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ABSTRACT
Sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA (ssRNA) virus,
responsible for severe acute respiratory disease (COVID-19). A large number of natural compounds are
under trial for screening compounds, possessing potential inhibitory effect against the viral infection.
Keeping in view the importance of marine compounds in antiviral activity, we investigated the
potency of some marine natural products to target SARS-CoV-2 main protease (Mpro) (PDB ID 6MO3).
The crystallographic structure of Mpro in an apo form was retrieved from Protein Data Bank and mar-
ine compounds from PubChem. These structures were prepared for docking and the complex with
good docking score was subjected to molecular dynamic (MD) simulations for a period of 100ns. To
measure the stability, flexibility, and average distance between the target and compounds, root mean
square deviations (RMSD), root mean square fluctuation (RMSF), and the distance matrix were calcu-
lated. Among five marine compounds, C-1 (PubChem CID 11170714) exhibited good activity, interact-
ing with the active site and surrounding residues, forming many hydrogen and hydrophobic
interactions. The C-1 also attained a stable dynamic behavior, and the average distance between
compound and target remains constant. In conclusion, marine natural compounds may be used as a
potential inhibitor against SARS-CoV-2 for better management of COVID-19.

Abbreviations: ADME: adsorption, distribution, metabolism and excretion; HCV: Hepatitis C virus; MD:
molecular dynamic simulations; MPro: Main protease; MOE: molecular operating environment; PDB:
Protein Data Bank; RMSD: Root mean square deviation,; Rg: radius of gyration; RMSF: root mean square
fluctuation; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2
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1. Introduction

Coronavirus pandemic-19 (COVID-19) is an ongoing disease
caused by severe acute respiratory syndrome (SARS-CoV-2).
According to the WHO latest report, 3,442,234 are confirmed
SARS-CoV-2 infected people including 239,740 deaths.
Among the six WHO regions, the largest number of cases
has been reported from Europe (1,544,145) followed by
Americas (1,433,756), Eastern Mediterranean (211,555),
Western Pacific (152,774), South-East Asia (68,756), and Africa
(30,536) (WHO COVID-19 Dashboard, n.d.). Since it was first
identified in December 2019, COVID-19 has infected a large
population of people around the world (Coronavirus Disease
2019 (COVID-19) Situation Report-35, n.d.).

The SARS-CoV-2, previously known as 2019-nCoV, is a sin-
gle-stranded RNA (ssRNA) betacoronavirus, responsible for a
severe pathological condition (Guarner, 2020). The COVID-19
is expanding rapidly as compared with previous coronavi-
ruses (SARS-CoV and MERS-CoV) with the absence of thera-
peutic agents (Heymann et al., 2020; Zhang & Liu, 2020). On
January 2020, the International Health Regulations
Emergency Committee of the World Health Organization
declared the outbreak as ‘public health emergency’ in
responding to SARS-COVID-19.

Unfortunately, the timeline for characterizing a typical
drug discovery process badly couples with the urgency of
finding a therapy. It is important to accelerate the early
stages of the drug discovery for all possible future emergen-
cies (Mani et al., 2019). The early extraction of the COVID-19
genome to highlight sequence identity (�80% of conserved
nucleotides) with respect to the original SARS-CoV (Gralinski
& Menachery, 2020) has paved the way for rapid research.

Although commercially synthetic sources prepared many
drugs but the major hurdles, drug side effects, resistance,
cell toxicity, and long-term treatment, were some factors
behind the failure. The potential marine products are playing
a pivotal role in the identification of novel prototypes and
also developing drugs using natural products of the marine
environment (Vo & Kim, 2010; Wittine et al., 2019). Over two-
thirds of the planet has been covered by marine species,
making them a major source for novel drug-like compounds
(Aneiros & Garateix, 2004; Mayer et al., 2019). Further, a pos-
sible vaccine target is viral structural proteins, the develop-
ment of which is desirable and it is foreseen that the first
candidates will be advanced to clinical phase I around mid-
2020 (Boopathi et al., 2020; Keener, 2020; Khan, Jha et al.,
2020; Letko & Munster, 2020; Sarma et al., 2020; Wrapp et al.,
2020). In the meantime, however, a great effort involves the
targeting of nonstructural viral proteins which are instead
essential for the viral replication and the maturation

