
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports

Symmetry perception with spiking
neural networks
Jonathan K. George1, Cesare Soci2, Mario Miscuglio1 & Volker J. Sorger1*

Mirror symmetry is an abundant feature in both nature and technology. Its successful detection is
critical for perception procedures based on visual stimuli and requires organizational processes.
Neuromorphic computing, utilizing brain-mimicked networks, could be a technology-solution
providing such perceptual organization functionality, and furthermore has made tremendous
advances in computing efficiency by applying a spiking model of information. Spiking models
inherently maximize efficiency in noisy environments by placing the energy of the signal in a
minimal time. However, many neuromorphic computing models ignore time delay between nodes,
choosing instead to approximate connections between neurons as instantaneous weighting. With
this assumption, many complex time interactions of spiking neurons are lost. Here, we show that
the coincidence detection property of a spiking-based feed-forward neural network enables mirror
symmetry. Testing this algorithm exemplary on geospatial satellite image data sets reveals how
symmetry density enables automated recognition of man-made structures over vegetation. We
further demonstrate that the addition of noise improves feature detectability of an image through
coincidence point generation. The ability to obtain mirror symmetry from spiking neural networks
can be a powerful tool for applications in image-based rendering, computer graphics, robotics, photo
interpretation, image retrieval, video analysis and annotation, multi-media and may help accelerating
the brain-machine interconnection. More importantly it enables a technology pathway in bridging the
gap between the low-level incoming sensor stimuli and high-level interpretation of these inputs as
recognized objects and scenes in the world.

In neuromorphic computing the architecture of the biological brain is applied to artificial computers to both
increase the efficiency of computing and to mimic the intelligence of the human mind. While artificial neural
networks have become increasingly complex, they have largely modeled the connections between neurons as
synaptic weighting and summing through a nonlinear activation function. However, biological neurons exist
physically in a three-dimensional space implying that information in the brain is, in its most basic form, dis-
tributed in at least three dimensions. Furthermore, communication between neurons is not instantaneous and
depends not only on the distance in the three-dimensional space but on the density and type of connections,
including neurophil, axons and dendrites, between them, creating a rich N-dimensional time dependent space
in addition to the traditional N-dimensional weight dependent space. Here, we show how these simple time
interactions applied to an elementary spiking model of the neuron can result in complex outcomes, such as the
identification of mirror symmetry, extending our conference presentation1.

The ability to rapidly identify symmetry and anti-symmetry is an essential attribute of intelligence. Symme-
try perception is a central process in human vision and may play a key role in human 3D visualization2. While
previous work in understanding neuron symmetry perception has concentrated on the neuron as an integrator3
and midpoint linearity4, here we show how the coincidence detecting property of the spiking neuron can be
used to reveal symmetry density in spatial data. We develop a method for synchronizing symmetry-identifying
spiking artificial neural networks to enable layering and feedback in the network, to form a recurrent neural
network (RNN). We show a method for building a network capable of identifying symmetry density between
sets of data and present a digital logic implementation demonstrating an 8× 8 leaky-integrate-and-fire symmetry
detector in a field-programmable gate array. Our results show that the efficiency of spiking neural networks can
be harnessed to rapidly identify symmetry in spatial data with applications in image processing, 3D computer
vision, and robotics.

The human visual system is able to detect mirror symmetry rapidly5. Furthermore, symmetry detection in
human vision is being hypothesized to be essential for 3D visualization6. Symmetry preference is also found in

OPEN

1Department of Electrical and Computer Engineering, George Washington University, Washington, DC,
USA. 2School of Physical and Mathematical Sciences and School Electrical and Electronic Engineering, Nanyang
Technological University, Singapore, Singapore. *email: sorger@gwu.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-85232-3&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

insects and birds7,8. These examples point to a neurological origin of symmetry detection. While line integration
has been proposed as a method for symmetry perception in human vision9 and in spiking neural networks3, a
more fundamental role may be played by neural coincidence detection; in biology the spiking neural networks
of the brain have been shown to be capable of both integration and coincidence detection10,11. These spiking
neurons have been observed to fire in a time-dependent manner forming strongly connected clusters12 known as
polychronous neural groups (PNGs)9. Both pattern recognition and computing have been achieved in artificial
neural networks with polychronous behavior13. However, the connection between symmetry and coincident
spiking polychronous neural networks has not been explored, nor has symmetry detection using only single layer
delay in spiking artificial neural networks been demonstrated. While many algorithms for finding symmetry
in images and feature sets of images have been developed14–19, it is difficult to translate them to run on power-
efficient neuromorphic hardware platforms20,21. Here we present a formal definition of geometric symmetry as
the amplitude of a tensor space of the distribution of distance. We then show how a specific configuration of a
spiking neural network can act on its inputs in a manner identical to a threshold applied to the tensor symmetry
space, firing at the points of high mirror symmetry. As an example, we demonstrate a network both in software
and in a Field Programmable Gate Array (FPGA) and validate symmetry-recognition capability of an artificial
spiking neural network on a) geospatial data sets demonstrating automated dwelling detection and b) on shapes
of military aircraft where mirror symmetry enables fingerprint-like rapid detection such as for automatic target
recognition (ATR). The symmetry-associating behavior of spiking neural networks has immediate applications
in image processing and is consistent with our intuition that the ability to identify symmetry is indeed supported
by artificial neural intelligence.

