, we demonstrate a network both in software 
and in a Field Programmable Gate Array (FPGA) and validate symmetry-recognition capability of an artificial 
spiking neural network on a) geospatial data sets demonstrating automated dwelling detection and b) on shapes 
of military aircraft where mirror symmetry enables fingerprint-like rapid detection such as for automatic target 
recognition (ATR). The symmetry-associating behavior of spiking neural networks has immediate applications 
in image processing and is consistent with our intuition that the ability to identify symmetry is indeed supported 
by artificial neural intelligence.

Symmetry density.  Symmetry can be broadly defined as a self-similarity in logic or a dataset. Geometric 
symmetries are self-similarities in a spatial dataset over a transformation. The transformation can consist of 1) 
mirror symmetry across an axis, 2) scaling symmetry where the transformation changes the size of some portion 
of the data, 3) rotational symmetry where some portion is of the data is rotated, 4) skew symmetry where the 
data is symmetric across a skew transformation, or 5) any combination of affine transformations. In this work, 
our focus is on geometric mirror symmetry which has been hypothesized to play an important role in human 
visual processing6.

Spatial self-similarity implies a transformation of some subset(s) of the data in a space will result again in 
the same subset of data. If the transform is folding the space, then both subsets of data will be equidistant to the 
folding line. In detecting these mirror symmetries, our problem becomes one of detecting peaks in the equidis-
tant distribution of data.

Symmetry density in spiking neural networks.  Spiking network enables coincidence detection, and coincidence 
detection enables mirror symmetry density detection. A spiking neural network is a type of artificial neural net-
work that models the spiking observed in the neuron cells of the brain, in this sense it is Neuromorphic, taking 
on the form of a neuron. By concentrating its energy into a short time span the spike is an efficient encoding 
method in a noisy environment12,13,22.

A simple type of spiking neural network is the Leaky Integrate and Fire (LIF) model13,23, where each neuron 
integrates its inputs in time while simultaneously leaking from the accumulator. When the accumulator passes a 
threshold level it fires, generating a signal spike. The leak creates a temporal dependence on the past, thus adding 
memory to the neuron. The LIF model can be formulated mathematically13,23 as

where the voltage u is a function of current with a leaky term τm du
dt  that depends on the change in voltage with 

time, and τm is the relaxation time constant of the signal leak to reach threshold.
LIF neurons have been realized in analog electronics24,25, in digital electronics with event-driven 

processors26,27, and in photonics with optical nonlinear materials28. A simple method for building a digital 
event-driven system with delay in a FPGA or application-specific integrated circuit (ASIC), is to approximate 
the propagation of spikes in digital form as bits moving through long shift registers. A 1 bit is placed at the input 
of the shift register to represent an incoming spike and in each clock cycle the bits in the register are shifted by 
one position until they arrive at the output where they are summed into a separate leaky register. If the leaky 
accumulation register reaches a threshold, 1 bits are placed at all of the neuron’s output shift registers. While this 
method potentially requires more resources than the alternative of using event counters, it intuitively maps to 
the role of spikes moving in the axon of a neuron.

To understand how spatial symmetry affects the result of a LIF neural network, consider a simple neural net-
work consisting of two input neurons A and B connected to a single output neuron C (Fig. 1). This three-neuron 
system acts as a coincidence detector. A spike propagating from A to C arrives at C after some time �tA . Similarly, 
a spike propagating from B to C arrives at C after some time �tB . If neuron C is assigned a threshold that is just 
higher than the individual spikes output from either A or B, then the neuron C will only fire when both spikes 
arrive at C before the leaky time constant τm reduces the power below threshold at C. In this configuration, C is 
a temporal coincidence detector.

To obtain symmetry detection from coincidence detection, assume a constant propagation speed across the 
system, where propagation time is proportional to distance, and synchronous firing of input neuron A and B. 
Now, the spike arrival times �tA and �tB will be dependent only on propagation distances dA and dB . In an N × N 
connected network, the arrival times will be distributed proportionally with distance, closer pulses arriving 
first and farther pulses arriving later. This is equivalent to the tensor space D of our original definition (Fig. 2).

