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Abstract
Purpose Careful assessment of the aortic root is paramount to select an appropriate prosthesis for transcatheter aortic valve
implantation (TAVI). Relevant information about the aortic root anatomy, such as the aortic annulus diameter, can be extracted
from pre-interventional CT. In this work, we investigate a neural network-based approach for segmenting the aortic root as a
basis for obtaining these parameters.
Methods To support valve prosthesis selection, geometric measures of the aortic root are extracted from the patient’s CT
scan using a cascade of convolutional neural networks (CNNs). First, the image is reduced to the aortic root, valve, and
left ventricular outflow tract (LVOT); within that subimage, the aortic valve and ascending aorta are segmented; and finally,
the region around the aortic annulus. From the segmented annulus region, we infer the annulus orientation using principal
component analysis (PCA). The area-derived diameter of the annulus is approximated based on the segmentation of the aortic
root and LVOT and the plane orientation resulting from the PCA.
Results The cascade of CNNs was trained using 90 expert-annotated contrast-enhanced CT scans routinely acquired for
TAVI planning. Segmentation of the aorta and valve within the region of interest achieved an F1 score of 0.94 on the test set
of 36 patients. The area-derived diameter within the annulus region was determined with a mean error below 2 mm between
the automatic measurement and the diameter derived from annotations. The calculated diameters and resulting errors are
comparable to published results of alternative approaches.
Conclusions The cascaded neural network approach enabled the assessment of the aortic root with a relatively small training
set. The processing time amounts to 30 s per patient, facilitating time-efficient, reproducible measurements. An extended
training data set, including different levels of calcification or special cases (e.g., pre-implanted valves), could further improve
this method’s applicability and robustness.
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Introduction

Transcatheter aortic valve implantation (TAVI) allows min-
imally invasive replacement of pathological aortic valves.
However, purely image-based prosthetic valve selection is
challenging.

Figure 1 shows the complex anatomy of the aortic valve
region. The implant needs to fit tight to the aortic wall and
must not cover the coronary artery branches. Its orienta-
tion should be similar to the original valve. Therefore, it is
essential to carefully analyze the aortic root before surgery
to determine the best prosthesis and appropriate placement
strategy. The assessment of the aortic valve annulus is crucial
for prosthesis selection. Corresponding parameters such as
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Fig. 1 The aortic root comprises
the whole aortic valve between
the transition to the ascending
aorta and the annulus at the base
of the aortic valve cusps, which
are attached to the LVOT

the annulus diameter are highly sensitive to the orientation of
the measurement plane. Several studies investigated the reli-
ability and repeatability of interactive measurements: Meyer
et al. [10] observed a difference in resulting prosthesis size
between two software solutions in 18% of the considered
patients. Schuhbaeck et al. [14] report mean inter-observer
differences of 0.4± 0.9 mm with a maximum of 5.6 mm for
the area-derived annulus diameter.

We aim to support aortic root analysis with a fully
automatic, deterministic and patient-specific approach, facil-
itating standardization and reduction of effort for TAVI
planning.

We break down the task into a cascade of neural networks
as suggested for related contexts [12]:

1. Detection of a uniformly sized bounding box around the
aortic valve;

2. Segmentation of the aorta including aortic valve within
this bounding box;

3. Approximation of the area-derived annulus diameter
based on the segmentation of the aortic valve and the
annulus region.

We aim at developing an approach, applicable to a wide
range of CT scanner models.We test our approach on expert-
annotated routine clinical data acquired by different CT
scanners and compare the suggested implant size based on
the approximated annulus diameterwith the implanteddevice
size.

Related work

This section discusses the reviewed literature on segmenta-
tion of the aortic root region in contrast-enhancedCT images.
Lalys et al. presented a comprehensive pipeline for TAVI
analysis, using atlas registration and deformable 3D snakes

[8]. Their approach requires the placement of a point in the
aortic root region. Elattar et al. used fuzzy classification and
normalized cuts to segment the aortic root after detecting the
centerline [3]. They reported smooth aortic root surfaces,
possibly affecting accuracy in subsequent measurements.
Gao et al. proposed atlas-based segmentation followed by
surface model fitting, with atlas images from a publicly
available database [4]. Waechter et al. segmented the aor-
tic root region with a mean-shape model [15]. Astudillo et
al. described aCNN-based segmentation inmanually defined
annulus planes [2].

