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Purpose:Biallelic pathogenic variants inABCA4 are the commonest causeofmonogenic
retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal
dysfunction. We explored application of machine learning in ERG interpretation and in
genotype–phenotype correlations.

Methods: International standard ERGs in 597 cases ofABCA4 retinopathywere classified
into three functional phenotypes by human experts: macular dysfunction alone (group
1), or with additional generalized cone dysfunction (group 2), or both cone and rod
dysfunction (group3). Algorithmsweredeveloped for automatic selectionandmeasure-
ment of ERG components and for classification of ERG phenotype. Elastic-net regres-
sion was used to quantify severity of specific ABCA4 variants based on effect on retinal
function.

Results: Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively.
Compared with human experts, automated classification showed overall accuracy of
91.8% (SE, 0.169), and 96.7%, 39.3%, and93.8% for groups 1, 2, and 3.Whengroups 2 and
3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regres-
sion model yielded phenotypic severity scores for the 47 commonest ABCA4 variants.

Conclusions: This study quantifies prevalence of phenotypic groups based on retinal
function in a uniquely large single-center cohort of patients with electrophysiologically
characterized ABCA4 retinopathy and shows applicability of machine learning. Novel
regression-based analyses of ABCA4 variant severity could identify individuals predis-
posed to severe disease.

Translational Relevance:Machine learning can yield meaningful classifications of ERG
data, and data-driven scoring of genetic variants can identify patients likely to benefit
most from future therapies.

Introduction

Inherited retinal diseases are collectively one of the
largest causes of blindness in children and working-
age adults.1 Clinical assessment of patients frequently
includes examination of retinal structure using multi-
modal imaging and assessment of retinal function

by electroretinography.2 The commonest monogenic
retinal disease is associated with biallelic recessive
variants in ABCA4 (Stargardt disease; STGD1; MIM
248200),3,4 with a prevalence of approximately 1 in
8000.3 Most patients present with progressive symmet-
ric bilateral central visual loss in childhood or in early
adulthood. Classically, a central area of maculopathy
develops, surrounded by flecks, and there is usually
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marked macular dysfunction with or without general-
ized (mainly peripheral) retinal dysfunction. The latter
can be discerned with the full-field electroretinogram
(ERG).2 The ERG represents the summed electri-
cal response of the retina to flashes of light, deliv-
ered under dark-adapted (DA) and light-adapted (LA)
conditions, to yield information on the retinal rod and
cone systems.

Functional phenotypes have been divided into three
groups according to full-field ERGs5: dysfunction
confined to the macula (normal full-field ERGs; group
1), generalized cone system dysfunction (group 2), or
generalized cone and rod system dysfunction (group
3). Several studies have established the prognostic value
of this classification in ABCA4 retinopathy, inform-
ing patient counseling and management and poten-
tially influencing the selection of candidates for future
interventions.6,7 However, such phenotypic classifica-
tion requires expertise in ERG interpretation, which is
not always widely available.

Another challenge in this condition is the consider-
able allelic heterogeneity (more than 1000 pathogenic
variants have been identified), which confounds precise
genotype–phenotype correlation. Nullizygosity (allelic
variants that result in a complete loss of ABCA4
function) is associated with earlier onset and relatively
aggressive disease, causing progressive ERG worsen-
ing, while a few specific missense variants have been
associated with mild disease and normal ERGs.8,9
However, in many cases, it is not straightforward to
predict severity of the phenotype (and future progno-
sis) from the patient’s genotype, as the effects of
many variants (and their combinations) have not yet
been characterized. Machine learning methods are
increasingly being explored to assist clinical diagno-
sis in several fields of medicine, in many cases achiev-
ing expert-level performance. Potential advantages
include improving efficiency and speed of diagno-
sis, widening accessibility to diagnosis, developing
data-driven approaches to disease classification, and
the potential to quickly process historic data or
integrate quantitatively across different modalities. At
present, there have been relatively few applications
of machine learning in relation to visual electrophys-
iology.10–12 In the current study, we aimed to lever-
age a uniquely large single-center cohort of geneti-
cally and electrophysiologically characterized patients
with ABCA4-related disease, to help address some
of the challenges mentioned above, using machine
learning.

We aimed to investigate whether machine learning
could be employed to predict ERG phenotypic group
from waveform data, which might alleviate problems
with access to human expertise. Further, we sought to

explore whether a data-driven approach could be taken
to score the severity of specificABCA4 variants in their
effect on generalized retinal function. This could poten-
tially allow identification of those individuals predis-
posed to more severe disease (disease not restricted
to the central retina) based on their genotype. These
individuals would be expected to benefit most from
early intervention when effective therapies become
available. In both investigations of the current study,
supervised machine learning methods were used, first
to predict labels of ERG phenotypic group (1, 2, or
3) from the waveform data and, second, to predict
severity of ERG amplitude reduction from genetic
variants.