(1)u(t) = RI(t)− τm
du

dt
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If the two distances are equal the propagation times will be equal and the two spikes will arrive together at C, 
pushing it over the threshold and causing it to fire. On the other hand, if the distances are not equal, the propa-
gation times will be different, the two spikes will arrive separately at C and the neuron will not fire. In this way, 
synchronized neurons in spiking neural networks act as the distance-relating components in the distribution 
elements of our tensor space D, and the threshold at neuron C acts as the second half of our symmetry algorithm, 
selecting the peaks out of the distance distributions in D. This method effectively, enables the neuron to act as 
a coincidence detector (Fig. 1).

Figure 1.   When neuron A and neuron B fire simultaneously, and if both neurons are equidistant from neuron 
C, then the pulse propagating from A to C will arrive at C at the same time as the pulse propagating from B to 
C (a). The threshold at C is set such that it is higher than the amplitude of either individual pulse. Neuron C will 
fire if, and only if, both pulses arrive time-synchronized. In this way neuron C acts as a coincidence detector. 
Each input layer neuron is connected to every output layer neuron with a delay proportional to the distance 
between the input and output points in Euclidean space (b). If all activated input neurons fire simultaneously, 
and only one pulse is allowed per cycle, the output node with highest symmetry will be the output node with the 
greatest number of pulses arriving simultaneously. To detect hierarchical geometric symmetry a synchronization 
layer is added above the original output layer (c). The synchronization layer has a slower integration time 
than the original output layer, storing the pulses until a timing signal releases them to the next higher layer 
simultaneously. In recurrent variations of the network (e.g. RNN, recurrent neural network), feedback from 
the output of the synchronization layer is connected back to a lower level input layer. See text for details of 
operation.

Figure 2.   The algorithm transforms the input data points (the four corners of a Cartesian space in this example) 
(a) into an array of histograms of distances (b) where each bin counts the distance from the point in space to 
each data point. The peaks of the set of histograms are used to create a density of symmetry (c) overlaying the 
original space. Applying the algorithm repeatedly with feedback in a high-resolution space produces a fractal-
like pattern (d) of hierarchical symmetry.
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Extending upon the three-neuron system, this concept of coincidence detection via delay can be brought to 
the entire input space (Fig. 1b). Each neuron of the input layer is connected to each neuron of the output layer 
( N × N connectivity) with a delay proportional to the distance between the two points in the space. For example, 
in a Cartesian space if input neuron 1 is point x = 0, y = 0, and output neuron 3 is the point x = 5, y = 4, the delay 
would be proportional to 

√
25+ 16 ≈ 6.4 . As stated before, the coincidence detecting property of the spiking 

neuron is selecting equidistant points.
While here we realize the algorithm in a GPU and FPGA, other neuron LIF architectures exist and it is of 

interest to define the bounds in which any architecture must operate. The speed (i.e. delay) of such a system in 
the ultimate physical limit is defined by the sum of the input layer firing delay, the pulse propagation delay, and 
the delay of the threshold layer. Assuming speed of light for propagation delay, the resolution of the device is set 
by its ability to distinguish individual pulses within the time of propagation. The worst case is the time delay of 
the smallest distance, given the shortest distance between individual data points in the space, i.e. the pitch of the 
array. Then the threshold layer must switch with at least �t = dp/c where dp is the pitch distance. From this we 
can state a lower bound for the average energy consumption of the threshold layer in the ultimate speed limit29.

Definition of mirror symmetry density.  We define mirror symmetry density as a continuous scalar field of the 
peaks of the tensor D. These peaks represent positions of strong equidistance within the space of our dataset 
S(x, y) . This is similar to definitions found in10–12,14,19, except that in those cases the problem is posed as a maxi-
mization of equidistant density on a histogram rather than simple density in11 and a minimization of transform 
energy in10. While both perspectives of the problem result in the same solution (the equidistant point will be 
halfway between two points of the image and will have the minimum transform energy), viewing the problem in 
terms of maximization allows us to map the problem into a spiking neural network, where thresholds are defined 
in terms of peak amplitude. For a space to have symmetry density it must have some definition of distance. This 
distance function f, or metric, between two points (A and B) must satisfy three conditions; First, it must be posi-
tive and equal for the same point.

Second, it must be coordinate-symmetric, i.e. adhering to coordinate-reversal symmetry

Finally, it must satisfy the triangle inequality,

which translates into the distance between two points being the shortest path. Meeting these criteria, a function is 
a metric. A common metric in the Euclidean space, for example, is the definition of distance in two-dimensional 
Cartesian coordinates:

With this definition of distance we define the set of symmetry points, S = {S1, S2, . . . , Sn} , as the point equi-
distant between two points A and B:

For the two points A and B, equation (7) defines the set of points, Si forming a line equidistant between the two 
points A and B. For, three points A, B, and C, there are three lines of symmetry formed by each of the pairs (A, 
B), (B, C), and (A, C) as well as possibly a single point equidistant to all three points. As the number of input 
points increases, the number of symmetry lines increases with the number of unique pairs of input points.