Symmetry density.  Symmetry can be broadly defined as a self-similarity in logic or a dataset. Geometric
symmetries are self-similarities in a spatial dataset over a transformation. The transformation can consist of 1)
mirror symmetry across an axis, 2) scaling symmetry where the transformation changes the size of some portion
of the data, 3) rotational symmetry where some portion is of the data is rotated, 4) skew symmetry where the
data is symmetric across a skew transformation, or 5) any combination of affine transformations. In this work,
our focus is on geometric mirror symmetry which has been hypothesized to play an important role in human
visual processing6.

Spatial self-similarity implies a transformation of some subset(s) of the data in a space will result again in
the same subset of data. If the transform is folding the space, then both subsets of data will be equidistant to the
folding line. In detecting these mirror symmetries, our problem becomes one of detecting peaks in the equidis-
tant distribution of data.

Symmetry density in spiking neural networks.  Spiking network enables coincidence detection, and coincidence
detection enables mirror symmetry density detection. A spiking neural network is a type of artificial neural net-
work that models the spiking observed in the neuron cells of the brain, in this sense it is Neuromorphic, taking
on the form of a neuron. By concentrating its energy into a short time span the spike is an efficient encoding
method in a noisy environment12,13,22.

A simple type of spiking neural network is the Leaky Integrate and Fire (LIF) model13,23, where each neuron
integrates its inputs in time while simultaneously leaking from the accumulator. When the accumulator passes a
threshold level it fires, generating a signal spike. The leak creates a temporal dependence on the past, thus adding
memory to the neuron. The LIF model can be formulated mathematically13,23 as

where the voltage u is a function of current with a leaky term τm du
dt that depends on the change in voltage with

time, and τm is the relaxation time constant of the signal leak to reach threshold.
LIF neurons have been realized in analog electronics24,25, in digital electronics with event-driven

processors26,27, and in photonics with optical nonlinear materials28. A simple method for building a digital
event-driven system with delay in a FPGA or application-specific integrated circuit (ASIC), is to approximate
the propagation of spikes in digital form as bits moving through long shift registers. A 1 bit is placed at the input
of the shift register to represent an incoming spike and in each clock cycle the bits in the register are shifted by
one position until they arrive at the output where they are summed into a separate leaky register. If the leaky
accumulation register reaches a threshold, 1 bits are placed at all of the neuron’s output shift registers. While this
method potentially requires more resources than the alternative of using event counters, it intuitively maps to
the role of spikes moving in the axon of a neuron.

To understand how spatial symmetry affects the result of a LIF neural network, consider a simple neural net-
work consisting of two input neurons A and B connected to a single output neuron C (Fig. 1). This three-neuron
system acts as a coincidence detector. A spike propagating from A to C arrives at C after some time �tA . Similarly,
a spike propagating from B to C arrives at C after some time �tB . If neuron C is assigned a threshold that is just
higher than the individual spikes output from either A or B, then the neuron C will only fire when both spikes
arrive at C before the leaky time constant τm reduces the power below threshold at C. In this configuration, C is
a temporal coincidence detector.

To obtain symmetry detection from coincidence detection, assume a constant propagation speed across the
system, where propagation time is proportional to distance, and synchronous firing of input neuron A and B.
Now, the spike arrival times �tA and �tB will be dependent only on propagation distances dA and dB . In an N × N
connected network, the arrival times will be distributed proportionally with distance, closer pulses arriving
first and farther pulses arriving later. This is equivalent to the tensor space D of our original definition (Fig. 2).

(1)u(t) = RI(t)− τm
du

dt

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

If the two distances are equal the propagation times will be equal and the two spikes will arrive together at C,
pushing it over the threshold and causing it to fire. On the other hand, if the distances are not equal, the propa-
gation times will be different, the two spikes will arrive separately at C and the neuron will not fire. In this way,
synchronized neurons in spiking neural networks act as the distance-relating components in the distribution
elements of our tensor space D, and the threshold at neuron C acts as the second half of our symmetry algorithm,
selecting the peaks out of the distance distributions in D. This method effectively, enables the neuron to act as
a coincidence detector (Fig. 1).

Figure 1.   When neuron A and neuron B fire simultaneously, and if both neurons are equidistant from neuron
C, then the pulse propagating from A to C will arrive at C at the same time as the pulse propagating from B to
C (a). The threshold at C is set such that it is higher than the amplitude of either individual pulse. Neuron C will
fire if, and only if, both pulses arrive time-synchronized. In this way neuron C acts as a coincidence detector.
Each input layer neuron is connected to every output layer neuron with a delay proportional to the distance
between the input and output points in Euclidean space (b). If all activated input neurons fire simultaneously,
and only one pulse is allowed per cycle, the output node with highest symmetry will be the output node with the
greatest number of pulses arriving simultaneously. To detect hierarchical geometric symmetry a synchronization
layer is added above the original output layer (c). The synchronization layer has a slower integration time
than the original output layer, storing the pulses until a timing signal releases them to the next higher layer
simultaneously. In recurrent variations of the network (e.g. RNN, recurrent neural network), feedback from
the output of the synchronization layer is connected back to a lower level input layer. See text for details of
operation.

Figure 2.   The algorithm transforms the input data points (the four corners of a Cartesian space in this example)
(a) into an array of histograms of distances (b) where each bin counts the distance from the point in space to
each data point. The peaks of the set of histograms are used to create a density of symmetry (c) overlaying the
original space. Applying the algorithm repeatedly with feedback in a high-resolution space produces a fractal-
like pattern (d) of hierarchical symmetry.

