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ABSTRACT

Transcriptional cooperativity among several tran-
scription factors (TFs) is believed to be the main
mechanism of complexity and precision in trans-
criptional regulatory programs. Here, we present a
Bayesian network framework to reconstruct a high-
confidence whole-genome map of transcriptional
cooperativity in Saccharomyces cerevisiae by inte-
grating a comprehensive list of 15 genomic fea-
tures. We design a Bayesian network structure
to capture the dominant correlations among fea-
tures and TF cooperativity, and introduce a super-
vised learning framework with a well-constructed
gold-standard dataset. This framework allows us
to assess the predictive power of each genomic
feature, validate the superior performance of our
Bayesian network compared to alternative meth-
ods, and integrate genomic features for optimal TF
cooperativity prediction. Data integration reveals
159 high-confidence predicted cooperative relation-
ships among 105 TFs, most of which are subse-
quently validated by literature search. The existing
and predicted transcriptional cooperativities can be
grouped into three categories based on the com-
bination patterns of the genomic features, providing
further biological insights into the different types
of TF cooperativity. Our methodology is the first
supervised learning approach for predicting tran-
scriptional cooperativity, compares favorably to
alternative unsupervised methodologies, and can
be applied to other genomic data integration tasks
where high-quality gold-standard positive data are
scarce.

INTRODUCTION

Transcription factors (TFs) are proteins that dynamically
read and interpret the static genetic instructions in the
DNA (1,2). TFs usually cooperate with other TFs to
facilitate (as an activator) or inhibit (as a repressor) the
recruitment of RNA polymerase, using complex logic
rules built from simple rules (AND, OR and NOT) to
control the precise condition-dependent expression of
target genes (TGs) (2–6). Overall, transcriptional coopera-
tivity among several TFs is believed to play an important
role in generating complexity and precision in trans-
criptional regulatory programs, especially in eukaryotic
organisms. However, the genome-wide network of eukary-
otic TF cooperativity remains largely unknown. Thus
research on this topic is fundamentally important and in
pressing need.
Although central to transcriptional regulation, tran-

scriptional cooperativity is an intrinsically complex phe-
nomenon (7). In this article, transcriptional cooperativity
is broadly defined as the functional interaction between
two or more TFs to regulate the expression of a TG.
It can refer to TF–TF physical/genetic/regulatory interac-
tion, competitive regulation and TF spatial and temporal
combinatorial co-regulation. Furthermore, we focus only
on the cooperativity among different DNA-binding TFs,
and exclude TF homodimer interactions and interactions
between TFs and non-DNA-binding cofactors.
Experimental methods for detecting TF interaction

include co-immunoprecipitation and super-gel shift (1).
These methods are generally time-consuming, and it
is difficult to apply them to mapping the whole-genome
TF cooperativity network in the living cell (8–10).
Complementarily, a wide variety of computational
approaches have been proposed to predict TF cooperativ-
ity. Some of them focus on case studies (11–14), whereas
others are based on the unsupervised framework using a
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single data source such as TF-binding motif (6,8,15–19),
TG (9,20–22) and TF activity (23,24).
A well-known example of TF cooperativity is the TF

pair MATa1 and MATa2 that plays an important role in
determining the yeast cell type. These two TFs interact
cooperatively by forming the heterodimer MATa2/
MATa1 which binds DNA with much higher specificity
and affinity than each TF alone (25,26). In this case, the
existence of TF cooperativity is supported by more than
one type of genome-wide data sources. For example,
genome-wide protein–protein interaction data shows that
MATa1 and MATa2 physically interact with each other;
genome-wide transcriptional regulatory data shows that
MATa1 and MATa2 share significantly larger number
of TGs than expected by chance. In this article, we aim
to predict such TF cooperativity by systematically inte-
grating diverse data sources using Bayesian networks.
Bayesian networks have been widely used in computa-
tional biology, such as in protein structural modeling
(27), protein–protein interaction prediction (28), protein
function prediction (29–32), gene-expression analysis
(33), among others. Here, we apply Bayesian networks
for the first time to TF cooperativity prediction.
Compared to previous applications, there are many new
challenges in applying Bayesian networks to TF coopera-
tivity prediction, such as scarcity of gold-standard data,
and assessment of genomic predictors for TF cooperativ-
ity. Although there exist many computational approaches
to study TF cooperativity (6,8,9,15–24), our method is the
first supervised learning approach to integrate genome-
wide data sources for predicting TF cooperativity.
We choose Saccharomyces cerevisiae as our model

eukaryote since many different types of genome-wide
data sources are available in yeast. We improve the pre-
diction accuracy of TF cooperativity by combining
two strategies. First, we assemble a comprehensive list of
genomic data sources, and systematically assess each data
source in terms of its predictive power for TF cooperativ-
ity. Second, we integrate these heterogeneous data sources
to infer TF cooperativity using a supervised learning
framework. The key component of our approach is the
introduction of a gold-standard positive (GSP) dataset
and the construction of Bayesian network for predicting
TF cooperativity.

MATERIALS AND METHODS

Gold-standard data collection and feature assessment

We collected 174 TFs from the YEASTRACT database
(34,35) and the Saccharomyces Genome Database (SGD)
(listed in Supplementary Table 1). Last updated in
September 2007, the YEASTRACT database contains
over 30 980 regulatory associations between TFs and
TGs, and includes 284 specific DNA-binding sites for
108 characterized TFs from more than 1000 bibliographic
references. The total number of TFs from this database
is 170. In addition, we manually add four more TFs
annotated in the SGD database.
We compiled 25 TF pairs each belonging to the same

biochemically well-defined complex according to the

MIPS complex catalogue (36) as our approximate GSP
for TF cooperativity (Supplementary Table 2). This
choice is reasonable, as co-transcriptional complex rela-
tionship is a strong and reliable signal for coordinated
actions among TFs. In addition, we constructed an
approximate gold-standard negative (GSN) set for TF
cooperativity by identifying all TF pairs that do not
belong to any known MIPS complex. Our GSP and
GSN sets are approximate: the GSP set is the only high-
quality dataset of TF cooperativity currently available,
and is more restrictive compared to our broad definition
of TF cooperativity; at the same time, the GSN set is
expected to contain a small fraction of false negatives.
Nevertheless, our results in this article suggest that
the quality of the GSP and GSN sets are good enough
for generating useful predictions of transcriptional
cooperativity.