The approaches from Astudillo et al. and Lalys et al.
require manual interaction, hindering implementation as a
fully automatic and deterministic processing tool. The aortic
root models of Elattar et al., Gao et al. andWaechter et al. are
smoothed or based on a smooth model. The model’s defor-
mation is limited and thus only yields an approximation of
the patient-specific anatomy.

Given the reliable performance of CNNmethods in recent
years, our aim is a conceptually simple and fully automatic
pipeline consisting of multiple hierarchical CNN steps.

Methods

We propose a neural network-based three-step segmentation
approach for the anatomical structures of interest from CT
images. The first step extracts the region of interest (ROI)
around the aortic root and LVOT (see Fig. 2).

Each resulting subimage is resampled to an isotropic
resolution of 0.6 mm. This is close to the original image
resolution, which varies between 0.38 and 0.7 mm and
ensures that processing with the given hardware is possible
(see “Appendix”—hardware). In the second step, the aorta,
including the aortic valve, is segmented within this ROI. This
segmentation serves as additional input for estimating the
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Fig. 2 The blue bounding box
contains the complete TAVI
planning CT scan. The
preprocessing for the aortic root
detection crops this volume to
the yellow region of
256 × 256 × 384 mm3 centered
at a point 128 mm above the
image center (in HEAD
direction, according to the
DICOM information). The
subimage in the red bounding
box contains the aortic root. The
first task in this work is the
automatic extraction of this
subimage

Fig. 3 Processing steps: 1. The region of interest (ROI) is extracted from the thorax CT scan. 2. The aorta is segmented in this ROI. 3. The annulus
region is segmented. The annulus plane is inferred by principal component analysis, and the annulus diameter is approximated

annulus diameter. In the third step, the region around the
aortic annulus is segmented, and the orientation of the annu-
lus plane is determined using principal component analysis
(PCA). Based on this information, we approximate the annu-
lus diameter. Figure 3 visualizes the sequence of steps.

Data

Our data set comprises annotated 3D thorax CT scans of 126
patients from theGermanHeart Center Berlin and theCharité
TAVI registry. We used 36 cases for testing. The remaining
90 cases were repeatedly split into 75 for training and 15 for
validation in sixfold cross-validation.

Further, we collected a data set of 640 patients, who suc-
cessfully underwent a TAVI procedure, to test the suitability
of our model for device selection. A procedure was deemed
successful when no complications were documented. Here,
we compared the size of the implanted valvewith our approx-
imated annulus diameter. Patient statistics can be seen in
Table 1.

All CTs of the training and sizing data set were acquired
with Siemens scanners. In the test set, nine cases each were
acquired with Siemens, Toshiba, Philips and GE scanners.

The image volumes have slice dimensions of 512 × 512.
The number of slices ranges from273 to 1908, slice thickness
0.5–3mmand spacing between slices 0.4–3mm.The annota-
tions shown in Fig. 4were generated by domain experts using
a custom MeVisLab1-based software prototype to obtain:

– a mask of the aortic lumen,
– the centerline through the aorta and LVOT,
– cross-sectional contours of the aorta and LVOT perpen-
dicular to the centerline and

– three markers, indicating the hinge points of the aortic
valve cusps.

The aorta mask includes lumen and valve without LVOT,
and the cross-sectional contours show the outer contour of
the aortic root and LVOT.

Model training

For image processing, we considered the U-Net architecture,
which has been successfully applied in several biomedical

1 https://www.mevislab.de/mevislab/.
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Table 1 Statistics: patient sex
(F female, M male, U
unknown); age, BMI and aortic
valve calcification (mean ±
standard deviation) for training,
test and device sizing data set

Training (90 cases) Test (36 cases) Sizing (640 cases)

Sex 60 F, 30 M 12 F, 18 M, 6 U 317 F, 323 M

Mean age 80.4 ± 10.2 80.8 ± 5.4 78.9 ± 9.4

Mean BMI [kg/m2] 27.8 ± 6.2 25.5 ± 5.1 28.1 ± 15.7

AV calcification [mm3] 240 ± 212 165 ± 288 205 ± 203

The volume of calcification was assessed within the aortic valve by thresholding the CT scan at a Hounsfield
unit of 850

Fig. 4 The available expert annotations consist of a mask of the aortic
lumen, the centerline of aorta and LVOT, cross-sectional contours of
the aortic root and LVOT and manually placed hinge point markers

image segmentation challenges.2 We trained a structurally
identical CNN for each processing step [11]. The specific
layer arrangement is illustrated in Fig. 5.