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

Extending upon the three-neuron system, this concept of coincidence detection via delay can be brought to
the entire input space (Fig. 1b). Each neuron of the input layer is connected to each neuron of the output layer
( N × N connectivity) with a delay proportional to the distance between the two points in the space. For example,
in a Cartesian space if input neuron 1 is point x = 0, y = 0, and output neuron 3 is the point x = 5, y = 4, the delay
would be proportional to

√
25+ 16 ≈ 6.4 . As stated before, the coincidence detecting property of the spiking

neuron is selecting equidistant points.
While here we realize the algorithm in a GPU and FPGA, other neuron LIF architectures exist and it is of

interest to define the bounds in which any architecture must operate. The speed (i.e. delay) of such a system in
the ultimate physical limit is defined by the sum of the input layer firing delay, the pulse propagation delay, and
the delay of the threshold layer. Assuming speed of light for propagation delay, the resolution of the device is set
by its ability to distinguish individual pulses within the time of propagation. The worst case is the time delay of
the smallest distance, given the shortest distance between individual data points in the space, i.e. the pitch of the
array. Then the threshold layer must switch with at least �t = dp/c where dp is the pitch distance. From this we
can state a lower bound for the average energy consumption of the threshold layer in the ultimate speed limit29.

Definition of mirror symmetry density.  We define mirror symmetry density as a continuous scalar field of the
peaks of the tensor D. These peaks represent positions of strong equidistance within the space of our dataset
S(x, y) . This is similar to definitions found in10–12,14,19, except that in those cases the problem is posed as a maxi-
mization of equidistant density on a histogram rather than simple density in11 and a minimization of transform
energy in10. While both perspectives of the problem result in the same solution (the equidistant point will be
halfway between two points of the image and will have the minimum transform energy), viewing the problem in
terms of maximization allows us to map the problem into a spiking neural network, where thresholds are defined
in terms of peak amplitude. For a space to have symmetry density it must have some definition of distance. This
distance function f, or metric, between two points (A and B) must satisfy three conditions; First, it must be posi-
tive and equal for the same point.

Second, it must be coordinate-symmetric, i.e. adhering to coordinate-reversal symmetry

Finally, it must satisfy the triangle inequality,

which translates into the distance between two points being the shortest path. Meeting these criteria, a function is
a metric. A common metric in the Euclidean space, for example, is the definition of distance in two-dimensional
Cartesian coordinates:

With this definition of distance we define the set of symmetry points, S = {S1, S2, . . . , Sn} , as the point equi-
distant between two points A and B:

For the two points A and B, equation (7) defines the set of points, Si forming a line equidistant between the two
points A and B. For, three points A, B, and C, there are three lines of symmetry formed by each of the pairs (A,
B), (B, C), and (A, C) as well as possibly a single point equidistant to all three points. As the number of input
points increases, the number of symmetry lines increases with the number of unique pairs of input points.

Algorithm.  To understand the relationship of spiking neural networks with coincidence detection and to com-
pare an artificial spiking neural network approach to a computational approach, it is useful to introduce an
algorithmic method of ranking mirror symmetry.

We define a tensor space D where at every point p in the space of our dataset S(x, y) the tensor describes the
distribution of distance to every point in our dataset (Figs. 2, 3). Each dimension d along the tensor at point p
is defined as the contour integral of the dataset S(x, y) about a circle of radius d centered at p. High symmetry
points will correspond to peaks in the distribution of distances. We define Algorithm 1 to generate a discrete
representation of this field.

With this algorithm symmetry points above a predefined threshold in the space can be identified. In O(m ∗ n)
where m is the number of points in our space S, and n the number points in the set of input points in N. We
note, that this algorithm can be applied iteratively where symmetries between input points (Fig. 2a) and other
symmetry points create a hierarchy of symmetry points (Fig. 2d). The expected symmetry for the four inputs
(green areas, Fig. 2a) result in the expected (1st order) symmetry shown in Fig. 2c.

(2)E ≥
π�

2�t
=

π�c

2dp

(3)f (a, b) ≥ 0

(4)f (a, b) = f (b, a)

(5)f (a, c) ≤ f (a, b)+ f (b, c)

(6)�B− A�2 = (Bx − Ax)
2 +

(

By − Ay

)2

(7)∃XA,XB s.t. �XA − Si� = �XB − Si� ∀ Si ∈ S, XA ∈ X, XB ∈ X, XA �= XB

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

Layering.  Deep Neural Networks (DNNs) are inherently multilayered. The multilayered architecture gives
DNNs the potential to create higher levels of abstraction than single layer networks. It is reasonable to ask if the
geometric-symmetry identifying neural networks discussed here are able to support layering to similarly pro-
duce hierarchical levels of symmetry detection.

If we naively begin with the network of Fig. 1b and add a third layer on top of the original output layer, we
quickly discover that the layering cannot be supported with the network as previously presented. While the
pattern of symmetry will appear at the middle layer, each coincident set of pulses will arrive at different times.
In order for geometric symmetry to be identified by coincidence detection in the top layer, input pulses (i.e.
output from the middle layer) must either all start at the same time or, if initiated with time differences, these
individual delays must be proportionally shorter than the respective connection delays. If the time differences
were constant we could remove delay from the connection delay between the middle layer and the new output
layer. However, the time differences are not predictable and are dependent on the symmetry in the data from
the input layer. If we are to detect geometric symmetry in a multilayered network, we must adjust the network
to account for the varying arrival times.