Algorithm.  To understand the relationship of spiking neural networks with coincidence detection and to com-
pare an artificial spiking neural network approach to a computational approach, it is useful to introduce an 
algorithmic method of ranking mirror symmetry.

We define a tensor space D where at every point p in the space of our dataset S(x, y) the tensor describes the 
distribution of distance to every point in our dataset (Figs. 2, 3). Each dimension d along the tensor at point p 
is defined as the contour integral of the dataset S(x, y) about a circle of radius d centered at p. High symmetry 
points will correspond to peaks in the distribution of distances. We define Algorithm 1 to generate a discrete 
representation of this field.

With this algorithm symmetry points above a predefined threshold in the space can be identified. In O(m ∗ n) 
where m is the number of points in our space S, and n the number points in the set of input points in N. We 
note, that this algorithm can be applied iteratively where symmetries between input points (Fig. 2a) and other 
symmetry points create a hierarchy of symmetry points (Fig. 2d). The expected symmetry for the four inputs 
(green areas, Fig. 2a) result in the expected (1st order) symmetry shown in Fig. 2c. 

(2)E ≥
π�

2�t
=

π�c

2dp

(3)f (a, b) ≥ 0

(4)f (a, b) = f (b, a)

(5)f (a, c) ≤ f (a, b)+ f (b, c)

(6)�B− A�2 = (Bx − Ax)
2 +

(

By − Ay

)2

(7)∃XA,XB s.t. �XA − Si� = �XB − Si� ∀ Si ∈ S, XA ∈ X, XB ∈ X, XA �= XB
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Layering.  Deep Neural Networks (DNNs) are inherently multilayered. The multilayered architecture gives 
DNNs the potential to create higher levels of abstraction than single layer networks. It is reasonable to ask if the 
geometric-symmetry identifying neural networks discussed here are able to support layering to similarly pro-
duce hierarchical levels of symmetry detection.

If we naively begin with the network of Fig. 1b and add a third layer on top of the original output layer, we 
quickly discover that the layering cannot be supported with the network as previously presented. While the 
pattern of symmetry will appear at the middle layer, each coincident set of pulses will arrive at different times. 
In order for geometric symmetry to be identified by coincidence detection in the top layer, input pulses (i.e. 
output from the middle layer) must either all start at the same time or, if initiated with time differences, these 
individual delays must be proportionally shorter than the respective connection delays. If the time differences 
were constant we could remove delay from the connection delay between the middle layer and the new output 
layer. However, the time differences are not predictable and are dependent on the symmetry in the data from 
the input layer. If we are to detect geometric symmetry in a multilayered network, we must adjust the network 
to account for the varying arrival times.

The LIF spiking neuron can act as a memory for synchronization, much like a register in digital logic. To see 
this behavior we imagine a set of pulses independently arriving at a set of slow leaking LIF neurons such that 
some of the neurons receive a pulse and some do not. The pulses may represent the 1s and 0s of the bits to be 
stored in the memory. Now, with the proper choice of threshold, the bit will be stored until either the neuron 
leaks away all of the energy received by the pulse or another pulse arrives, pushing the neuron over the threshold. 
If this second set, the pulses arrive at every neuron at the same time, the neurons will act as a synchronization 

Figure 3.   A tensor space D describes the distribution of distances at every point p to the image data surface 
S(x, y) , where the value at each position of the tensor Dd corresponds to a distance d from point p and contains 
the contour integral of the surface S(x, y) around the circle at distance d from the point. In this way the tensor 
space D represents the density function of distances at all points in the surface to all other points in the surface. 
Equidistant points in the surface S(x, y) will generate peaks in the distribution along D and correspond to a 
symmetry density.
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stage, collecting pulses from their input and waiting until activated to simultaneously release the stored pulses 
to their outputs.

We can apply this concept of synchronization to the multilayered geometric symmetry-identifying network 
by adding a synchronization layer above the original output layer (Fig. 1c). This synchronization layer will have 
a slower leak rate than the layer below it so that it stores the symmetry points generated by the geometric sym-
metry detecting network below and, when a timing pulse arrives, release them at once to the symmetry detecting 
network above. In this way we can build a network to detect hierarchical geometric symmetry, i.e. the symmetry 
points of symmetry points.