It consists of a contracting path and an expansive path. In
our application, the contracting path has nine convolutional
layers combined with batch normalization, ReLU activation,
max pooling and dropout. The expansive path alternates con-
volutions with transposed, also called up-convolutions. As
the last layer, a 1 × 1 convolution with sigmoid activation
is used, resulting in a voxel-wise classification of the input
image.

The neural network’smemory requirement depends on the
number of filters, batch size and size of the input image. It
has been shown that smaller batch sizes can improve accuracy
and generalizability [5]. Thus, we selected a batch size of two
for training. Given the size of the input images, the available
hardware (see “Appendix”) allowed for a number of 18 filters
in the first layer.

2 The ISBI 2015: https://biomedicalimaging.org/2015/, where the U-
Netwon twochallenges: https://lmb.informatik.uni-freiburg.de/people/
ronneber/isbi2015/.

The Hounsfield scale generally provides comparable
intensities based on the tissue density. The usage of con-
trast agent, as well as differences in dosage settings, can,
however, result in intensity variations. We apply intensity
normalization using mean and standard deviation (see Fig. 6,
for example).

In each epoch, each training image is augmented by trans-
lation. The image is randomly shifted between zero to five
voxels in eachdirection.Because the patient orientation in the
scanner is standardized, we performed no rotational augmen-
tation. Deformations were not applied to avoid implausible
anatomies.

The Adam optimizer [6] is used with different loss func-
tions to find the best approach for each step. We considered
the binary cross-entropy, as well as its variation, the Focal
Loss [9], as we assume that the enhanced focus on the mis-
classified examples is appropriate in our scenario with the
strong class imbalance.

– Binary Cross-Entropy

Lbc(y, ŷ) =
{

−log(ŷ), if y = 1

−log(1 − ŷ), otherwise,

– Focal Loss with γ = 2

L f (y, ŷ) = −(1 − pt )
γ log(pt ),with

pt =
{
ŷ, if y = 1

1 − ŷ, otherwise,

where y is the target mask (1 if the voxel belongs to the seg-
mentation and 0 otherwise) and ŷ the predicted probability
for each of the n voxels to belong to the segmentation.

We also evaluated the Tversky Loss, which is similar to the
F1 score, but enables steering the emphasis on false-positive
and false-negative classifications via the parameter β [13],
as well as the Focal Tversky Loss [1].
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Fig. 5 Our CNN architecture
inspired by the U-Net: It
consists of a contracting and an
expansive path

– Tversky Loss with β ∈ [0.45, 0.50, 0.55, ..., 0.95]

Lt (y, ŷ) = 1 − T (y, ŷ),with

T (y, ŷ) = y ŷ

y ŷ + β(1 − y)ŷ + (1 − β)y(1 − ŷ)

– Focal Tversky Loss with β ∈ [0.45, 0.50, 0.55, ..., 0.95]
and γ = 2

L f t (y, ŷ) = (1 − T (y, ŷ))1/γ

An individual model for each step is obtained by selecting
the four loss function and parameter combinations with the
best results on a validation set of 15 patients after training
on 75 patients, then training six structurally identical mod-
els in sixfold cross-validation per each of the four selected
loss functions and averaging their outputs. We use this bag-
ging approach to exploit the benefits of ensemble methods,
exemplified by the results for step 1.

Step 1: Aortic valve detection

In the first step, the image is cropped to a ROI around the
aortic root and LVOT: The ROI detection is performed on a
low-resolution (isotropic voxel size of 2 mm) subimage with
an extent of 256 × 256 × 384 mm3 placed 128 mm above
the image center (in the HEAD direction provided by the
DICOM information) to enable fast memory-efficient pro-
cessing. This image is padded if the upper border is outside
the original image (see Fig. 2).

Training Based on the expert-defined aortic valve hinge
points, an axis-aligned bounding box of 80 × 80 × 80 mm3

is placed in the image around the aortic root and LVOT, cen-
tered on the midpoint of the hinge points. This bounding box
is used as a mask to learn the detection of the ROI.