We collected 15 features that potentially correlate
with TF cooperativity based on genome-wide information
such as sequence, expression, regulation, interaction and
function. We converted the numerical features into binary
ones by binning the data, and calculated the likelihood
ratio scores of every feature in the following way. For
each binary feature f taking on a particular value (1 or
0; presence or absence), we count the following four num-
bers: true positives (TP) which are GSPs where the feature
takes on the given value, true negatives (TN) which are
GSNs where the feature does not take on the given value,
false positives (FP) which are GSNs where the feature
takes on the given value, and false negatives (FN) which
are GSPs where the feature does not take on the given
value. The likelihood ratio is then defined as the fraction
of GSPs where the feature takes on the given value,
divided by the fraction of GSNs where the feature takes
on the given value: LR=Prob( f | GSP)/Prob( f | GSN)=
(TP/GSP)/(FP/GSN). The likelihood ratio scores are cen-
tral to the Bayesian framework (28,29), and can be
regarded as a measure of the usefulness of single features
in data integration. A likelihood ratio score much larger
than 1 indicates that the feature is a good predictor for TF
cooperativity. Likewise, a likelihood ratio score less than
1 indicates that the evidence is anti-predictive for TF
cooperativity. Likelihood ratios of different features are
directly comparable, and can be multiplied together to
obtain the total likelihood ratio of the combined features
indicating the confidence level for the combined evidence
when the features are conditionally independent (naı̈ve
Bayes integration).

TF–TF interaction, co-expression and co-evolution
as predictors for TF cooperativity

Known mechanisms of TF cooperativity can be roughly
classified as direct cooperativity and indirect cooperativity
(5,37). In the case of direct cooperativity, a TF acts
through physical interaction with another TF. Existing
genome-wide physical interaction data can lend support
to this mechanism. In the case of indirect cooperativity,
a TF can interact with another TF genetically and join-
tly produce a phenotype. Existing protein genetic inter-
action data can lend support to this mechanism (38).
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Here, we assembled 150 TF–TF interactions (88 physical
interactions and 62 genetic interactions) from BioGRID
as a feature for TF cooperativity prediction (Feature
F1 in Figure 2). As shown in Figure 1, the existence of
TF physical/genetic interaction is strongly predictive for
TF cooperativity (likelihood ratio 92.13, Fisher’s exact
test P-value <10�15).

Studies on various model systems have shown that
cooperative TFs have complex patterns of co-expression
relationships (14), and TF activity and TF cooperativity
are condition-dependent (39). Here, a TF pair has
co-expression relationship (Feature F2 in Figure 2) if the
largest Pearson correlation coefficient (PCC) of their
gene-expression profile out of five different conditions
(cell cycle, sporulation, pheromone treatment, unfolded
protein response and stress response) exceeds 0.7. In
other words, a TF pair has co-expression relationship
if the two TFs co-express in at least one condition.
This strategy captures the dynamic property of TF
co-expression relationships compared to directly com-
puting PCC from the assembled expression compendium
of five conditions. As shown in Figure 1, the TF
co-expression feature is a weak predictor for TF coopera-
tivity (likelihood ratio 1.83, Fisher’s exact test P-value
<0.05). Even though the likelihood ratio score increases
with a more stringent PCC cutoff (Supplementary
Figure 2), TF co-expression feature is generally a weak
predictor for TF cooperativity with a large number of
FPs. This weak predictive performance is not due to the
way that the TF co-expression feature is calculated, as our
current strategy of choosing the largest PCC of five
conditions compares favorably to alternative measures
of TF co-expression such as the average (or median)
PCC of five conditions, and the overall PCC of expression
profile under all five conditions. Rather, it reflects the
transient and dynamic nature of TF cooperativity.

The functional relatedness of TFs inferred from com-
parative genomic data can provide useful information for
TF cooperativity. The basic assumption is that a cooper-
ative TF pair tends to co-occur in different genomes, to be
close in the chromosome, and to be fused together in
another genome. We used the existing comparative geno-
mic data from Prolinks database (40) as the co-evolution
feature to predict TF cooperativity (Feature F3 in
Figure 2). As shown in Figure 1, TF co-evolution feature
is a strong predictor for TF cooperativity (likelihood ratio
81.82, Fisher’s exact test P-value <10�5).

TF–TG regulatory relationships from ChIP–chip,
literature and motif occurrence data

In addition to the direct relationships between TFs in
terms of interaction, co-expression and co-evolution, TF
cooperativity can also be deduced from the properties of
the jointly regulated TGs in the transcriptional regulatory
network. This is due to the following two reasons:
first, cooperative TFs tend to share significantly larger
number of TGs than expected by chance (TG overlap
evidence); second, the TGs of cooperative TFs tend
to share significant co-expression, co-function and inter-
action relationships (TG coherence evidence). We follow a

two-step process to compute these TG-based features.
First, we identify transcriptional regulatory relationships
(TF–TG associations) from ChIP–chip, literature and
motif occurrence data. Second, we compute TG overlap
and TG coherence features based on the TF–TG associa-
tion datasets.
We compiled three datasets of transcriptional regula-

tory relationships. The first dataset is based on five
global chromatin immunoprecipitation followed by micro-
array (ChIP–chip) experiments in yeast (37,41–44). This
dataset contains 143 TFs, 4705 TGs and 15 814 transcrip-
tional regulations. The second dataset is based on other
experiments recorded in the literature, and contains
162 TFs, 4568 TGs and 17 616 transcriptional regulations.
The third dataset of TF–TG associations is predicted
based on the occurrence of known TF-binding site
motifs in the promoter region of the TGs (34,35). We
measured the degree of match between a promoter
region and a binding site in terms of the number of sites
in both DNA strands, and the distance between adjacent
sites. We applied a restrictive cutoff by requiring three
binding site occurrences within a 200-bp window, and
identified 28 142 transcriptional regulations from
281-binding sites and 6712 upstream promoter sequences.
Our procedure takes into account factors that are impor-
tant in determining TF–TG association: frequency of
motif occurrence, motif orientation, and inter-motif dis-
tance (17,45). Indeed, all three factors contribute to the
prediction of TF cooperativity, as measured by the likeli-
hood ratio of the TG overlap score (Supplementary
Figures 5 and 6; see the following section for the definition
of TG overlap score). The relationships among these three
transcriptional regulatory datasets (ChIP–chip, literature
and motif occurrence based) are shown as a Venn diagram
in Supplementary Figure 3.
It is difficult to integrate these three datasets into

a single transcriptional regulatory network due to two
reasons. First, different transcriptional regulatory datasets
have different qualities. The literature based data are gen-
erally better in quality, while ChIP–chip and motif occur-
rence data are noisy. Motif occurrence data are also
incomplete, as only 108 out of a total of 174 TFs have
known binding sites. Second, it is difficult to construct
a comprehensive and high-quality gold-standard data
for transcriptional regulation, which is essential for
proper integration of different transcriptional regulation
datasets. Instead, in this work we use the three trans-
criptional regulatory datasets separately to predict TF
cooperativity before combining the predictions together
in an optimal way.