The LIF spiking neuron can act as a memory for synchronization, much like a register in digital logic. To see
this behavior we imagine a set of pulses independently arriving at a set of slow leaking LIF neurons such that
some of the neurons receive a pulse and some do not. The pulses may represent the 1s and 0s of the bits to be
stored in the memory. Now, with the proper choice of threshold, the bit will be stored until either the neuron
leaks away all of the energy received by the pulse or another pulse arrives, pushing the neuron over the threshold.
If this second set, the pulses arrive at every neuron at the same time, the neurons will act as a synchronization

Figure 3.   A tensor space D describes the distribution of distances at every point p to the image data surface
S(x, y) , where the value at each position of the tensor Dd corresponds to a distance d from point p and contains
the contour integral of the surface S(x, y) around the circle at distance d from the point. In this way the tensor
space D represents the density function of distances at all points in the surface to all other points in the surface.
Equidistant points in the surface S(x, y) will generate peaks in the distribution along D and correspond to a
symmetry density.

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

stage, collecting pulses from their input and waiting until activated to simultaneously release the stored pulses
to their outputs.

We can apply this concept of synchronization to the multilayered geometric symmetry-identifying network
by adding a synchronization layer above the original output layer (Fig. 1c). This synchronization layer will have
a slower leak rate than the layer below it so that it stores the symmetry points generated by the geometric sym-
metry detecting network below and, when a timing pulse arrives, release them at once to the symmetry detecting
network above. In this way we can build a network to detect hierarchical geometric symmetry, i.e. the symmetry
points of symmetry points.

Using the same process of synchronization we can also feed the output layer back to the input layer to create
an RNN. The feedback allows the network to act on the symmetry points as well as the original data. The feed-
back output will differ from the multilayered network, as now original data will be compared to the generated
symmetry points, whereas in the multilayered network each layer only computes the geometric symmetry of
the layer below it. This feedback will create a dynamic system with results similar to repeated application of the
symmetry algorithm presented earlier (Fig. 2d).

Sets.  One of the primary applications of artificial neural networks is classification. Here the neural network
decides the class of new input data based on prior training. In classification problems, it is often useful to com-
pare sets of data. It may be interesting in this context to find the symmetry density within two different sets of
data, intra-set symmetry, or between two different sets of data, inter-set symmetry. If we attempt to add two sets
of data at the input layer (Fig. 4a), one for class A and one for class B, we will create a network that finds geomet-
ric symmetry between data in A and B but it will also find geometric symmetry from points in A to points in A
and from points in B to points in B (Fig. 4b). To create a network that only detects inter-set or intra-set symmetry
in the two sets of data we must amend the aforementioned architecture, as discussed next.

To detect intra-set symmetry two pseudorandom codes are generated, one for set A and one for set B. Ele-
ments of each pseudorandom code are associated with output connections of the network, N × N, that is one
pseudorandom value is chosen for each distance value in the norm. When building delays for inputs from the
space of set A, the pseudorandom code for A at each associated output connection is added to the delay. Similarly,
for the space of set B delays are added from the pseudorandom code for set B. Each connection which previously
had a delay directly proportional to distance is now perturbed by a small pseudorandom amount. This effectively
re-codes the norm space in terms of the pseudorandom code, where before it was coded directly proportional to
distance. The coincidence detectors at the output before correlated spikes of equal delay which corresponded to
inputs of equal distance, now the coincidence detectors are still correlating spikes of equal but with perturbed
delay which, again, corresponds to inputs of equal distance. Spikes originating within set A will have the same
pseudorandom delays applied and will continue to be coincident. At the same time the delays between set A and
set B will be randomized and the coincidence will be dispersed (Fig. 4c).

Figure 4.   Two sets of data, green and black, (a) are processed by combining the inputs (b), resulting in both
inter-set and intra-set symmetry at the output. To obtain a result with only inter-set symmetry, two distinct
pseudorandom codes are applied to the two data sets, dispersing inter-set results (c). To obtain a result with only
intra-set symmetry, the inter-set output (c) is subtracted from the original, or generated with inhibitory spiking
in a spiking neural network, (b) to obtain the intra-set only result (d).

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

Similarly, to detect inter-set symmetry a second network is generated with connections from both sets of
inputs. This results in a union of both intra-set and inter-set symmetry (Fig. 4b). At the output of this network
inhibitory connections are applied from the output of the intra-set network. This results in a reduction in spik-
ing from the intra-set network, effectively subtracting the intra-set result from the union to create the inter-set
result (Fig. 4d).

These two techniques allow both types of set comparisons using only coincidence detection, delay, and spike
inhibition. The results can be cascaded hierarchically, as discussed previously to perform complex comparisons
between many sets of data.

Metrics.  The concept of symmetry density is not limited to Cartesian coordinates or Euclidean distance. Other
measures of distance can form varying types of equidistant symmetry. In the implementation of the algorithm in
software, the Manhattan distance may be appealing as it can simplify the calculation of distance by eliminating
the squares and square root of the Euclidean distance formula. Multiplication is at best O

(

n log n · 2log∗ n
)

30 and
square root is O

(

log nF(n)
)

 with Newton’s method, while addition and subtraction are O
(

logN
)

31.
However, this simplification has dramatic effects on the distribution of symmetry. In Euclidean space the

equidistant point C is found by moving B circularly around point A, resulting in a single symmetry point for a
circle. In Manhattan space horizontal and vertical positions are also equidistant having the effect of emphasizing
horizontal, vertical, and diagonal lines in Manhattan space.