Segmentation postprocessing For each voxel in the input CT,
the CNN returns a probability for this voxel to belong to the
uniformly sizedROI. This is binarizedwith a threshold of 0.5,
and a bounding box is drawn around all predicted voxels. This
box is resized to the desired dimensions of 80×80×80 mm3

with the midpoint being the center of the predicted bounding
box.

Step 2: Aorta segmentation

In the second step, aCNN is trained on the aorta segmentation
within the ROI. The original images are resampled to an
isotropic voxel size of 0.6 mm before being cropped to the
ROI.

Training The label generation for this step is based on the
aortic lumen within the ROI (see Fig. 7).

Segmentation postprocessing No postprocessing is required
in this step.

Step 3: Aortic root analysis

In the third step, the region around the aortic annulus plane,
defined by the three hinge points, is segmented to deduce
the orientation and midpoint of the annulus plane and enable
measurements of the annulus region. As an output of step 3,
the aorta segmentation from step 2 is reduced to the valve
cusps and combined with the segmentation of the annulus
region from step 3 to achieve a segmentation comprising
valve cusps, annulus and LVOT. This segmentation is ana-
lyzed in cross sections oriented parallel to the derived annulus
plane, and the diameter over all cross sections is measured
to determine an approximation of the annulus diameter.

Training Based on the expert-defined hinge point markers
(Fig. 4), we estimate the orientation of the annulus plane. To
train the CNN, we consider the mask of the aortic root and
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Fig. 6 Example images acquiredwith different scanners. The relative intensity difference in the ROI (yellow circle) is reduced through the suggested
intensity normalization. The lines mark the mean value within the ROI

LVOT along a 10 mm margin in the direction of the plane
normal, as visualized in Fig. 8. The margin of 10 mm was
selected experimentally to achieve a mask that can be suc-
cessfully trained while also yielding an ideal approximation
of the annulus plane from PCA. With this 3D approach, we
intend to make our analysis robust against the input uncer-
tainty of the hinge points.

Segmentation postprocessingAPCA is applied to deduce the
annulus plane from the predicted segmentation (see Fig. 9).
PCA is a dimensionality reduction method, which reduces a
data set to its uncorrelated components that maximize vari-
ance. By definition of our annulus plane region, its diameter
parallel to the annulus plane should be larger than its height.

According to the literature, an annulus diameter typically
exceeds 17mm [14] and the height of our segmentationmask
is defined to be 10 mm. Thus, the two components with the
highest variance describe the orientation of the annulus plane.
The vector orthogonal to the two largest eigenvectors of the
PCA is taken as an estimate of the plane’s normal vector. The
center of gravity of the predicted segmentation estimates the
midpoint of the annulus plane. This midpoint and normal
vector allow for approximation of the annulus plane. In our
training data set, the mean Euclidean distance between the
midpoint of the three hinge points and the midpoint deduced
from PCA is 1.5 mm and the mean angle difference between
the resulting normal vectors is 1.6◦.
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Fig. 7 The labels for the
training of the ROI
segmentation are generated
based on the aortic valve hinge
points via the calculation of an
axis-aligned enclosing bounding
box. The labels for the ensuing
aorta segmentation in step 2 are
based on the aortic lumen, while
the region around the annulus
plane is defined by the
cross-sectional contours of the
aortic root and LVOT

Fig. 8 Segmentation mask (yellow), aligned along the annulus plane,
defined by the hinge points (black) with the aorta segmentation (red)
for reference

Fig. 9 Principal component analysis applied to the segmentation mask
(yellow): The first two principal components maximize the variance of
the underlying data while being perpendicular to each other. A plane
results from the normal vector orthogonal to the two principal compo-
nents. The plane’s midpoint is defined by the center of gravity of the
underlying data

However, the result is misleading if a segmented annulus
region has a height comparable to its diameter (Fig. 10).
To ensure that thePCAdetects the correct orientation, the pre-
dicted segmentation of the annulus region is masked with the

Fig. 10 Calculation of the annulus plane orientation by principal com-
ponent analysis can be distorted by a segmentation that has a comparable
height and diameter; the minimal and maximal diameter should exceed
the height to ensure correct calculation of the plane’s normal vector

contour of the segmentation from step 2 (see Fig. 11). Unde-
sired segments are removed by only considering the largest
connected component. The input of the PCA is thereby more
accurately aligned along the annulus plane; however, the cen-
ter of gravity is shifted into the valve. In our training data
set, the mean Euclidean distance between the midpoint of
the three hinge points and the midpoint deduced from this
adjustment to the PCA input is 6.8 mm and the mean angle
difference between the resulting normal vectors is 1.7◦. The
midpoint and normal vector resulting from the masked seg-
mentation of the annulus region allow for the approximation
of the annulus plane.