Using the same process of synchronization we can also feed the output layer back to the input layer to create 
an RNN. The feedback allows the network to act on the symmetry points as well as the original data. The feed-
back output will differ from the multilayered network, as now original data will be compared to the generated 
symmetry points, whereas in the multilayered network each layer only computes the geometric symmetry of 
the layer below it. This feedback will create a dynamic system with results similar to repeated application of the 
symmetry algorithm presented earlier (Fig. 2d).

Sets.  One of the primary applications of artificial neural networks is classification. Here the neural network 
decides the class of new input data based on prior training. In classification problems, it is often useful to com-
pare sets of data. It may be interesting in this context to find the symmetry density within two different sets of 
data, intra-set symmetry, or between two different sets of data, inter-set symmetry. If we attempt to add two sets 
of data at the input layer (Fig. 4a), one for class A and one for class B, we will create a network that finds geomet-
ric symmetry between data in A and B but it will also find geometric symmetry from points in A to points in A 
and from points in B to points in B (Fig. 4b). To create a network that only detects inter-set or intra-set symmetry 
in the two sets of data we must amend the aforementioned architecture, as discussed next.

To detect intra-set symmetry two pseudorandom codes are generated, one for set A and one for set B. Ele-
ments of each pseudorandom code are associated with output connections of the network, N × N, that is one 
pseudorandom value is chosen for each distance value in the norm. When building delays for inputs from the 
space of set A, the pseudorandom code for A at each associated output connection is added to the delay. Similarly, 
for the space of set B delays are added from the pseudorandom code for set B. Each connection which previously 
had a delay directly proportional to distance is now perturbed by a small pseudorandom amount. This effectively 
re-codes the norm space in terms of the pseudorandom code, where before it was coded directly proportional to 
distance. The coincidence detectors at the output before correlated spikes of equal delay which corresponded to 
inputs of equal distance, now the coincidence detectors are still correlating spikes of equal but with perturbed 
delay which, again, corresponds to inputs of equal distance. Spikes originating within set A will have the same 
pseudorandom delays applied and will continue to be coincident. At the same time the delays between set A and 
set B will be randomized and the coincidence will be dispersed (Fig. 4c).

Figure 4.   Two sets of data, green and black, (a) are processed by combining the inputs (b), resulting in both 
inter-set and intra-set symmetry at the output. To obtain a result with only inter-set symmetry, two distinct 
pseudorandom codes are applied to the two data sets, dispersing inter-set results (c). To obtain a result with only 
intra-set symmetry, the inter-set output (c) is subtracted from the original, or generated with inhibitory spiking 
in a spiking neural network, (b) to obtain the intra-set only result (d).
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Similarly, to detect inter-set symmetry a second network is generated with connections from both sets of 
inputs. This results in a union of both intra-set and inter-set symmetry (Fig. 4b). At the output of this network 
inhibitory connections are applied from the output of the intra-set network. This results in a reduction in spik-
ing from the intra-set network, effectively subtracting the intra-set result from the union to create the inter-set 
result (Fig. 4d).

These two techniques allow both types of set comparisons using only coincidence detection, delay, and spike 
inhibition. The results can be cascaded hierarchically, as discussed previously to perform complex comparisons 
between many sets of data.

Metrics.  The concept of symmetry density is not limited to Cartesian coordinates or Euclidean distance. Other 
measures of distance can form varying types of equidistant symmetry. In the implementation of the algorithm in 
software, the Manhattan distance may be appealing as it can simplify the calculation of distance by eliminating 
the squares and square root of the Euclidean distance formula. Multiplication is at best O

(

n log n · 2log∗ n
)

30 and 
square root is O

(

log nF(n)
)

 with Newton’s method, while addition and subtraction are O
(

logN
)

31.
However, this simplification has dramatic effects on the distribution of symmetry. In Euclidean space the 

equidistant point C is found by moving B circularly around point A, resulting in a single symmetry point for a 
circle. In Manhattan space horizontal and vertical positions are also equidistant having the effect of emphasizing 
horizontal, vertical, and diagonal lines in Manhattan space.