Spiking noise.  To withstand noise, implementations of the symmetry density algorithm will need to set a
threshold to determine which points are included in the dataset or weight the distribution with the value of
the pixels. In the threshold case, the data point is either included or excluded from the distribution of distances
based on whether the value of the pixel passes some threshold value. In a spiking neural network this is the acti-
vation threshold of the neuron receiving the input signal. The threshold can be set to the mean of the peak value
across the space or some percentage of the mean to increase or decrease contrast.

In the weighting case the average value, or minimum value of the two equidistant pixels is applied as a weight
to the value of the symmetry density in the same way that mass is applied as a weight in integration to find the
center of mass of an object. This result can also be seen in long averages of a spiking neural network, where the
repetition of spikes is proportional to the amplitude of the input signal.

Adding noise to the input causes the addition of noise in the distance distribution, raising the noise floor of
the distribution. This noise decreases the separation between the peak of the distribution and the noise floor.
Once the original peak is no longer detectable in the distribution, the output point in the symmetry density will
become incorrect. The strength of noise where this occurs is dependent on the Signal to Noise Ratio (SNR) of
the original symmetry density.

Gaussian noise is independent of the signal and will thus have a flat distance distribution. Adding Gaussian
noise to the input will have a proportional effect on the SNR of the symmetry density. Any addition of noise in
dB can simply be subtracted from the SNR of the original symmetry density to determine the resulting SNR
(see further below, Fig. 8).

Results
We hypothesize that the symmetric nature of human made objects would generate a higher level of symmetry
density than natural objects. To test this hypothesis we created an experiment using the open source SpaceNet32
dataset. The SpaceNet dataset includes Are of Interest 1 (AOI 1), Rio de Janeiro which is a collection 7186 images
of 50 cm imagery from DigitalGlobe’s WorldView-2 satellite of a mixture of farmland and buildings in Rio de
Janeiro, Brazil. The dataset includes metadata for each of the 7186 tiles containing polygon outlines of buildings.

Main experiment.  Our experiment consisted of the following steps for each image in the dataset: 1. convert
image from tiff to jpeg. 2. load first channel from jpeg 3. run Sobel-Feldman operator33 for edge detection 4.
run symmetry function on GPU (Algorithm 3) on edge filter results with a threshold = 128, d = 50 px, and n =
177828. 5. save the result.

Samples of the result of the algorithm (Fig. 5) demonstrate the operating principal of the hypothesis with
human made structures being highlighted more than natural vegetation. This can be empirically seen when plot-
ting the total number of buildings in each tile vs the total symmetry density of the tile (Fig. 6). However, some
types of human distributed vegetation such as crops are highly symmetric resulting in false positives.

Scaling and noise.  Pairs of points equidistant to a line of symmetry contribute to the signal along the line
of symmetry while pairs of points not equidistant to a line of symmetry contribute to the noise along that line
of symmetry. If there are multiple lines of symmetry in different directions and at different scales, the signal of
any single line of symmetry will be reduced by the increased noise generated by the other lines of symmetry. In
addition, if some portions of the data are not at all symmetric, they will further increase the noise along all lines
of symmetry.

By eliminating points from the coincidence detection that do not meet some a priori criteria for symmetry,
the definition of coincidence is refined and the signal of the line of symmetry will increase. For example, if by a
priori knowledge of the image type symmetry greater than some scale can be eliminated, coincidence of pairs
of points with distances greater than that scale can be removed from the coincidence detector. A demonstration
with a triangular fractal (Fig. 7) shows that by limiting the points available to the coincidence detector lines
of symmetry at varying scales are hilighted over the noise generated by the other symmetry scales in the data.

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

Figure 5.   Samples from the experiment results with symmetry density overlayed on top of the original
images on the same color scale (0 to 350), (a) image 1361 shows city structures with high symmetry density
in the bottom-right and vegetation with low symmetry density in the upper-left portion, (b) image 1284 also
showing symmetric urban areas in the upper-left and upper-right side, (c) image 5864 with rows of buildings
with symmetric centers, (d) image 581 industrial center with circularly symmetric facility, (e) image 1014
oddly shaped building and potentially an aircraft in the lower left, (f) image 12 an industrial facility with highly
symmetric tanks, (g) image 1363 show some symmetry density in the distribution of trees, (h) image 1395 show
no symmetry density in an open field, and (i) image 1308 showing symmetric vegetation in fields.

Figure 6.   The mean of the symmetry density integrated within all building areas for each image containing
buildings plotted against the mean of the symmetry density in the entire image shows that the area within
buildings has a higher symmetry density than the average of the image for more than 93% of the images.

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

Similarly, when the symmetry is not exact, pairs of points on either side of the quasi-line of symmetry may
not contribute to the coincidence detection since they are not precisely equidistant. In this case adding noise to
the distance metric will cause at least some of the point-pairs across the quasi-line of symmetry to coincide and
contribute to the signal of the quasi-symmetry. Here, instead of eliminating point-pairs that by a priori knowl-
edge only contribute to noise, the definition of coincidence is relaxed to allow approximate lines of symmetry
to become visible at the expense of noise.