Aortic Root Analysis The aortic valve segmentation from
the previous step is combined with the segmentation of the
annulus region and reduced to a height of 10 mm along the
resulting plane to approximate the aortic root region includ-
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Fig. 11 1. The segmentation of the annulus region is masked with the contours of the predicted aorta segmentation from step 2. 2. The resulting
segmentation is used as input to the PCA for the calculation of the valve plane orientation

ing aortic valve leaflets and LVOT. The minimal diameter
within this region is calculated using the slice-wise convex
hull contours aligned along the deduced annulus plane and
obtaining the area-derived diameter for each. We only con-
sider minima above 17 mm to ensure that all three aortic
leaflets are contained within the contour; an aortic annulus
diameter below 17 mm is unlikely [14]. The reference diam-
eter, used as ground truth, is obtained in the same manner
from the annotated data: The aortic valve and LVOT seg-
mentation masks are intersected parallel to the plane defined
by the hinge points, and the reference diameter is calcu-
lated as minimum area-derived diameter in the resulting
cross sections within a range of ±5 mm along the plane
normal.

In addition to the annotated data set, we apply our method
to 640 CT scans of patients who underwent a successful
TAVI. We compare the size of the implanted device to our
suggestion based on our area-derived diameter, inspired by
the sizing strategy from Schuhbaeck et al. [14]: a 23-mm
valve for annulus diameters of 19.5–22.5 mm, a 26-mm
valve for 22.5–26.5 mm, a 29-mm valve for 26.5–29.5 mm;
we further suggested a 20-mm valve for annulus diame-
ters below 19.5 mm and a 34-mm valve for greater than
29.5 mm.

Results

The following subsections show the results per step.

Step 1: Detection of the region of interest

In the detection of the ROI, a bounding box with a fixed
size around the aortic root and LVOT centered around the
hinge points shall be found by segmentation. The detected
bounding box BBunet is compared to the reference bounding
box BBref using the intersection over ground truth (IoG):

IoG = Intersection

GroundTruth
= |BBunet ∩ BBref |

|BBref |

The resulting bounding box around the aortic root and LVOT
is used as input for the following steps. The IoG is not directly
applied to the predicted segmentation but to the bounding box
obtained after thresholding and reshaping, as explained in the
“Methods” section.

Table 2 shows the results for the individual loss functions
reduced to the best parameters for clarity. For the finalmodel,
we selected the Tversky Loss with β = 0.80 as well as the
Focal Tversky Loss with β = 0.65, β = 0.85 and β = 0.90,
because they provide the highest IoG on the validation set
(highlighted in italics). Table 3 shows the IoG for the selected
loss functions evaluated on all 90 training samples and the
36 test samples.

Thefinalmodel resulting from the baggingof severalmod-
els shows a higher IoG than any of the individual models in
Table 2.
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Table 2 Step 1: Mean
intersection over ground truth
for one model trained with each
loss function, the selected four
highlighted in italics

Model (β) Training (75 patients) Validation (15 patients)

Binary cross-entropy 0.963 0.923

Focal 0.931 0.912

Tversky (0.75) 0.970 0.929

Tversky (0.80) 0.944 0.933

Tversky (0.85) 0.973 0.909

Focal Tversky (0.60) 0.954 0.925

Focal Tversky (0.65) 0.961 0.931

Focal Tversky (0.70) 0.961 0.918

Focal Tversky (0.80) 0.969 0.927

Focal Tversky (0.85) 0.952 0.932

Focal Tversky (0.90) 0.948 0.933

Focal Tversky (0.95) 0.958 0.914

Table 3 Step 1: Mean
intersection over ground truth
for each loss function in sixfold
cross-validation and the final
model as average of these
models

Model (β) Training (90 patients) Test (36 patients)