Spiking noise.  To withstand noise, implementations of the symmetry density algorithm will need to set a 
threshold to determine which points are included in the dataset or weight the distribution with the value of 
the pixels. In the threshold case, the data point is either included or excluded from the distribution of distances 
based on whether the value of the pixel passes some threshold value. In a spiking neural network this is the acti-
vation threshold of the neuron receiving the input signal. The threshold can be set to the mean of the peak value 
across the space or some percentage of the mean to increase or decrease contrast.

In the weighting case the average value, or minimum value of the two equidistant pixels is applied as a weight 
to the value of the symmetry density in the same way that mass is applied as a weight in integration to find the 
center of mass of an object. This result can also be seen in long averages of a spiking neural network, where the 
repetition of spikes is proportional to the amplitude of the input signal.

Adding noise to the input causes the addition of noise in the distance distribution, raising the noise floor of 
the distribution. This noise decreases the separation between the peak of the distribution and the noise floor. 
Once the original peak is no longer detectable in the distribution, the output point in the symmetry density will 
become incorrect. The strength of noise where this occurs is dependent on the Signal to Noise Ratio (SNR) of 
the original symmetry density.

Gaussian noise is independent of the signal and will thus have a flat distance distribution. Adding Gaussian 
noise to the input will have a proportional effect on the SNR of the symmetry density. Any addition of noise in 
dB can simply be subtracted from the SNR of the original symmetry density to determine the resulting SNR 
(see further below, Fig. 8).

Results
We hypothesize that the symmetric nature of human made objects would generate a higher level of symmetry 
density than natural objects. To test this hypothesis we created an experiment using the open source SpaceNet32 
dataset. The SpaceNet dataset includes Are of Interest 1 (AOI 1), Rio de Janeiro which is a collection 7186 images 
of 50 cm imagery from DigitalGlobe’s WorldView-2 satellite of a mixture of farmland and buildings in Rio de 
Janeiro, Brazil. The dataset includes metadata for each of the 7186 tiles containing polygon outlines of buildings.

Main experiment.  Our experiment consisted of the following steps for each image in the dataset: 1. convert 
image from tiff to jpeg. 2. load first channel from jpeg 3. run Sobel-Feldman operator33 for edge detection 4. 
run symmetry function on GPU (Algorithm 3) on edge filter results with a threshold = 128, d = 50 px, and n = 
177828. 5. save the result.

Samples of the result of the algorithm (Fig. 5) demonstrate the operating principal of the hypothesis with 
human made structures being highlighted more than natural vegetation. This can be empirically seen when plot-
ting the total number of buildings in each tile vs the total symmetry density of the tile (Fig. 6). However, some 
types of human distributed vegetation such as crops are highly symmetric resulting in false positives.

Scaling and noise.  Pairs of points equidistant to a line of symmetry contribute to the signal along the line 
of symmetry while pairs of points not equidistant to a line of symmetry contribute to the noise along that line 
of symmetry. If there are multiple lines of symmetry in different directions and at different scales, the signal of 
any single line of symmetry will be reduced by the increased noise generated by the other lines of symmetry. In 
addition, if some portions of the data are not at all symmetric, they will further increase the noise along all lines 
of symmetry.

By eliminating points from the coincidence detection that do not meet some a priori criteria for symmetry, 
the definition of coincidence is refined and the signal of the line of symmetry will increase. For example, if by a 
priori knowledge of the image type symmetry greater than some scale can be eliminated, coincidence of pairs 
of points with distances greater than that scale can be removed from the coincidence detector. A demonstration 
with a triangular fractal (Fig. 7) shows that by limiting the points available to the coincidence detector lines 
of symmetry at varying scales are hilighted over the noise generated by the other symmetry scales in the data.
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Figure 5.   Samples from the experiment results with symmetry density overlayed on top of the original 
images on the same color scale (0 to 350), (a) image 1361 shows city structures with high symmetry density 
in the bottom-right and vegetation with low symmetry density in the upper-left portion, (b) image 1284 also 
showing symmetric urban areas in the upper-left and upper-right side, (c) image 5864 with rows of buildings 
with symmetric centers, (d) image 581 industrial center with circularly symmetric facility, (e) image 1014 
oddly shaped building and potentially an aircraft in the lower left, (f) image 12 an industrial facility with highly 
symmetric tanks, (g) image 1363 show some symmetry density in the distribution of trees, (h) image 1395 show 
no symmetry density in an open field, and (i) image 1308 showing symmetric vegetation in fields.