Figure 7.   An iterated function system (IFS) fractal of triangles processed through the symmetry density
algorithm with distance limits of (a) 9%, (b) 19%, (c) 39%, and (d) 78% of the image size, shows that by
limiting the definition of coincidence to points of an a priori scale, features at the scale highlighted due to
the contribution of equidistant point-pairs across lines of symmetry, while point-pairs off lines of symmetry
contributing to noise are reduced.

Figure 8.   Guassian noise added to each measure of distance increases the mean squared error (MSE) when
compared to the zero noise case. For noise with standard deviation less than or equal to the bin size (in this case
1), output MSE is only slightly impacted with a maximum MSE of 53. For noise with standard deviation greater
than the bin size, MSE increases steeply before leveling as the noise standard deviation reaches ten times the bin
size, and the relative change in the output density with increasing noise power is reduced.

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

To evaluate the effect of noise on the network, we simulated the outline of the F-35 with Gaussian noise added
to the length delay with a standard deviation ranging from 1 to 5 (Fig. 8). The results show that small features
with narrow bands of coincidence are quickly eliminated while broad ranging symmetry points from across the
network increase in dominance.

This can be explained by the strict coincidence detection of the network. When two points are pushed away
from each other even by a distance of one pixel, the coincidence detection will not happen. In the case of the thin
line of symmetry between equidistant lines, for example near the nose of the aircraft, adding noise disperses the
boundary between them. Alternatively, in cases where the symmetry is not exact, for example near the tail of
the aircraft, adding noise creates new coincidence points as some previously unaligned spikes are now brought
into alignment with each other. This demonstrates the value of adding noise when considering shapes with less
strictly defined symmetric features.

Discussion
In conclusion, we have presented a novel algorithm for finding a scalar field representing the symmetry of points
in a multi-dimensional space. We have demonstrated that time synchronization in the input values of spiking
neural networks, with the appropriate choice of threshold and spike period, results in the identification of output
neurons along points of high symmetry density to the network inputs. We have demonstrated an implementation
of the symmetry selective LIF neural network in common hardware with a high speed, 2.8 MHz identification
of symmetry points in an 8× 8 Manhattan metric space. Our results confirm that utilizing only the delay and
coincidence detecting properties of a single layer of neurons in a spiking neural networks naturally leads to effec-
tive symmetry identification. A greater understanding of symmetry perception in artificial intelligence will lead
to systems with more effective pattern visualization, compression, and goal setting processes. Future research
should focus on optical implementations of the presented findings a) to harness the information parallelism of
bosonic photons, b) to capitalize on the high energy efficiency of photonic and nanophotonic optoelectronics
which only require the micrometer-small active devices to the electrically addressed enabling 100’s of atto-Joule
efficient active optoelectronic devices, and (c) to enable high-data throughput links and platforms34–43.

Methods
Python implementation.  We begin with a Python simulation using a sparse matrix representation of
input nodes. For each element of the output mesh, the distance to every input node is calculated using Euclid-
ean distance and rounded to into a configurable binning decimal place. The result is stored in a list. The most
frequent distance in the list is found and the count of the most frequent distance is placed in the output mesh.

Using this implementation we calculate the symmetry space for input data from low to high complexity
(Fig. 9).

Implementing LIF with digital logic.  Each neuron is represented as a leaky accumulator. At each clock
cycle all of the neuron inputs are added to a value stored in an accumulation register, the result of the summation
minus the leak value is then stored back in the accumulation register. If the accumulation register surpasses the
value of a fixed threshold, or, alternatively as a configurable threshold stored in a threshold register, the accumu-
lator is reset to zero and a value appears at the neuron’s output. If the accumulation value does not surpass the
threshold, zero appears at the neuron’s output.

Neuron-to-neuron connection delay is represented either as queue, where the outputs are placed into a First-
In-First-Out (FIFO) queue, or as a pulse value and countdown register. When delay is represented as a queue, at
each clock cycle a single value is added from the output neuron to each output connection’s FIFO and a single
output is removed from each FIFO at the output neuron. The length of each FIFO is proportional to the delay
being represented. When delay is represented as a countdown register, at each clock cycle if the neuron’s output
value is positive a countdown register is initialized with a count proportional to the represented connection delay
and a value of the neuron’s output value. At each clock cycle each countdown register is decremented. When a
countdown register reaches zero, its pulse value register is placed at the input of the output neuron.

FPGA implementation.  To demonstrate spatial symmetry recognition via coincidence detection of LIF
networks on actual hardware, we implemented a simple LIF spiking neural network on a Xilinx Zynq™ FPGA.
Our LIF neural network consists of an 8× 8 input array connected to an 8× 8 neuron output array. Each output
neuron is connected to every input by a shift register of length proportional to the Manhattan distance from the
point (Ox,Oy) at the output to the point (Ix, Iy) at the corresponding input. This results in 4096 shift registers
with a maximum length of 16. Each output neuron consisted of a two-stage adder followed by an accumulation
register. Each adder includes a configurable constant leaky term that subtracted the configured leak from the
accumulation register at each time interval. Each accumulator is connected to a threshold level. If the accumula-
tor passes the threshold, a second single-bit register is set to 1 to indicate firing of the output neuron. The latency
from input to output in this implementation is proportional to the length of the longest shift register, 16 in this
case, plus the accumulation time, 2 in this case, for a total of 18 clock cycles. The network is clocked at a constant
clock speed of 50 MHz for approximately 2.8 MHz of 8× 8 symmetry operations. The output of the symmetry
LIF neural network was recorded over time for the elementary case of a line between two points. Our results
confirm that spiking LIF neural networks indeed act as symmetry detectors, highlighting equidistant points in
spatial data.