Tversky (0.80) 0.951 0.936

Focal Tversky (0.65) 0.957 0.937

Focal Tversky (0.85) 0.954 0.938

Focal Tversky (0.90) 0.943 0.932

Final model 0.957 0.938

Step 2: Aorta segmentation

In the second step, the aorta, including the aortic valve
within the obtained bounding box, is segmented. The result-
ing mask Munet is compared to the reference label Mref with
the F1 score (Dice coefficient), which considers precision
|Munet∩Mref ||Munet | and recall |Munet∩Mref ||Mref | :

F1 = 2 · precision · recall
precision + recall

Table 4 shows the F1 score for the four loss functions
reduced to the best parameters.

Table 5 shows the F1 score obtained from the selected loss
functions, Tversky Loss with β = 0.55 and Focal Tversky
Loss with β = 0.55, β = 0.65 and β = 0.70, as well as the
final model, which is again the averaged output of themodels
with these four loss functions.

Step 3: Aortic root analysis

The aortic root is found by considering the segmented aortic
valve and LVOT in cross sections reformatted to the orien-
tation of the detected valve plane. The minimal area-derived
diameter within the aortic root is compared to the minimal
area-derived diameter obtained from the annotated data set.
Table 6 shows the mean error, which was used for the selec-
tion of the optimal loss functions, the Tversky Loss with

β = 0.55, β = 0.85 and β = 0.90 and the Focal Tversky
Loss with β = 0.80.

Table 7 shows the results for the automatically obtained
diameters from the final model, the diameters deduced from
the annotations and the respective error. Table 8 compares
the test results of the different CT scanner manufacturers.
No significant difference between the errors for individual
manufacturers can be observed in our test data set (ANOVA,
p = 0.78).

Table 9 shows the results for implant size selection. We
suggested the correct implant size in 81% of the training
cases, 61% of the test cases and 64% of the device sizing
cases.

On average, the processing time for one patient from the
input of the original CT to the measurement of the minimal
diameter amounts to 30 s, given the available hardware (see
“Appendix”).

Discussion and conclusion

This paper aims to test the suitability of a neural network-
based approach to support aortic root analysis for TAVI
planning. Cascaded neural networks are applied for three
processing steps: detection of the ROI around the aortic root
and LVOT, segmentation of the aorta, including the aortic
valve, and segmentation of the region around the aortic annu-
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Table 4 Step 2: Mean F1 score
with the individual loss
functions, the selected four
highlighted in italics

Model (β) Training (75 patients) Validation (15 patients)

Binary cross-entropy 0.943 0.935

Focal 0.922 0.920

Tversky (0.45) 0.925 0.913

Tversky (0.50) 0.943 0.929

Tversky (0.55) 0.933 0.926

Focal Tversky (0.50) 0.928 0.917

Focal Tversky (0.55) 0.946 0.937

Focal Tversky (0.60) 0.942 0.927

Focal Tversky (0.65) 0.945 0.938

Focal Tversky (0.70) 0.946 0.938

Focal Tversky (0.75) 0.938 0.932

Table 5 Step 2: Mean F1 score
for each loss function in sixfold
cross-validation and the final
model

Model (β) Training (90 patients) Test (36 patients)

Tversky (0.50) 0.942 0.939

Focal Tversky (0.55) 0.945 0.936

Focal Tversky (0.65) 0.944 0.937

Focal Tversky (0.70) 0.944 0.940

Final model 0.945 0.940

Table 6 Step 3: Mean error in
mm with the individual loss
functions, the selected four
highlighted in italics

Model (β) Training (75 patients) Validation (15 patients)

Binary cross-entropy 2.95 2.63

Focal 3.30 3.48

Tversky (0.50) 3.17 3.71

Tversky (0.55) 1.96 2.49

Tversky (0.60) 2.60 2.70

Tversky (0.80) 2.69 2.76

Tversky (0.85) 2.15 2.6

Tversky (0.90) 2.06 2.52

Tversky (0.95) 2.18 2.82

Focal Tversky (0.75) 2.96 3.01

Focal Tversky (0.80) 2.59 2.62

Focal Tversky (0.85) 2.01 2.64

Table 7 Step 3: Mean minimal
diameter ± standard deviation
[minimal value, maximal value]
(median)

Training (90 patients) Test (36 patients)