Figure 6.   The mean of the symmetry density integrated within all building areas for each image containing 
buildings plotted against the mean of the symmetry density in the entire image shows that the area within 
buildings has a higher symmetry density than the average of the image for more than 93% of the images.
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Similarly, when the symmetry is not exact, pairs of points on either side of the quasi-line of symmetry may 
not contribute to the coincidence detection since they are not precisely equidistant. In this case adding noise to 
the distance metric will cause at least some of the point-pairs across the quasi-line of symmetry to coincide and 
contribute to the signal of the quasi-symmetry. Here, instead of eliminating point-pairs that by a priori knowl-
edge only contribute to noise, the definition of coincidence is relaxed to allow approximate lines of symmetry 
to become visible at the expense of noise.

Figure 7.   An iterated function system (IFS) fractal of triangles processed through the symmetry density 
algorithm with distance limits of (a) 9%, (b) 19%, (c) 39%, and (d) 78% of the image size, shows that by 
limiting the definition of coincidence to points of an a priori scale, features at the scale highlighted due to 
the contribution of equidistant point-pairs across lines of symmetry, while point-pairs off lines of symmetry 
contributing to noise are reduced.

Figure 8.   Guassian noise added to each measure of distance increases the mean squared error (MSE) when 
compared to the zero noise case. For noise with standard deviation less than or equal to the bin size (in this case 
1), output MSE is only slightly impacted with a maximum MSE of 53. For noise with standard deviation greater 
than the bin size, MSE increases steeply before leveling as the noise standard deviation reaches ten times the bin 
size, and the relative change in the output density with increasing noise power is reduced.
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To evaluate the effect of noise on the network, we simulated the outline of the F-35 with Gaussian noise added 
to the length delay with a standard deviation ranging from 1 to 5 (Fig. 8). The results show that small features 
with narrow bands of coincidence are quickly eliminated while broad ranging symmetry points from across the 
network increase in dominance.

This can be explained by the strict coincidence detection of the network. When two points are pushed away 
from each other even by a distance of one pixel, the coincidence detection will not happen. In the case of the thin 
line of symmetry between equidistant lines, for example near the nose of the aircraft, adding noise disperses the 
boundary between them. Alternatively, in cases where the symmetry is not exact, for example near the tail of 
the aircraft, adding noise creates new coincidence points as some previously unaligned spikes are now brought 
into alignment with each other. This demonstrates the value of adding noise when considering shapes with less 
strictly defined symmetric features.

Discussion
In conclusion, we have presented a novel algorithm for finding a scalar field representing the symmetry of points 
in a multi-dimensional space. We have demonstrated that time synchronization in the input values of spiking 
neural networks, with the appropriate choice of threshold and spike period, results in the identification of output 
neurons along points of high symmetry density to the network inputs. We have demonstrated an implementation 
of the symmetry selective LIF neural network in common hardware with a high speed, 2.8 MHz identification 
of symmetry points in an 8× 8 Manhattan metric space. Our results confirm that utilizing only the delay and 
coincidence detecting properties of a single layer of neurons in a spiking neural networks naturally leads to effec-
tive symmetry identification. A greater understanding of symmetry perception in artificial intelligence will lead 
to systems with more effective pattern visualization, compression, and goal setting processes. Future research 
should focus on optical implementations of the presented findings a) to harness the information parallelism of 
bosonic photons, b) to capitalize on the high energy efficiency of photonic and nanophotonic optoelectronics 
which only require the micrometer-small active devices to the electrically addressed enabling 100’s of atto-Joule 
efficient active optoelectronic devices, and (c) to enable high-data throughput links and platforms34–43.

Methods
Python implementation.  We begin with a Python simulation using a sparse matrix representation of 
input nodes. For each element of the output mesh, the distance to every input node is calculated using Euclid-
ean distance and rounded to into a configurable binning decimal place. The result is stored in a list. The most 
frequent distance in the list is found and the count of the most frequent distance is placed in the output mesh.

Using this implementation we calculate the symmetry space for input data from low to high complexity 
(Fig. 9).

Implementing LIF with digital logic.  Each neuron is represented as a leaky accumulator. At each clock 
cycle all of the neuron inputs are added to a value stored in an accumulation register, the result of the summation 
minus the leak value is then stored back in the accumulation register. If the accumulation register surpasses the 
value of a fixed threshold, or, alternatively as a configurable threshold stored in a threshold register, the accumu-
lator is reset to zero and a value appears at the neuron’s output. If the accumulation value does not surpass the 
threshold, zero appears at the neuron’s output.