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

Graphical processing unit (GPU) implementation.  Spiking neural network hardware is not widely
available today. Instead GPUs dominate image and video processing. To demonstrate the symmetry density effi-
ciently, we created a simplified variation of the symmetry density algorithm tailored for the GPU (Algorithm 2).

Instead of creating a histogram of distances at each point in the output, the simplified algorithm attempts to
create a density space of bisection lines. It begins by selecting all points of the input that are greater than some
threshold and placing them in the 1D array P. It then loops every pair of points in P. It selects the line of points
that bisect the point pair using a modified version of Bresenham’s line algorithm44 where the slope is inverted to
draw a line bisecting the two points rather than a line between the two points.

As with many parallel processors, performance bottlenecks occur in the GPU when many cores need to oper-
ate on the same memory space. In this case critical sections are protected by multiple simultaneous operations
by mutexes. In the case of Algorithm 2 there are two potential critical sections. The first is in the building the set
of points above threshold (Algorithm 2 Line 6). The second is in incrementing the output array (Algorithm 2
Line 9). With these two critical sections the parallel performance of the algorithm is limited.

Figure 9.   The result of an implementation of Algorithm 1 in Python for a circle (a), square (b), triangle (c), star
(d), and an aircraft shows a point and fractal like mirroring of the mirror symmetry density function.

12

Vol:.(1234567890)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

To eliminate the critical sections and improve performance, a heuristic approach may be taken (Algorithm 3).
Here the first critical section is removed by randomly indexing into a fixed length threshold point array P plac-
ing the selected points at multiple places in P, K times. This creates a random space that contains the threshold
points in a random order, eliminating the need to access P within a critical section.

The second critical section is removed by randomly selecting two points from P to calculate the midpoint.
Since the midpoint is randomized, the probability of two cores selecting the same index of Output goes to zero
as the number of points in P becomes much greater than the number of cores. Further, if two cores do conflict
the value is either not incremented, or incremented twice. For large values of N, this simply adds a small amount
of noise to the resulting output.

In this way, the heuristic version of the symmetry density algorithm eliminates all critical sections, allowing
both for loops to execute across any number of cores simultaneously, at the cost of adding a small amount of
noise to the output image.

Received: 19 May 2020; Accepted: 24 February 2021

References
	 1.	 George, J. K., Soci, C. & Sorger, V. J. Identifying mirror symmetry density with delay in spiking neural networks (conference

presentation). In Optics and Photonics for Information Processing XII, vol. 10751, 107510L (International Society for Optics and
Photonics, 2018).

	 2.	 van der Helm, P. The oxford handbook of perceptual organization. The Oxford Handbook (2015).
	 3.	 Zhu, T. Neural processes in symmetry perception: a parallel spatio-temporal model. Biol. Cybern. 108, 121–131 (2014).
	 4.	 Jenkins, B. Component processes in the perception of bilaterally symmetric dot textures. Percept. Psychophys. 34, 433–440 (1983).
	 5.	 Wagemans, J. Characteristics and models of human symmetry detection. Trends Cogn. Sci. 1, 346–352 (1997).

13

Vol.:(0123456789)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

	 6.	 Sawada, T., Li, Y. & Pizlo, Z. Detecting 3-d mirror symmetry in a 2-d camera image for 3-d shape recovery. Proc. IEEE 102,
1588–1606 (2014).

	 7.	 Møller, A. P. Bumblebee preference for symmetrical flowers. Proc. Natl. Acad. Sci. 92, 2288–2292 (1995).
	 8.	 Møller, A. P. Female swallow preference for symmetrical male sexual ornaments. Nature 357, 238 (1992).
	 9.	 Dakin, S. C. & Hess, R. F. The spatial mechanisms mediating symmetry perception. Vis. Res. 37, 2915–2930 (1997).
	10.	 Reichardt, W. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Sens. Commun.

303–317 (1961).
	11.	 König, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci.

19, 130–137 (1996).
	12.	 Prut, Y. et al. Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79, 2857–2874

(1998).
	13.	 Izhikevich, E. M. Polychronization: Computation with spikes. Neural Comput. 18, 245–282 (2006).
	14.	 Loy, G. & Eklundh, J.-O. Detecting symmetry and symmetric constellations of features. In European Conference on Computer

Vision, 508–521 (Springer, 2006).
	15.	 Hong, W., Yang, A. Y., Huang, K. & Ma, Y. On symmetry and multiple-view geometry: Structure, pose, and calibration from a

single image. Int. J. Comput. Vis. 60, 241–265 (2004).
	16.	 Keller, Y. & Shkolnisky, Y. An algebraic approach to symmetry detection. ICPR 3, 186–189 (2004).
	17.	 Marola, G. On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans. Pattern Anal.