TG overlap as a predictor for TF cooperativity

For each transcriptional regulatory dataset, we predict TF
cooperativity by enumerating all TF pairs where there is a
significant overlap of TGs. This is based on the observa-
tion that cooperative TFs tend to share more common
TGs in the transcriptional regulatory network than
expected by chance (22). For a given TF pair, to determine
whether the TG overlap is statistically significant, we fix
the total number TGs in the yeast genome (N), the number
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of TGs regulated by the first TF (N1), the number of TGs
regulated by the second TF (N2), and treat the number of
TGs regulated by both TFs as a random variable X.
Under the null hypothesis that the regulation by the first
TF is independent of the regulation by the second TF,
X follows a hypergeometric distribution:

PðX ¼ iÞ ¼

N1

i

� �
N�N1

N2 � i

� �

N
N2

� � 1

From here we can then calculate a P-value score, which is
defined as the probability that the TG overlap would
assume a value greater than or equal to the observed
value, m, by chance:

PðX � mÞ ¼ 1�
Xm�1
i¼0

PðX ¼ iÞ 2

The TG overlap is statistically significant if the P-value
score is smaller than a chosen cutoff.
The above procedure gives us all TF pairs for which the

TG overlap is statistically significant. To further quantify
the extent of the TG overlap, we also calculate an
enrichment score, defined as the ratio of the observed
TG overlap versus the expected TG overlap by chance,
as follows:

F ¼
Nm

N1N2
3

A score larger than 1 indicates that there is more TG
overlap than expected by chance.
Both P-value and enrichment scores are predictive for

TF cooperativity (Supplementary Figure 4). We further
combine the P-value score and the enrichment score into
a single TG overlap feature: two TFs share TG overlap if
the P-value score and the enrichment score are both more
significant than the corresponding pre-defined cutoffs.
We use a P-value score cutoff of 10�3 for ChIP–chip
and literature based TG overlap calculations, and 10�4

for motif occurrence based TG overlap calculation. The
strict P-value score cutoffs take into account the noisier
nature of the motif data, and serve as a correction for
multiple hypothesis testing. We use an enrichment score
cutoff of 2 for all calculations. In the end, for each TF pair
we obtain three TG overlap scores based on ChIP–chip,
literature and motif occurrence evidences (Features F4,
F5 and F6 in Figure 2). As shown in Figure 1, all three
features are strong predictors for TF cooperativity (like-
lihood ratio >8, Fisher’s exact test P-value <10�7).

TG coherence as a predictor for TF cooperativity

In addition to computing the overlap of TGs jointly regu-
lated by a TF pair, we can further use the TG coherence
information to predict TF cooperativity. Here, TG coher-
ence is defined as the degree of similarity or closeness
among TGs jointly regulated by a TF pair, in terms
of co-expression, interaction and co-function. The ratio-
nale behind this computation is the observation that

co-regulated TGs by a cooperative TF pair tend to
interact, co-express, or share similar cellular function
(20,21,46,47).

To compute TG coherence scores, we first need to quan-
tify co-expression, interaction and co-function for every
TG pair. To quantify co-expression for a TG pair, we
computed the largest PCC of the gene-expression profile
out of five conditions. We then applied the cutoff >0.8 and
selected 3.57% of all TG pairs as co-expressed ones.
To quantify interaction for a TG pair, we applied the dif-
fusion kernel (48) to the BioGRID protein–protein inter-
action data (49) to obtain a kernel matrix. We then
applied the cutoff >2 to the kernel matrix and selected
0.63% of all TG pairs as interacting ones. This cutoff
corresponds roughly to the inclusion of second nearest
neighbors in the interaction network. To quantify co-func-
tion for a TG pair, we adopted the GO term similarity
measure introduced in (50,51), and computed the average
GO term similarity by considering all GO biological
process terms assigned to the TG pair. We then applied
the cutoff >7 and selected 5.85% of all TG pairs as
co-function ones.

Next, for a pair of TFs, we compute three TG coherence
scores in terms of co-expression, co-function and inter-
action. The TG co-expression coherence score is com-
puted as follows. We construct two sets of TGs: the first
set includes all TGs that are regulated by both TFs; the
second set is the reference set and includes all possible TGs
that are regulated by any TF in the genome. For each TG
set, we compute the fraction of TG pairs within the set
that are co-expressed. The TG co-expression coherence
score is then defined as the ratio of these two fractions.
We then threshold this score with the cutoff >2. The TG
coherence scores for other relationships (co-function and
interaction) are computed in a similar way.

In total, we collected 9 TG coherence features measur-
ing TG co-expression, co-function and interaction based
on ChIP–chip (Features F7, F8 and F9 in Figure 2), liter-
ature (Features F10, F11 and F12 in Figure 2) and motif
occurrence based (Features F13, F14 and F15 in Figure 2)
transcriptional regulatory datasets. As shown in Figure 1,
all features are strong predictors for TF cooperativity
(likelihood ratio >4, Fisher’s exact test P-value < 10�5).

Bayesian network method

We use a Bayesian network framework to predict TF
cooperativity by integrating TF pair features. For each
TF pair, the prediction of cooperativity is based on the
calculation of the posterior odds of cooperativity given the
presence of genomic features. The posterior odds for pre-
dicting the class label y (1 if cooperativity exists, and 0
otherwise) by integrating genomic features f1, f2, . . . , fn can
be written as follows using the Bayes rule:

log
Pðy ¼ 1j f1, f2, . . . , fnÞ

Pðy ¼ 0j f1, f2, . . . , fnÞ
¼ log

Pðy ¼ 1Þ

Pðy ¼ 0Þ

þ log
Pð f1, f2, . . . , fnjy ¼ 1Þ

Pð f1, f2, . . . , fnjy ¼ 0Þ

4
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where y=1 represents TF cooperativity and y=0 repre-
sents non-cooperativity. f1 through fn are different geno-
mic features that are predictive for TF cooperativity.
P(y=1 | f1, f2, . . . , fn) is the probability that the TF pair
is cooperative given these features. P(y=1)/P(y=0)
is the prior odds. P( f1, f2, . . . , fn|y=1)/P( f1, f2, . . . ,
fn | y=0) is the likelihood ratio for the combined features.
A TF pair is predicted to be cooperative if the calculated
posterior odds of cooperativity is greater than a predeter-
mined threshold.

There are two special cases to the above general
Bayesian network formalism. The first special case is
naı̈ve Bayes, where genomic features are assumed to be
conditionally independent given TF cooperativity. In
this case, the likelihood ratio of the combined features is
equal to the product of the likelihood ratios for individual
features. The second special case is full Bayesian Network,
where none of the features are conditionally independent.
In this case, the predictive power of all possible combina-
tions of features values must be estimated. In general, the
best Bayesian network structure lies somewhere between
these two special cases. It is possible to learn the optimal
Bayesian network structure from training data, but this
problem is hard in terms of computational complexity,
and requires a large training data (33,52,53). In this arti-
cle, we rely on prior knowledge to determine the Bayesian
network structure. The structure is then fixed during train-
ing and testing. This way, the computational complexity
of the problem is dramatically reduced, and only a small
training set is required.

In determining the Bayesian network structure, we used
the guiding rule that the structure should be as simple as
possible, i.e. maximize the number of conditional indepen-
dencies among features, while at the same time still be able
to capture the dominant dependencies within data. The
final Bayesian network structure is shown in Figure 2.
This Bayesian network is similar to naı̈ve Bayes in that
almost all features are conditionally independent. The
only difference is that our Bayesian network takes into
account the additional strong redundancy between TG-
based features such as TG overlap and TG coherence.
The rationale is explained in detail in the ‘Results’ section
and the Supplementary Data.