Neuron-to-neuron connection delay is represented either as queue, where the outputs are placed into a First-
In-First-Out (FIFO) queue, or as a pulse value and countdown register. When delay is represented as a queue, at 
each clock cycle a single value is added from the output neuron to each output connection’s FIFO and a single 
output is removed from each FIFO at the output neuron. The length of each FIFO is proportional to the delay 
being represented. When delay is represented as a countdown register, at each clock cycle if the neuron’s output 
value is positive a countdown register is initialized with a count proportional to the represented connection delay 
and a value of the neuron’s output value. At each clock cycle each countdown register is decremented. When a 
countdown register reaches zero, its pulse value register is placed at the input of the output neuron.

FPGA implementation.  To demonstrate spatial symmetry recognition via coincidence detection of LIF 
networks on actual hardware, we implemented a simple LIF spiking neural network on a Xilinx Zynq™ FPGA. 
Our LIF neural network consists of an 8× 8 input array connected to an 8× 8 neuron output array. Each output 
neuron is connected to every input by a shift register of length proportional to the Manhattan distance from the 
point (Ox,Oy) at the output to the point (Ix, Iy) at the corresponding input. This results in 4096 shift registers 
with a maximum length of 16. Each output neuron consisted of a two-stage adder followed by an accumulation 
register. Each adder includes a configurable constant leaky term that subtracted the configured leak from the 
accumulation register at each time interval. Each accumulator is connected to a threshold level. If the accumula-
tor passes the threshold, a second single-bit register is set to 1 to indicate firing of the output neuron. The latency 
from input to output in this implementation is proportional to the length of the longest shift register, 16 in this 
case, plus the accumulation time, 2 in this case, for a total of 18 clock cycles. The network is clocked at a constant 
clock speed of 50 MHz for approximately 2.8 MHz of 8× 8 symmetry operations. The output of the symmetry 
LIF neural network was recorded over time for the elementary case of a line between two points. Our results 
confirm that spiking LIF neural networks indeed act as symmetry detectors, highlighting equidistant points in 
spatial data.
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Graphical processing unit (GPU) implementation.  Spiking neural network hardware is not widely 
available today. Instead GPUs dominate image and video processing. To demonstrate the symmetry density effi-
ciently, we created a simplified variation of the symmetry density algorithm tailored for the GPU (Algorithm 2).

Instead of creating a histogram of distances at each point in the output, the simplified algorithm attempts to 
create a density space of bisection lines. It begins by selecting all points of the input that are greater than some 
threshold and placing them in the 1D array P. It then loops every pair of points in P. It selects the line of points 
that bisect the point pair using a modified version of Bresenham’s line algorithm44 where the slope is inverted to 
draw a line bisecting the two points rather than a line between the two points.

As with many parallel processors, performance bottlenecks occur in the GPU when many cores need to oper-
ate on the same memory space. In this case critical sections are protected by multiple simultaneous operations 
by mutexes. In the case of Algorithm 2 there are two potential critical sections. The first is in the building the set 
of points above threshold (Algorithm 2 Line 6). The second is in incrementing the output array (Algorithm 2 
Line 9). With these two critical sections the parallel performance of the algorithm is limited. 

Figure 9.   The result of an implementation of Algorithm 1 in Python for a circle (a), square (b), triangle (c), star 
(d), and an aircraft shows a point and fractal like mirroring of the mirror symmetry density function.
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To eliminate the critical sections and improve performance, a heuristic approach may be taken (Algorithm 3). 
Here the first critical section is removed by randomly indexing into a fixed length threshold point array P plac-
ing the selected points at multiple places in P, K times. This creates a random space that contains the threshold 
points in a random order, eliminating the need to access P within a critical section. 

The second critical section is removed by randomly selecting two points from P to calculate the midpoint. 
Since the midpoint is randomized, the probability of two cores selecting the same index of Output goes to zero 
as the number of points in P becomes much greater than the number of cores. Further, if two cores do conflict 
the value is either not incremented, or incremented twice. For large values of N, this simply adds a small amount 
of noise to the resulting output.

In this way, the heuristic version of the symmetry density algorithm eliminates all critical sections, allowing 
both for loops to execute across any number of cores simultaneously, at the cost of adding a small amount of 
noise to the output image.

Received: 19 May 2020; Accepted: 24 February 2021
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