processes, representing a specific target for anti-COVID-19
drug development (Ahmed et al., 2020; Anand et al., 2005;
Gan et al., 2006; Gupta et al., 2020; Hasan et al., 2020; Khan,
Zia et al., 2020; Sirois et al., 2007; Wei et al., 2006; Zhang &
Liu, 2020). In the current scenario, the crystallographic struc-
ture of the SARS-CoV-2 main protease (Mpro) also called 3CL
hydrolase or C30 endopeptidase, was made available to the
scientific community, just a few weeks after the first COVID-
19 outbreak (PDB ID: 6LU7 in complex, 6MO3 apo). The
structural characterization of the main protease (Mpro) shares
96.1% of its sequence with those of previous SARS-CoV, con-
tained a highly conserved architecture of the catalytic bind-
ing site. We took advantage of the recently solved
crystallographic structure of SARS-COVID-19 to perform a
cutting edge in-silico investigation.

Once the cell is infected with COVID-19, the existing
molecular machinery of the host cell is taken over by the
virus to translate its RNA into long chains of proteins, pro-
ducing more copies. These long viral proteins are activated
when cut into smaller pieces by proteases. Hence, viral pro-
teases have a critical role in the propagation of the virus.
Identification of specific inhibitors from natural products
against the COVID-19 Mpro might be of great importance in
terms of proposing the treatment regimen. Here in the cur-
rent study, we searched some marine compounds and
docked into the Mpro, shows a good binding interactions
that might be useful against COVID-19.

2. Material and methods

2.1. Protein preparation

The recently submitted crystal structure of COVID-19 Mpro in
an apo form (PDB ID: 6M03; Berman et al., 2000) was
extracted from Protein Data Bank. The structure was sub-
jected to preparation by Protein Preparation Wizard in
molecular operating environment (MOE; Vilar et al., 2008).
The missing hydrogens were added, and partial charges
were assigned.

2.2. Ligand preparation

The 2D structures of marine compounds (Table 1) from
PubChem converted to 3D structure via the Ligprep module
in MOE. The protonation and ionization states of the com-
pounds were corrected, and proper bond orders were
assigned. Afterward, the tautomeric and ionization states
were created for each ligand.

Table 1. Marine compounds docked against SARS-COV-2 main protease.

Compound no. Formula Molecular mass (kDa) PubChem CID Source

1 C31H30Br6N4O11 1114.02a 11170714 Family Aplysinidae
2 C19H40O3 316.53 21646261 Family Aplysinidae
3 C16H30O2 254.41 445638 Soft coral Pterogorgia citrina
4 C22H32O4 360.49 21591485 Petrosia strongylophora sp.
5 C21H26O3 326.44 460087 Petrosia strongylophora sp.
awww.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/; DeGoey et al. (2018).
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2.3. Molecular docking

Five marine compounds reported earlier in the study (Felix
et al., 2017) were docked using rigid receptor docking proto-
col in MOE. During the process of docking, the protein was
fixed, while ligands were kept flexible. Residue selenomethio-
nines were converted into methionine and side-chain polar
hydrogen were refined. Molecular docking grid was specified
and centered using 20� 20� 20 with 0.375 grid spacing. A
total of 50 runs were performed to observe a wide range of
conformational orientations.

2.4. Molecular dynamics (MD) simulation

MD simulation was carried out via Gromacs 5.1 [54] for a
period of 100 ns. The system was stabilized by adding Naþ/

Cl� ions. Energy minimization (NVT and NPT) was performed
in two-step for a duration of 50,000, continued till the max-
imum force reached below 1000 kJ/mol/nm. An overall pres-
sure and temperature equal to 1 bar and 300 K were kept
with a time gap of 2 fs to achieve a stable state. To main-
tains a constant temperature inside the box, the v-rescale, an
optimized Berendsen thermostat temperature coupling tech-
nique, was used. Once the MD was completed, all the
obtained trajectories were examined for conformational
drifts. The root mean square deviation (RMSD) and root
mean square fluctuation (RMSF) were calculated to measure
the stability and flexibility of protein and compound. Cpptraj
was used to calculate the average distance between marine
natural compound and proteins during the simulation period
(Bernardi et al., 2019; Gajula et al., 2016; Roe & Cheatham,