Given the Bayesian network structure in Figure 2,
we can determine the posterior odds in Equation (4) for
every TF pair:

log
Pðy ¼ 1j f1, f2, . . . , fnÞ

Pðy ¼ 0j f1, f2, . . . , fnÞ
¼ log

Pðy ¼ 1Þ

Pðy ¼ 0Þ

þ
Xn
i¼1

log
Pð fijy ¼ 1,SiÞ

Pð fijy ¼ 0,SiÞ

5

Where Si is the set of parent features that fi conditionally
depends upon.

RESULTS

Feature collection and assessment for predicting
TF cooperativity

We collected 174 TFs (Supplementary Table 1) in yeast
and 15 TF pair features that potentially correlate with

TF cooperativity relationships. The 15 TF pair features
include physical/genetic interaction, co-expression and
co-evolution relationships among TFs, as well as the
degree of overlap and coherence among the corresponding
TGs in terms of co-expression, co-function and interac-
tion, based on literature, ChIP–chip and motif occurrence
evidence. Our feature collection is based on three insights:
first, cooperative TFs tend to co-express, co-evolve and
interact; second, cooperative TFs tend to share larger
number of TGs than expected by chance; third, the
TGs of cooperative TFs tend to share significant
co-expression, co-function and interaction relationships
(see Supplementary Figure 1 for a schematic outline;
detailed description of data sources and characterization
of all features can be found in ‘Materials and Methods’
section, Supplementary Data and Supplementary
Figures 2–6).
We quantitatively assess the usefulness of each feature

for TF cooperativity prediction by calculating the likeli-
hood ratio scores using known transcriptional complexes
as gold-standard. All 15 genomic features are good
predictors for TF cooperativity (Figure 1). All features
except TF co-expression have likelihood ratio scores sig-
nificantly larger then 4 (Fisher’s exact test P-value <10�5).
TF co-expression feature has a likelihood ratio of 1.8
which is still statistically significant (Fisher’s exact test
P-value <0.05) with good coverage. In particular, our
newly introduced TG overlap features have excellent pre-
dictive accuracy and coverage for TF cooperativity
(Figure 1 and ‘Materials and Methods’ section).

Integrated prediction of TF cooperativity by
Bayesian network

All 15 genomic features collected above are good predic-
tors for TF cooperativity (Figure 1). To further improve
TF cooperativity prediction, we integrate these 15 features
using a Bayesian network framework. There are two cru-
cial steps for Bayesian network integration. The first step
is to determine the structure of the network which encodes
the conditional (in)dependence relationships among the
features. The second step is parameter estimation by com-
puting the contingency tables associating each feature with
its immediate parent features. The first step is difficult,
whereas the second step is straightforward.
We rely on prior knowledge to determine the Bayesian

network structure according to two criteria: first, choose
Bayesian network structures that capture the dominant
dependencies within data; second, choose simple struc-
tures over complex structures with similar predictive
power. The simplest Bayesian network is called naı̈ve
Bayes, where all features are assumed to be conditionally
independent, i.e. different TF pair features are indepen-
dent within cooperative TF pairs, as well as within
non-cooperative TF pairs. This is the preferred network
structure when the conditional dependencies among fea-
tures are not strong.
In this article, we assume approximate conditional

independence for most of our genomic features. First,
we make the reasonable assumption that TF-based fea-
tures are conditionally independent of TG-based features.
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Furthermore, the TF-based features such as TF inter-
action, co-expression and co-evolution, are based on mea-
surements at the protein level, gene-expression level and
sequence level respectively. They can be assumed to be
approximately conditionally independent of each other.
Second, TG-based features can be computed separately
from large-scale ChIP–chip, small-scale experiments and
motif occurrence based transcriptional regulatory data-
sets. Though all depicting TF–TG interactions, these
datasets are assembled from different sources, and it
is reasonable to assume that they are approximately
conditionally independent for predicting TF cooperativ-
ity. Third, TG coherence can be measured in terms of
co-expression, co-function and interaction. We make the
reasonable assumption that these three features are
conditionally independent. Overall, these data sources
are not related to each other except for the fact that
they are all good predictors for TF cooperativity. As a
result, the conditional independence assumptions are
approximately valid.

On the other hand, there is further redundancy among
TG overlap features and TG coherence features that goes
beyond the fact that they are all good predictors for TF
cooperativity. In other words, TG overlap features and
TG coherence features are not independent conditioning
upon TF cooperativity. This is because TG overlap fea-
tures and TG coherence features both rely on the TG
information, and they measure different aspects of the
set of co-regulated TGs: for a TF pair, TG overlap fea-
tures measure the significance of the overlap between two
TG subsets, while TG coherence features measure the level
of coherence within the set of overlapping TGs in terms of
the enrichment of co-expression, co-function and inter-
action relationships. Indeed, there is a large degree of
redundancy. For example, in the literature based tran-
scriptional regulatory dataset, TG overlap feature predicts
1314 cooperative TF pairs, among which 19 are in GSP.
TG co-expression feature predicts 1577 cooperative TF
pairs, among which 16 are in GSP. There is a significant
overlap between these two sets: there are 535 shared
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Figure 1. Likelihood ratio scores of the 15 genomic features for predicting transcriptional cooperativity. The X-axis represents the name of
the features, and the Y-axis represents the likelihood ratio score associated with the presence of each feature. (The likelihood ratio scores associated
with the absence of each feature is generally close to 1, and are not plotted here.) The features include TF physical/genetic interaction (F1), TF
co-expression (F2), TF co-evolution (F3), TG overlap based on ChIP–chip (F4), literature (F5) and motif occurrence (F6), TG co-expression based
on ChIP–chip (F7), literature (F10) and motif occurrence (F13), TG co-function based on ChIP–chip (F8), literature (F11) and motif occurrence
(F14), TG interaction based on ChIP–chip (F9), literature (F12) and motif occurrence (F15). For each feature, the likelihood ratio score is above the
bar and the number of predicted TF cooperativities is below the bar. A likelihood ratio score much larger than 1 indicates that the feature is a good
predictor for TF cooperativity. The figure shows that TF interaction and co-evolution features are very strong predictors with limited coverage, TF
co-expression feature is a weak predictor with broad coverage, and TG overlap and TG coherence features are strong predictors with good coverage.
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predictions (Pearson’s Chi-squared test P-value <10�4),
among which 16 are in GSP. As a result, the simplest
naı̈ve Bayes framework does not work well here.