Mach. Intell. 11, 104–108 (1989).
	18.	 Shapiro, L. S. & Brady, J. M. Feature-based correspondence: An eigenvector approach. Image Vis. Comput. 10, 283–288 (1992).
	19.	 Zabrodsky, H., Peleg, S. & Avnir, D. Symmetry as a continuous feature. IEEE Trans. Pattern Anal. Mach. Intell. 17, 1154–1166

(1995).
	20.	 Preissl, R. et al. Compass: A scalable simulator for an architecture for cognitive computing. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis, 54 (IEEE Computer Society Press, 2012).
	21.	 Prucnal, P. R. & Shastri, B. J. Neuromorphic Photonics (CRC Press, Boca Raton, 2017).
	22.	 Sengupta, B. & Stemmler, M. B. Power consumption during neuronal computation. Proc. IEEE 102, 738–750 (2014).
	23.	 Gerstner, W. & Kistler, W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cam-

bridge, 2002).
	24.	 Afifi, A., Ayatollahi, A. & Raissi, F. Implementation of biologically plausible spiking neural network models on the memristor

crossbar-based cmos/nano circuits. In 2009 European Conference on Circuit Theory and Design, 563–566 (IEEE, 2009).
	25.	 Rozenberg, M., Schneegans, O. & Stoliar, P. An ultra-compact leaky-integrate-and-fire model for building spiking neural networks.

Sci. Rep. 9, 1–7 (2019).
	26.	 Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345,

668–673 (2014).
	27.	 Rast, A. D., Galluppi, F., Jin, X. & Furber, S. B. The leaky integrate-and-fire neuron: A platform for synaptic model exploration on

the spinnaker chip. In The 2010 International Joint Conference on Neural Networks (IJCNN), 1–8 (IEEE, 2010).
	28.	 Kravtsov, K., Fok, M. P., Rosenbluth, D. & Prucnal, P. R. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron.

Opt. Express 19, 2133–2147 (2011).
	29.	 Lloyd, S. Ultimate physical limits to computation. Nature 406, 1047 (2000).
	30.	 Fürer, M. Faster integer multiplication. SIAM J. Comput. 39, 979–1005 (2009).
	31.	 Borwein, J. M. & Borwein, P. B. Pi and the AGM (Wiley, New York, 1987).
	32.	 SpaceNet on Amazon Web Services (AWS). Datasets (2018). Accessed: 2019-08-29.
	33.	 Sobel, I. & Feldman, G. A 3x3 isotropic gradient operator for image processing. a talk at the Stanford Artificial Project in 271–272

(1968).
	34.	 Pickus, S. K., Khan, S., Ye, C., Li, Z. & Sorger, V. J. Silicon plasmon modulators: breaking photonic limits. IEEE Photon. Soc. 27

(2013).
	35.	 Liu, K., Sun, S., Majumdar, A. & Sorger, V. J. Fundamental scaling laws in nanophotonics. Sci. Rep. 6, 37419 (2016).
	36.	 Liu, K., Li, N., Sadana, D. K. & Sorger, V. J. Integrated nanocavity plasmon light sources for on-chip optical interconnects. ACS

Photon. 3, 233–242 (2016).
	37.	 Sun, S., Badawy, A.-H.A., Narayana, V., El-Ghazawi, T. & Sorger, V. J. The case for hybrid photonic plasmonic interconnects (hyp-

pis): Low-latency energy-and-area-efficient on-chip interconnects. IEEE Photon. J. 7, 1–14 (2015).
	38.	 Li, N., Liu, K., Sorger, V. J. & Sadana, D. K. Monolithic iii–v on silicon plasmonic nanolaser structure for optical interconnects.

Sci. Rep. 5, 14067 (2015).
	39.	 Ye, C., Liu, K., Soref, R. A. & Sorger, V. J. A compact plasmonic mos-based 2 × 2 electro-optic switch. Nanophotonics 4, 261–268

(2015).
	40.	 Ma, Z., Li, Z., Liu, K., Ye, C. & Sorger, V. J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 4,

198–213 (2015).
	41.	 Liu, K. & Sorger, V. J. Enhanced interaction strength for a square plasmon resonator embedded in a photonic crystal nanobeam

cavity. J. Nanophoton. 9, 093790 (2015).
	42.	 Fratalocchi, A. et al. Nano-optics gets practical. Nat. Nanotechnol. 10 (2015).
	43.	 Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight: An integrated network for scalable photonic spike

processing. J. Lightwave Technol. 32, 3427–3439 (2014).
	44.	 Bresenham, J. E. Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 25–30 (1965).

Author contributions
J.G. conceived the original idea and developed the algorithms. C.S. contributed to the identification of applica-
tions and refined the text. M.M. contributed to the figures and development of the equations. V.S. oversaw the
project and contributed to the overarching approach. All authors prepared the manuscript.

Competing interests 
J.G. and V.S. declare intellectual property rights. Other authors do not have any competing interests.

Additional information
Correspondence and requests for materials should be addressed to V.J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

www.nature.com/reprints

14

Vol:.(1234567890)

Scientific Reports | (2021) 11:5776 | https://doi.org/10.1038/s41598-021-85232-3

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Symmetry perception with spiking neural networks
	Symmetry density.
	Symmetry density in spiking neural networks.
	Definition of mirror symmetry density.
	Algorithm.

	Layering.
	Sets.
	Metrics.
	Spiking noise.

	Results
	Main experiment.
	Scaling and noise.

	Discussion
	Methods
	Python implementation.
	Implementing LIF with digital logic.
	FPGA implementation.
	Graphical processing unit (GPU) implementation.

	References