Model 24.29 ± 2.87 [17.88, 31.99] 24.11 ± 2.57 [19.29, 29.87]

From annotation 22.84 ± 3.61 [17.86, 31.06] 23.21 ± 2.97 [17.97, 31.25]

Error 1.90 ± 1.42 [0.03, 5.10] (1.64) 1.84 ± 1.21 [0.04, 4.00] (1.89)

All values are given in mm

Table 8 Step 3: Mean minimal
diameter ± standard deviation
in mm grouped by CT scanner
manufacturer

Siemens Toshiba GE Philips

Error 2.03 ± 1.32 1.62 ± 1.14 1.62 ± 0.88 2.08 ± 1.35
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Table 9 Step 3: Implant size
suggestion versus actually
implanted size in %

Training (90 cases) Test (36 cases) Sizing (640 cases)

> 2 sizes smaller 1 0 3

2 sizes smaller 1 7 6

1 size smaller 14 25 17

Correct size 81 61 64

1 size bigger 1 6 5

2 sizes bigger 1 < 1 3

> 2 sizes bigger 1 0 2

Fig. 12 Possible error sources:
a difference between the
annotations (green) and the
model (red) in detected plane
orientation (lines), aorta and
valve segmentation (silhouettes)
and segmentation around the
annulus plane (solid); in this
example, this leads to a
difference in the diameter
obtained from the model and the
annotations of 5.91 mm

lus. The inferred minimal area-derived diameter within the
annulus region is compared to the diameter from expert anno-
tations. The aortic root is measured in cross sections, whose
orientation corresponds to the annulus plane. The annulus
plane is approximated by applying a PCA to the segmenta-
tion of the annulus region, masked with the outer edge of the
aortic valve segmentation.

On average, our calculatedminimal area-derived diameter
within the annulus region deviates less than 2 mm from the
minimal diameter from expert annotations. The calculated
diameters are in a range comparable to similar studies [3,8,
15]. The implant size could be inferred in 81% of the cases
for the training set, 62% for the test set and 64% for the
device sizing set. No significant difference between different
CT scanners could be observed.

The accuracy of the model’s predictions depends on the
annotations of the data set. For the present study, the train-
ing set comprises a relatively small number of 90 cases and
36 cases are used for the evaluation of the model. Further
improvement and evaluation with a larger data set are advis-
able.

Future work is also required to optimize the detection of
the aortic annulus plane.We currently only consider the plane
orientation, while its exact position is estimated by the min-
imal area-derived diameter in the annulus region.

The measured diameters are highly dependent on several
factors, such as the orientation of the detected annulus plane.
Kütting et. al report that plane tilting leads to a different
choice in valve prosthesis size in 33% of cases for 5◦ of tilt
and 66% of cases for 10◦ [7]. Figure 12 shows an example of
possible error sources—a difference in detected plane orien-
tation, aortic valve segmentation and segmentation around
the annulus plane. In this example, all error sources are
present.

The optimal valve size does not only depend on the annu-
lus diameter but also other factors, such as the coronary
distances, calcifications or aortic dilation. Although the strat-
egy for prosthesis sizing in the clinical setting currently
also concentrates on the annulus measurement, we suggest
consideration of the more complex three-dimensional aor-
tic root anatomy by, for example, regarding several planes
throughout the aortic root along the centerline. This would
allow for a thorough analysis of the aortic root contour and
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diminish the effect of measurement of a single tilted annulus
plane. For such an extensive aortic root analysis, an auto-
matic approach would be highly valuable for time efficiency
and reproducibility of results.

The current results suggest neural network-based aortic
root analysis as a promising approach to support fully auto-
matic, time-efficient and reproducible aortic root assessment
for TAVI device sizing and selection, which can be improved
through enhanced training data on the one hand and more
sophisticated consideration of the aortic root anatomy on the
other hand.
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Appendix

Hardware and software specifications

A Linux server with the following hardware specifications
was used for model development:

– 2 Intel Xeon Gold 5215 @ 1.7 GHz,
– 4 nVidia Titan V 12 GB HBM2 (GV100, SM7.0).
– 96 GB RAM

Depending on the regarded step, the average training time
of one CNN ranged between 20 minutes and one hour.

We used Keras 2.3.1 with the TensorFlow backend
(tensorflow-gpu 2.1.0).
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