On the basis of the above analysis, we constructed
a simple yet reasonable Bayesian network architecture
that takes into account the inter-dependencies of different
TG-based features (Figure 2). In this network, features
based on TG coherence are conditionally independent
given TF cooperativity and TG overlap, whereas all
other features are conditionally independent given TF
cooperativity only. This architecture is the simplest that
still captures the two types of dominant relationships
among features and TF cooperativity: first, each feature
alone is a good predictor for TF cooperativity; second,
there is a strong correlation between TG overlap and
TG coherence features, given TF cooperativity. We used
contingency tables (Supplementary Tables 3–6) to com-
pare our Bayesian network structure with alternative
structures (see Supplementary Data for details). We
found that our Bayesian network structure outperforms
naı̈ve Bayes because it takes into account the conditional
dependencies among features that are important for
predicting TF cooperativity. Second, our Bayesian net-
work structure outperforms the full Bayesian network by
dramatically reducing the number of parameters to be
estimated and allowing accurate determination of all
parameters without over-fitting the training data. Third,
our Bayesian network model is relatively simple with a
pre-determined structure, and we are only learning
Bayesian network parameters but not structure from
data. As a result, our small set of GSPs is sufficient for
accurate learning.

Once the Bayesian network structure is fixed and the
parameters are estimated, subsequent statistical inference
is straightforward. To predict if a TF pair is cooperative
or not, we first calculate conditional likelihood ratios for
each feature given the parent features in the Bayesian
network (Figure 2). Then we compute a total score by
summing up the natural logarithm of all the conditional
likelihood ratios associated with different features
(‘Materials and Methods’ section). The TF pair is pre-
dicted to be cooperative if the total score exceeds a
given threshold.
We estimate the true positive rate (TPR; fraction

of GSP that are correctly predicted; sensitivity) and the
false positive rate (FPR; fraction of GSN that are
incorrectly predicted; 1-specificity) of different classifiers
using 5-fold cross-validation, and plot the receiver operat-
ing characteristic (ROC) curves of sensitivity versus
1-specificity for our Bayesian network classifier, the
naı̈ve Bayes classifier based on each of the features, as
well as the naı̈ve Bayes classifier based on the integration
of all features in Figure 3. In addition to 5-fold cross-
validation, we also performed leave-one-out cross-
validation and obtained similar true positive and FPR
estimates.
Every feature is predictive (likelihood ratio >2 for all

cases; see Figure 1), yet the ranking of predictive power
for individual features is different at different FPR levels
(Figure 3). For example, when the FPR is low (<0.01), the
best individual features are TF interaction and TF
co-evolution. When the FPR is high (>0.03), the best indi-
vidual features are TG overlap ones. When the FPR is in
the mid-range, the best individual features are TG
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Figure 2. The architecture of the Bayesian network for TF cooperativity prediction. The following abbreviations are used (TF: transcription factor;
TG: target gene; coe: co-expression; cof: co-function; int: interaction). Each node represents a particular genomic feature, and is labeled by their
abbreviation name (F1–F15, see Figure 1 legend for details), as well as by the conditional probability for the random variable [for example P(F1|A)].
Each edge represents a direct conditional dependence between two variables. The equation for calculating the joint probability of 15 genomic features
and TF cooperativity using this Bayesian network is specified at the bottom of the figure. From this joint probability one can then compute the
conditional probability of TF cooperativity given genomic features. The rationale for choosing this Bayesian network architecture is given in the
Supplementary Data.
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coherence ones. Even though a reduced set of features will
make it feasible to systematically search for the best net-
work structure, and will make it easier to extend our cur-
rent methodology to other organisms, in our case these
features are complementary to each other, and the best
predictions are generated by integrating all these features
together, rather than selecting a minimal set of features.
Indeed, our Bayesian network classifier significantly and
consistently outperforms any of the individual classifiers
at all FPR levels. Moreover, our Bayesian network classi-
fier outperforms feature integration using naı̈ve Bayes
classifier (Figure 3), as well as logistic regression, decision
tree, and k-nearest neighbor methods (these three methods
are implemented by data mining software Orange (54); see
Supplementary Figure 9). In particular, our Bayesian net-
work method consistently outperforms naı̈ve Bayes in
terms of the area under the ROC curve (AUC) score,
both in leave-one-out cross-validation, and in 98 out of
100 independent 5-fold cross-validation simulations
(P-value < 0.05). The improved accuracy is due to three
reasons. First, our Bayesian network is able to capture the
important conditional dependencies among heterogeneous
data in a graphical model (Figure 2). Second, parameter
estimation in our Bayesian network requires much fewer
training data than most other classification models. This is
especially important in our case where the training set is
very small. Third, Bayesian network is different from
many machine learning methods in that feature dependen-
cies are explicitly specified in a fully probabilistic way.

Reconstructed TF cooperativity network in yeast

To construct our final integrated classifier, we need to
choose a cutoff: we predict a TF pair to be cooperative

if the summed log-conditional likelihood ratio for TF
cooperativity is greater than the cutoff, and non-coopera-
tive if otherwise. This can be done in several ways (28,55).
For example, this cutoff can be chosen to be the negative
of the prior log-odds of observing cooperativity for a
random TF pair. Unfortunately, it is difficult to estimate
this prior log-odds, because we do not know the exact
number of cooperative TF pairs. Alternatively, in this arti-
cle our final predictions for TF cooperativity is based on
thresholding the positive predictive value (PPV), defined
as the fraction of positive predictions that are in GSP.
In Supplementary Figure 10, we plot the sensitivity
(TPR), specificity (1 – FPR), PPV and the percentage of
positive predictions under different cutoff choices. We
chose 7.34% as our final cutoff of PPV, i.e. 7.34% of
the predicted cooperative TF pairs belong to the GSP
set. At this PPV cutoff, our final integrated prediction
consists of 286 cooperative relationships among 113 TFs
(sensitivity 0.84, specificity 0.982). In Supplementary
Table 7, we list all 286 predicted interactions together
with their Bayesian network integration scores. Among
these, 21 are in the GSP set. The fraction of GSP set
correctly predicted by our Bayesian network classifier is
84%. Training our Bayesian network classifier on the
entire gold-standard dataset yields true positive and
FPRs (TPR=84%, FPR=1.8%) that are similar to
5-fold and leave-one-out cross-validation based estimates
(TPR=84%, FPR=1.4% and 1.5%, respectively), sug-
gesting that model overfitting is not an issue here. This is
further supported by additional assessment with two inde-
pendent benchmark datasets (see section ‘Comparison
with other methods’ below).

To get a high-confidence subset of TF cooperativity
predictions, we choose an even more stringent PPV
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cutoff of 13.21% (sensitivity 0.84, specificity 0.992). Using
this stringent cutoff, we obtain 159 predicted cooperative
relationships among 105 TFs. In Figure 4 we visualize this
high-confidence yeast TF cooperativity subnetwork. We
further label TFs with their GO functional annotations,
and label TF–TF interactions that appear in BioGRID
with the experimental method of detection. Importantly,
we are able to predict many new TF cooperative relation-
ships that are not in the BioGRID (Figure 4). Overall, our
novel predictions (other than those that overlap with
GSPs) can be grouped into two categories: (i) new coop-
erativity relationships in and around known transcrip-
tional complexes and (ii) other novel cooperative
relationships.