Figure 1. Structure of marine compounds. C-1 CID 11170714 containing halogen group (Br). These marine drugs have been identified in the previous study (Felix
et al., 2017), active against latent Mycobacterium tuberculosis isolates. The drug has been observed as potent against Mpro, forming many hydrogen and hydropho-
bic interactions.
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2013). Radius of gyration (Rg) was calculated to infer the sta-
ble protein folding.

2.5. ADME prediction

To analyze the pharmacodynamics of the marine com-
pounds, Adsorption, Distribution, Metabolism, and Excretion
(ADME) is important which could be used as a drug. SWISS-
ADME (https://www.swissadme.ch) allows the user to include
SMILES data from PubChem and provides lipophilicity, water
solubility, and drug likeness rules. SMILES files of all the mar-
ine compounds retrieved from the PubChem was entered
into the search bar and the results were analyzed.

3. Result and discussion

3.1. Marine drug and mpro interactions

In the current study, five marine compounds, designated as
C-1, C-2, C-3, C-4, and C-5 (Table 1) have been docked in the
crystal structure of viral Mpro. The compounds (Figure 1)
exhibited a good interaction with viral Mpro, forming many
hydrogen bonds (Figure 2). The ADME properties (supple-
mentary data S1) shows that these compounds may be
applied in the therapy of SARS-CoV-2. Although the molecu-
lar weight of C1 is very high but the new FDA approval
seems beyond the Lipinski’s rule of five (www.fda.gov/Drugs/
DevelopmentApprovalProcess/DrugInnovation/). This may
due be the increasing focus that offer potential for promising
new therapeutic compounds for the treatment of diseases,
particularly in the areas of virology and oncology. However,
conducting drug discovery ‘beyond rule of 5’ chemical space
offerings important drug design and challenges to medicinal
scientist to achieve oral pharmacokinetics. In some cases,
including HCV NS3/4A protease, and hepatitis C virus (HCV)
NS5A inhibitors the Lipinski’s rule of five has not been con-
sidered (DeGoey et al., 2018).

In the last 20 years, SARS and MERS have been found as
new infectious agents, emerged to cause epidemics (de Wit
et al., 2016; Guarner, 2020). Conventional drug development
methods take years and costly, offering more time for trans-
mission of pathogens. The appropriate and timely develop-
ment of potent antiviral agents for clinical use is of central
interest, using cost-effective and fast computational
approaches. Moreover, the approved pharmaceutical drugs
may be repurposed as alternative method to screen for rapid
identification of potential leads (Chu et al., 2006; Enayatkhani
et al., 2020; Muralidharan et al., 2020; Pillaiyar et al., 2016;
Yang et al., 2005). In this regard, recently a large number of
in-silico studies have been performed on medicinal plants,
drug designing, and vaccine development (Aanouz et al.,
2020; Elfiky, 2020a, 2020b; Elfiky & Azzam, 2020; Elmezayen
et al., 2020; Enmozhi et al., 2020; Joshi et al., 2020; Pant
et al., 2020).

Hundreds and thousands of humans have been died in
many epidemics, broken out over the centuries. Some infec-
tions have been found, more deadly, especially viral patho-
gens. These pathogens have resisted in majority of cases to
all kinds of medical treatment. Synthesizing drugs against
rapidly replicated viruses resulting in acute syndromes is a
laborious and time-consuming procedure, requires a lot of
financial aid. However, the natural compounds are lying
around on the earth on land and water (Abdelli et al., 2020;
Das et al., 2020; Islam et al., 2020; Kumar et al., 2020; Sinha
et al., 2020; Umesh et al., 2020; Wahedi et al., 2020) that
could be screened for potential compounds against SARS-
CoV-2 main targets.