To further validate our prediction, we searched the
PubMed database and manually curated TF cooperativity
information from literature abstracts. We found that most
of the 159 predicted TF cooperativity relationships are
supported by one or more published literatures (143 out
of 159 are supported by literature evidence including 21
GSPs). We made sure that these new literature-based

evidences were not included in the feature collections
for prediction, thus the validation step is completely
independent of the training step. The extensive literature
validation demonstrates the overall high quality of the
prediction results. In Supplementary Table 8, we list all
159 high-confidence TF cooperativity predictions with
their Bayesian network integration score, together with
detailed descriptions of literature and experimental evi-
dences for TF–TF physical, genetic and regulatory inter-
action, as well as other documented TF cooperativity
evidences.

Literature validation of TF cooperativity predictions

We predict the cooperativity between MATa1 and
MATa2 based on TF interaction and TG overlap evi-
dences (Supplementary Data). This TF pair plays an
important role in determining yeast cell type by forming
a heterodimer that binds DNA and represses transcription
in a cell-type specific manner (25,26). Whereas the a2 and
a1 proteins on their own have only modest affinity for
DNA, the a2/a1 heterodimer binds DNA with high

Figure 4. A map of the predicted high-confidence TF cooperativity network in yeast. Nodes represent TFs and edges represent cooperativity
relationships among them. The node colors represent GO function annotation (grey represents unknown function). The edges are the top 159 TF
cooperativity predictions among 105 TFs. TF–TF interactions that also appear in BioGRID are colored by their experimental method of detection.
The newly predicted TF cooperative relationships not in BioGRID are colored by grey. The figure is generated by Osprey (75).
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specificity and affinity, preferring its own binding site over
random DNA by a ratio of at least 105. The three dimen-
sional crystal structure of the a2/a1 heterodimer bound
to DNA was determined at a resolution of 2.5 Å
(Supplementary Figure 11).
We predict three large transcriptional complexes in

yeast (Figure 5). Figure 5A illustrates TF cooperativity
predictions that are related to cell-cycle control. We pre-
dict the cooperativity between Mbp1 and Swi4. Mbp1 and
Swi4 share 50% sequence identity in their DNA-binding
domains. For many G1/S-regulated genes, removal of
both Swi4 and Mbp1 was necessary and sufficient to
essentially eliminate cell-cycle-regulated expression (56).
Although some level of redundancy exists between
Mbp1 and Swi4, there is extensive experimental support
that Mbp1 and Swi4 regulate different subsets of genes
involved in distinct biological processes (37,57), and that
the SBF complex (formed between Swi4 and Swi6) act in
concert with the MBF complex (formed between Mbp1
and Swi6) in regulating late G1-specific transcription
(58). We predict that ARG transcriptional complex
(Arg80, Arg81 and Mcm1) is functionally related to SBF

and MBF complexes through Fkh1 and Fkh2. The two
forkhead TFs, Fkh1 and Fkh2, are known to cooperate
with Mcm1 to control M-phase transcription (59). Mcm1
facilitates Fkh1 binding to DNA, and they jointly regulate
recombination enhancer activity in a-cell (60). In addition,
the DNA-binding domains of Fkh1 and Fkh2 share 72%
sequence identity, and the double mutant of Fkh1 and
Fkh2 displays obvious morphological change (59).
Fkh1-Mbp1 cooperativity is detected by affinity capture-
MS experiment as physical interaction (61). In addition
to the two complexes and the cooperative connections
between them, we also make many novel TF cooperativity
predictions in the neighborhood of these two complexes
(Figure 5A), all of which are validated by literature
(Supplementary Data).

Figure 5B shows the TF cooperativity predictions that
are related to oxidative metabolism and carbohydrate
metabolism. The predicted cooperativity between Hap5
and Gal4 links the known CCAAT-binding factor com-
plex (Hap2/Hap3/Hap4/Hap5) and GAL80 complex
(Gal80/Gal4), and is supported by yeast two-hybrid
experiment (62) and the fact that their binding motifs

ARG complex

SBF complex

MBF complex

Gold standard positive

Novel prediction

Budding

DNA replication
& repair

Chromatin

Cell cycle control

Cytokinesis

Pre-replication
complex
formation

Mating

Cell organization and 
biogenesis

Metabolism

Metabolism

A CCAAT-binding factor complex

GAL80 complex

Carbohydrate
metabolism

Metabolism

B

OAF complex

C
ell o

rg
an

izatio
n

 an
d

 b
io

g
en

esis

MET4 Complexes

Cbf1/Met4/Met28 complexMet4/Met28/Met31 complex

Met4/Met28/Met32 complex

Metabolism

Sulfur amino acid 
metabolic process C

Figure 5. Three predicted transcriptional complexes by our method. (A) Transcriptional complex related to cell-cycle process and arginine metabolic
process. (B) Transcriptional complex related to carbohydrate metabolic process and galactose metabolic process. (C) Transcriptional complex
participating in the regulation of sulfur metabolism. Known co-complexation relationships in the GSP dataset are represented as solid lines.
Novel predictions are represented by dashed lines and are validated by literature in the Supplementary Data and Supplementary Table 8.

5952 Nucleic Acids Research, 2009, Vol. 37, No. 18



co-occur in the promoter regions of functionally related
genes Fkh1, Fkh2 and Mot3. The predicted cooperativity
between Adr1 and Cat8 bridges the OAF complex (Pip2/
Oaf1) and CCAAT-binding factor complex (Hap2/Hap3/
Hap4/Hap5), and is supported by the experimental
evidence that they synergistically activate the glucose-
regulated alcohol dehydrogenase gene Adh2 (63)
(Supplementary Data).

In Figure 5C, the predicted TF cooperative pairs are
located near the Met4 complex which regulates sulfur
metabolism and oxidative stress response genes. We pre-
dict two more novel TF cooperativity relationships
(Met31-Met32 and Met32-Cbf1) inside the Met4 complex.
Furthermore, we identified several additional TFs that
are cooperatively linked to the Met4 complex: Gcn4,
Bas1, Pho2 and Pho4. In particular, the predicted coop-
erativity between Pho4 and Cbf1 is supported by inter-
action, motif occurrence, and literature evidences (64).
All of these new predictions are supported by varying
degrees of literature evidence (Supplementary Data).

Three types of TF cooperativity

We performed a global analysis on the different feature
combinations for the top-scoring cooperative TF pairs

(see Supplementary Data). The dendrogram of hierarchi-
cal clustering on the feature profile (Figure 6) reveals three
different types of predicted TF cooperativities. In type-I
cooperativity (45 TF pairs), the TF–TF physical inter-
action feature is the dominant predictor, and most other
features are useful predictors as well. Most GSP data
belong to type-I cooperativity (14 out of 21). In type-II
cooperativity (67 TF pairs), TF cooperativity is supported
largely by TF–TF genetic interaction and ChIP–chip/
literature based transcriptional regulatory information,
but not by motif occurrence information, primarily due
to distinct DNA-binding motifs for the pair of TFs.
In type-III cooperativity (47 TF pairs), TF cooperativity
is supported largely by motif occurrence transcriptional
regulatory information, primarily due to similar DNA-
binding motifs for the pair of TFs, and in general not
supported by TF–TF interaction information. The three
different patterns of feature combination suggest three
possible types of TF cooperativity mechanisms in tran-
scriptional control (Supplementary Figure 12).
In type-I cooperativity, TFs cooperate through physical

interactions in a transcriptional complex, and jointly
regulate many TGs. Upon the formation of the complex,
the binding probability of RNA polymerase onto the
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promoter sequence will either increase or decrease, thus
affecting the subsequent transcriptional efficiency. Here
protein physical interaction is the dominant predictor
for this kind of cooperative relationships. Examples of
this type of cooperativity include the Met4 Complex, CC
AAT-binding factor complex, MBF complex and SBF
complex. Since the two TFs cooperate in a transcriptional
complex and they stay together most of the time, we
expect that other features are good predictors as well.
For example, the co-evolution relationship is a good pre-
dictor since interacting TFs tend to co-evolve in different
genomes.
In type-II cooperativity, TFs cooperate largely through

genetic or regulatory interaction, and jointly regulate
many TGs. Different from the first case, TFs interact in
a genetic or regulatory module that may or may not be
explained by the existence of a physical complex. For
example, one TF can regulate a secondary TF, and they
jointly regulate the TGs. The well-known network motifs
such as the feed-forward loop and the regulator cascade
(37) belong to this type. Alternatively, one TF can genet-
ically interact with another TF which leads to a joint phe-
notype. Here, TF regulatory or genetic interactions are the
dominant predictors for type-II cooperativity. Examples
of this type of cooperativity include Sok2-Phd1,
Yap6-Cup9 and Skn7-Yap1 pairs, which are all detected
by ChIP–chip experiments as belonging to regulatory
feed-forward motifs (37) and supported by literature evi-
dences (see Supplementary Data).
In type-III cooperativity, TFs often cooperate with each

other in a competitive way (TF competitive regulation), or
in a redundant manner. In this case, the DNA-binding
sites of these TFs share high sequence identity or similar-
ity. Their binding motifs often overlap with each other,
leading to competition between TFs for transcriptional
control. Here, the motif occurrence data based features
are the dominant predictors (Figure 6). Some representa-
tive cases of type-III cooperativity such as Pdr1-Pdr3,
Cat8-Sip4 and Msn2-Msn4 are well supported by litera-
ture (Supplementary Data). Competitive regulation is
an important kind of functional interaction among TFs;
the interplay between cooperation and competition is a
powerful mechanism to achieve complex regulatory con-
trol (65).

Comparison with other methods

In what follows, we extensively compare our TF coopera-
tivity predictions with the following five existing methods.
(i) Jansen et al. (28) used Bayesian networks to predict
yeast protein–protein interactions in general, by integrat-
ing genomic features such as mRNA co-expression,
coessentiality, co-localization and experimental inter-
action datasets. The predictions of Jansen et al. (PIT,
with likelihood ratio cutoff 300) contain 37 putative TF–
TF interactions. (ii) Datta et al. (19) used log-linear
models to predict cooperative binding among cell cycle
specific TFs. Their top 25 cooperative TF pairs regulat-
ing cell-cycle processes are used for comparison. (iii)
Banerjee et al. (20) integrated genome-wide location data
from ChIP–chip and gene-expression data to infer 183

cooperative TF pairs by expression correlation of the
TGs. (iv) Tsai et al. (22) used statistical methods
(ANOVA) to identify synergistic pairs of yeast cell-cycle
TFs by combining ChIP–chip data and microarray data,
and generated three sets of predictions (confident, doubt-
ful and plausible). (v) Balaji et al. (9) used a specific net-
work transformation procedure to obtain a co-regulatory
network describing the set of all significant associations
among TFs in terms of regulating common TGs, and gen-
erated two sets of predictions (core and all).

We assess the quality of these TF cooperativity predic-
tions by calculating their overlap with two independent,
high-quality benchmark datasets that are not used in these
methods. The first benchmark dataset is based on the
KEGG pathway database (66), and contains 48 TF pairs
among 13 TFs that co-occur in at least one KEGG path-
way. The second benchmark dataset is based on the
recently published high-quality experimental binary pro-
tein–protein interaction map in yeast (CCSB-YI1) by Yu
et al. (67), and contains 17 interacting TF pairs among 24
TFs. In Table 1, we compare the overlap of different pre-
dictions with these two benchmark datasets. Our predic-
tions overlap with both KEGG and CCSB-YI1 datasets
more significantly than all other existing predictions
(Fisher’s exact test P-values in Table 1). This shows that
our TF cooperativity predictions are better in quality than
existing methods.

Our predictions compare favorably to existing methods
due to at least one of the following reasons: (i) many
features useful for predicting protein–protein interactions
in general in (28), such as co-expression, coessentiality and
co-localization, are not as useful for predicting TF coop-
erativity; (ii) we compiled new features that are specifically
useful for predicting TF cooperativity, such as TG overlap
and TG coherence; and (iii) we integrated many different
features to predict TF cooperativity on a genomic scale.

At the same time, we also found significant overlap
between our predictions and results based on all existing
methodologies: Jansen et al. (six overlapping TF pairs,
Fisher’s exact test P-value <10�4), Datta et al. (five over-
lapping TF pairs, Fisher’s exact test P-value <10�2),
Banerjee et al. (20 overlapping TF pairs, Fisher’s exact
test P-value <10�10), Tsai et al. (five overlapping TF
pairs for ‘doubtful’ predictions, Fisher’s exact test
P-value <10�2) and Balaji et al. (118 overlapping
TF pairs for ‘all’ predictions, Fisher’s exact test P-value
<10�13; 107 overlapping TF pairs for ‘core’ predictions
with co-regulation coefficient greater than 1, Fisher’s
exact test P-value <10�26). The overlaps, while statisti-
cally significant, are not large, most likely due to limited
coverage of case-study predictions and predictions based
on single data source, for a given quality cutoff. One main
advantage of our method is the ability to increase predic-
tion coverage by integrating diverse genome-wide data
sources.

Overall, these comparisons further demonstrate the fea-
sibility and effectiveness of our supervised learning
approach applied here for the first time to the genome-
wide, integrated prediction of the TF cooperativity
network.
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DISCUSSION

Transcriptional cooperativity is a biologically rich and
complex phenomenon that cannot be reduced to a
simple, precise mechanistic definition. The same is true
for other complex yet important biological relationships,
such as genetic interaction and functional linkage. Here,
we define TF cooperativity as the existence of any kind of
functional interaction among TFs in regulating TGs. This
working definition allows us to unify available notions of
TF cooperativity. Under this broad definition, predicting
transcriptional cooperativity becomes predicting func-
tional associations between TFs, which is a sub-problem
of the well-posed problem of predicting functional asso-
ciations between genes. A potential drawback of this
broad definition is the lack of high-resolution, mechanistic
insights into how TFs cooperate in transcriptional regula-
tion. Nevertheless, our comprehensive predictions of tran-
scriptional cooperativity are useful for guiding the design
of further experiments.