Over a 1000 of novel marine compounds isolated from
marine organisms are being pharmacologically tested, and
over 40 are being existed in the medicine market. In modern
pharmacological industry, marine products are paving the
way for a new trend (Ahmadi et al., 2015; Che, 1991;
Gogineni et al., 2015; Khan et al., 2019; Moghadamtousi
et al., 2015; Raveh et al., 2013; Sagar et al., 2010; Uzair et al.,
2011; Vijayakumar & Menakha, 2015).

Figure 2. Interaction between C-1 CID 11170714 and Mpro apo. Drug has been shown, enclosed in black color blanket, signifying the binding pocket (Vilar
et al., 2008).
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Interactions of five marine natural products have been
shown (Figures 2 and 3). Residues Thr24, Leu27, His41,
Phe140, Cys145, His163, Met165, Pro168, and His172 are pre-
sent in the active site and its surrounding (Wu et al., 2020).
The drug C1 shows good binding affinity, forming many
hydrogen and hydrophobic interactions. Compound C2 also
exhibited interactions with active site of Mpro, creating a
catalytic dyad, consist of Cys145 and His41, where the cyst-
eine is a nucleophile in the proteolytic process (Figure 3).

The best interacting pose was selected based on E_refine
and E_score2. The more negative score shows a good ligand
and protein complex (Table 2).

Natural products may provide lead compounds, especially
as antimicrobial agents (Dias et al., 2012; Hu et al., 2015;
Newman & Cragg, 2016). A large range of marine products
displays chemical structures with good biological activities to
discover drug like for various human diseases caused by
virus, including COVID-19. An additional advantage of marine

Figure 3. COVID-19 Mpro residues forming hydrogen and hydrophobic interactions with five marine compounds. Compound C1 CID 11170714 exhibited more
hydrogen and hydrophobic interactions. C2 interaction with Cys145, the active site of SARS-CoV 3CLpro creating a catalytic dyad (Cys145 and His41).
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products, as most of them has the property of drug-likeness
with high degrees of bioavailability, and effective drugs
against viral diseases shortly.

Mpro (3CLpro) monomer has three domains: domain I,
domain II, and domain III containing residues 8–101, residues
102–184, and residues 201–303 respectively, and a long loop
(residues 185–200) connects domains III and II (Wu et al.,
2020). The active site (Cys145 and His41) is located in the
gap between domains I and II, while hydrophobic amino
acids, T24, L27, H41, F140, C145, H163, M165, P168, and
H172 also form a hydrophobic surrounding in the pocket
(Yang et al., 2003). The identification of compounds fitting in

the pockets is one of the fundamental step in structure-
based drug design. The recent progress and developments
of the computational analysis of pockets have been found
useful to screen potent inhibitors (Zheng et al., 2013).
Analysis of Mpro complex with C1 shows many hydrogen and
hydrophobic interaction (Figure 4). The compound exhibited
affinity with SARS-CoV-2 Mpro from all sides, showing its best
fitting in the pocket. Drug interactions and fitting in the
pocket is essential for drug designing and lead optimization.
it It is also important to identify the locations of binding sites
to infer protein–ligand binding or protein–protein
interaction.

In addition to hydrogen bonds, hydrophobic and electro-
static interactions are also important. The hydrogen bonds
may play as an ‘anchoring’ role, defining the spatial location
of the druggable compounds in the binding pocket, facilitat-
ing the electrostatic and hydrophobic interactions. In rational
drug design, it is equally essential to recognize the hydro-
phobic groups of the compound and receptor, facing to
each other upon binding. These interactions have been
detected while analyzing the Connolly surface (Connolly,
1993) of the complex of SARS-CoV Mpro and marine com-
pounds. It is the steric complementarity between the ligand
and receptor site that performs the role of the principal driv-
ing force for mechanical interlocking (Chou et al., 2009; Sirois
et al., 2007; Wei et al., 2006).

RMSD and RMSF are calculated in MD simulations to infer
the stability and flexibility, a fundamental property of biomo-
lecules. High deviation and fluctuation of proteins during a
simulation may show weak stability and stability in thermo-
dynamics (Chen & Shen, 2009). SARS-CoV-2 Mpro in com-
plexed with C1 exhibited a stable RMSD between 0.2 and
0.45 nm (Figure 5) and the initial and final RMSDs during the
whole simulation period were not found in the significance
difference (0.2 and 0.3 nm). This shows a stable binding of

Table 2. Docking score of marine drugs and COVID-19 Mpro.

S E_place E_score1 E_refine E_score2

�7.58 �84.29 �7.82 �46.55 �7.58
�7.55 �85.64 �8.22 �44.93 �7.55
�7.54 �77.91 �8.73 �44.70 �7.54
�7.26 �62.71 �8.39 �43.95 �7.26
�7.22 �77.08 �8.60 �43.06 �7.22
�5.86 �55.39 �6.97 �28.48 �5.86
�5.73 �62.11 �7.06 �28.53 �5.73
�5.50 �70.48 �7.93 �25.24 �5.50
�5.22 �70.33 �8.13 �22.25 �5.22
�5.21 �71.26 �6.90 �26.29 �5.21
�5.16 �37.99 �6.90 �23.32 �5.16
�5.09 �41.22 �7.20 �23.20 �5.09
�5.09 �35.11 �6.61 �21.29 �5.09
�5.08 �29.77 �6.34 �24.76 �5.08
�5.06 �31.38 �7.00 �21.46 �5.06
�5.42 �32.23 �7.39 �28.69 �5.42
�5.39 �25.44 �7.81 �26.96 �5.39
�5.29 �24.91 �7.40 �23.56 �5.29
�5.22 �33.38 �7.69 �24.96 �5.22
�5.03 �35.70 �8.80 �27.37 �5.03
�5.27 �28.55 �7.35 �26.48 �5.27
�5.13 �42.11 �7.75 �25.53 �5.13
�5.07 �37.36 �6.29 �20.07 �5.07
�5.04 �34.24 �8.03 �24.74 �5.04
�4.96 �20.93 �7.26 �24.26 �4.96

Figure 4. Interaction of C1 after MD simulation. Residues, Ser46, Met49, Asp187, Gln192, Ala194, Thr169, and Gln189, are involved in hydrogen bonding.
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Figure 5. RSMD and RMSF of Mpro in complex with C1 compound. The complex exhibited a stable RMSD and RMSF during a 100 ns MD simulation period.

Figure 6. RMSD and RMSF of compound C1.
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C1 with Mpro that might be a useful as a good inhibitor.
Moreover, residues fluctuations were also observed, not too
flexible in motion (0.05–0.36 nm). Both, RMSD and RMSF
stabilities are essential to infer good binding affinities
(Doniach & Eastman, 1999; Dubey et al., 2013; Figure 6).

The initial and final RMSD of C1 atoms is almost similar.
The residues atoms fluctuations have been detected in a
range of 0.2–0.5 nm. However, the majority of C1 atoms
exhibited RMSF below 0.3 nm.

The average distance of C1 and Mpro is approximately in
range, with little fluctuation during the simulation period.
However, the final and initial distance is almost similar
(Figure 7). The distant matrix signifies the C1 and Mpro dis-
tance stability during the simulation period. This approach
might be useful to infer the strong binding affinity during
the simulation period (Ernst et al., 2015; Khan, Ashfaq-Ur-
Rehman et al., 2020). The average distance is commonly
affected when a variant occurs at the active site of target
proteins during the course of therapy, causing drug resist-
ance (Figure 8).

The degree of compactness and folding is plotted against
time, which is commonly measured through the radius of
gyration (Rg). A long range variations in proteins show their
weak folding (Lobanov et al., 2008; Smilgies & Folta-
Stogniew, 2015). A stable Rg value shows compactness and
stable folding maintains a steady value of Rg, required for
proper function, whereas in case of misfolding, the Rg will
show a long range of variation over time.

In conclusion, marine natural product is the most diverse
group, containing potential inhibitors against RNA viruses.
Among marine natural products, C1 forming many interac-
tions with Thr24, Leu27, His41, Phe140, Cys145, His163,
Met165, Pro168, and His172, present in the active site and its
surrounding. These compounds have been observed as best
fitting in the binding pocket, that might be good inhibitor of
SARS-CoV-2 Mpro for better management of COVID-19.
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