We introduced three machine-learning ideas for the first
time into the prediction of transcriptional cooperativity.
First, we introduced a small set of well-constructed gold-
standard dataset, and emphasized its central role in our
data integration framework. Second, we used graphical
models such as Bayesian networks to capture the condi-
tional dependence relationships among genomic features.
The explicit specification of feature dependencies in a fully
probabilistic way is especially important for our case,
where the gold-standard data is scarce. Third, our
Bayesian network structure is pre-chosen by considering
the trade-off between predictive bias and variance, i.e.

choosing the simplest structure possible, and only
adding structural complexity when compelling biological
justification exists. In this way, we only need to learn
Bayesian network parameters during training (52,53).
In this way, all parameters in the Bayesian network can
be reasonably estimated using the small set of GSP data.
In general, our methodology can be applied to other geno-
mic data integration tasks where high-quality GSP data
are scarce.
In our work, the gold-standard dataset plays a crucial

role in assessing the predictive ability of each piece of
evidence, in validating the superiority of our intuitively
constructed Bayesian network structure compared to
full Bayes and naı̈ve Bayes, and in data integration for
high-confidence prediction of TF cooperativity. Our
GSP dataset is composed of mostly type-I cooperative
TF pairs, as this is the only high-quality dataset that is
currently available. This may result in underrepresenta-
tion of other types of transcriptional cooperativity in
our predictions. On the other hand, our feature collections
are systematic and extensive, and they are useful for pre-
dicting TF cooperativity in general. Indeed, the optimal
classifier trained on the small, limited gold-standard
dataset is able to generate biologically meaningful and
literature-validated predictions for all three types of TF
cooperativity.
Many cutoff choices in this article are heuristic. Such

heuristics are necessary due to the lack of experimental
data on transcriptional cooperativity. The majority of
these cutoff choices follow standard practices in the field,
and they make intuitive sense. The rest of the cutoffs are

Table 1. Comparison of our Bayesian network method with existing methods

Benchmark Dataset Our
method

Datta
et al.
(19)

Banerjee
et al.
(20)

Tsai et al.
(22)
(doubtful)

Tsai et al.
(22)
(plausible)

Tsai et al.
(22)
(confident)

Balaji
et al.
(9) (all)

Balaji
et al.
(9) (core)

Jansen
et al.
(26)

KEGG pathway database (63) (13 TFs, 48 TF pairs)
Number of overlapping TFs 13 4 8 7 8 6 13 13 7
Number of possible interactions

among overlapping TFs
78 6 28 21 28 15 78 78 21

Number of KEGG interactions
among overlapping TFs

48 6 20 15 18 9 48 48 13

Number of predicted interactions
among overlapping TFs

8 3 8 3 1 2 69 48 2

Number of KEGG interactions
that are correctly predicted

8 3 5 3 1 1 45 33 2

Fisher’s exact test P-value 0.016 1.0 0.87 0.34 0.64 0.86 0.071 0.079 0.37

CCSB-YI1 dataset (64) (24 TFs, 17 TF pairs)
Number of overlapping TFs 20 2 11 2 3 1 18 18 8
Number of possible interactions

among overlapping TFs
190 1 55 1 3 0 153 153 28

Number of CCSB-YI1 interactions
among overlapping TFs

13 0 2 0 0 0 12 12 3

Number of predicted interactions
among overlapping TFs

5 1 2 0 1 0 91 50 2

Number of CCSB-YI1 interactions
that are correctly predicted

5 0 0 0 0 0 3 3 1

Fisher’s exact test P-value 6.6� 10
�7

1.0 1.0 1.0 1.0 1.0 1.0 0.82 0.21

We compare our predictive results by Bayesian network method with eight predictive results by existing methods using two independent benchmark
datasets: KEGG pathway dataset and CCSB-YI1 dataset. The statistical significance of the overlap between the prediction and the benchmark
datasets is measured by the Fisher’s exact test P-value.
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chosen to ensure reasonable feature coverage. Our heur-
istic cutoff choices are not based on the class information
of the gold-standard data, and the overall prediction
results are robust to changes in these cutoff choices.
To test the effect of cutoff choices on our predictions,
we integrated the five most predictive features with the
least heuristic cutoff choices, namely TF–TF interaction,
co-evolution and the three TG overlap features, and left
out all other features where more heuristic cutoff choices
are used (TF co-expression and TG coherence features).
We found that the predictive performance of our method
drops, but not by too much: at the FPR level of 0.01,
the TPR of the predictions based on the reduced feature
set (0.76) is lower than that based on the full feature
set (0.84), but still much higher than random predictions
(0.01).
We rigorously validated our TF cooperativity predic-

tions using independent data sources. We found signifi-
cant overlaps between our predictions and previous
computational predictions for TF cooperativity, as well
as pathway databases such as KEGG. In addition, we
validated most of our predictions using new PubMed
literatures not used in our training procedure. These
comparisons demonstrate the validity of our approach
and the quality of our predictions.
The GSP set used in this article can be expanded in

the future to include other well-characterized instances
of TF–TF cooperativity, especially TF–TF genetic inter-
actions and TF pairs co-regulating TGs. Larger training
set will not only allow us to learn Bayesian network struc-
ture and parameters simultaneously, but also allow us to
train different Bayesian networks that best predict and
characterize different types of TF cooperativity.
Our results can be used to improve the accuracy

of reconstructed transcriptional regulatory networks
(68–70). In addition, our method can be extended to the
prediction of cooperativity among three or more TFs,
by looking for cliques in the reconstructed pairwise
TF cooperativity map. Future directions also include
extending our method to higher eukaryotes where TF
cooperativity is expected to be more complex (13,16,
71,72), and to relate the alterations in these synergies to
complex human diseases. Finally, given the conceptual
similarity between TF- and microRNA-mediated control
of gene expression, our method can be applied to study
microRNA cooperativity (73,74), and more generally the
cooperativity networks of any regulatory system in an
organism.

CONCLUSIONS

In this article we reconstruct and analyze the cooperativity
among TFs in yeast using Bayesian network integration of
15 diverse genome-wide data sources (sequence, expres-
sion, function, interaction and evolution) for both TFs
and their corresponding TGs. To our best knowledge,
this is the first time that the supervised learning framework
is used to predict TF cooperativity. By assessing the
predictive power of the individual features and integrat-
ing these diverse features within a Bayesian network

framework, we constructed a high-confidence whole-
genome map of predicted TF cooperativity in yeast. In
addition, the existence and strength of the correlation
between TF cooperativity and individual features, and
the patterns of feature combination provide further bio-
logical insights into the different types of TF
cooperativity.
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