Methods

Inclusion and Exclusion Criteria

All patients included in this retrospective study
harbored at least one molecularly confirmed mutation
of the ABCA4 gene and had a clinical presentation
consistent with ABCA4-related retinopathy. As with
other natural history studies of Stargardt disease, those
found to have only one pathogenic variant in ABCA4
but who had a consistent phenotype were included,
with the assumption that a second variant was present
but undetected. Patients with additional pathology that
could potentially influence the ERGwere excluded. All
had attended the Department of Electrophysiology at
Moorfields Eye Hospital between October 2000 and
June 2019 and had undergone ERG testing according
to the International Society for Clinical Electrophysi-
ology of Vision (ISCEV) standard,2,13 using gold foil
corneal recording electrodes. Patients who had under-
gone recordings with periorbital skin electrodes were
excluded.All applicable institutional and governmental
regulations were followed (Research Ethics Committee
Approval Number 20/HRA/2158). The study adhered
to the tenets of the Declaration of Helsinki.

ERG Data Acquisition and Expert Evaluation

The timing and amplitude of the ISCEV standard
DA 10 and LA 3 ERG a- and b-waves and the LA
30 Hz ERG components were quantified and used for
comparison with machine learning assessments. The
classification into each of the three ERG phenotypes
took into account patient age, pupil size during testing,
and an assessment of the technical quality of record-
ings on a scale of 1 (limited compliance/physiologic
artifacts but technically adequate recordings) to 5
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(highest technical quality). ERG data were acquired at
one visit from each patient.

Variant Detection
Methods included direct Sanger sequencing,

arrayed primer-extension analysis,14,15 testing of
multiple-gene panels by next-generation sequenc-
ing, and whole-exome or whole-genome sequencing.
Patients with pathogenic variants in genes potentially
associated with a similar phenotype (chiefly PRPH2)
were excluded.

Data Preprocessing
All data analyses were completed in Python (version

3.6.9) using common libraries for data analysis and
machine learning, scikit-learn (version 0.24.2), scipy
(version 1.4.1), and numpy (version 1.17.0). Before
analysis, individual traces were shifted on the voltage
scale by subtraction of the mean of the amplitudes
corresponding to the five time point values directly
after time point zero (2.5 ms). Individual traces were
also interpolated onto a common timeline of 0.5-ms
sampling from 0 to 80 ms.

Automated ERG Trace Selection and
Component Labeling

A minimum of two and often many more repeti-
tions of ERG traces were recorded in the cohort data
and were used at the time of recording to establish the
consistency of responses.13 To reduce the influence of
artifacts in ERG components, an algorithm was devel-
oped for the automatic selection of appropriate traces
from a series of repeats, with a maximum of three
traces selected per eye per stimulus. For the DA 10 and
LA 3 ERGs, selection was according to the minimum
mean squared error for three traces within a series of
repeats. For the LA 30 Hz flicker ERG, the three traces
of maximum 30 Hz signal were selected.

Algorithms were also developed for automated
identification of the DA 10 and LA 3 a-wave trough
and b-wave peak, as well as of the LA 30 Hz peak.
Traces were filtered with a Butterworth filter with
an order of 5, then the earliest maxima or minima
of traces identified via the first zero-crossing in the
first derivative of the filtered trace. A minimum time
cutoff was included to prevent the inclusion of artifac-
tual troughs and peaks found within a physiologically
improbable time range. The values used for frequency
cutoff(s) and time thresholds of the Butterworth filters
are detailed in Supplementary Table S1. Mean ampli-
tude values were further averaged across both eyes
for the 592 of 597 patients with bilateral record-

ings. Automatic waveform labeling was validated by an
expert (AC) in a random sample of 10% of the data set.

Classification

The supervised machine learning pipeline for classi-
fication of ERG group is illustrated in Figure 1. Single-
trace DA 10, LA 3, and LA 30 Hz ERGs along
with patient age and pupil size were used to train a
hierarchical soft-voting ensemble model to predict the
functional phenotype groups 1, 2, and 3. Ensemble
learning is a meta-learning approach that combines
decisions from several base learning models to improve
the final prediction performance.16,17 This effectively
leverages differences in the way the base models are
learning predictive features, by allowing each base
model to contribute output class probabilities in a
vote. The ensemble in this study comprised three
base models, including the support vector machine
(SVM), adaboost with decision trees, and logistic
regression, extended hierarchically in two steps. First,
three separate ensemble models were trained using the
three base models for traces from each ERG stimu-
lus. Second, the ensembled output class probabili-
ties from step 1 (soft vote) were used to generate
functional group predictions per patient using an SVM.
Specifically, an average of the output class probabil-
ities for single-trace prediction per eye for each data
type was used as input to the final SVM. Within
a repeated nested fivefold cross-validation, data were
divided at the patient level into training, validation, and
test groups (training/validation/test at 64:16:20 split).
Tuning of model hyperparameters was performed on
the inner validation loop only, and all metrics are
reported on the unseen test data set (the remain-
ing 20% data split from each fold) to avoid any
information leakage from the test set to the training
set.

Statistical Analysis of Genetic Variants

For investigating the effects of specific genetic
variants, β-coefficients were evaluated in an elastic net
regression from ABCA4 variants (with age, sex, and
pupil size) to ERG a-wave and b-wave component
measurements. The β-coefficients were standardized
by z-score transformation of the dependent variable.
Where one patient had two variants previously identi-
fied to occur in cis as complex variants, this was
assumed to be the case (c.5603A>T, for instance, was
included only when not found in transwith c.2588G>C
p.(Gly863Ala) or c.5461-10T>C). Patients with only
one recognized variant or more than two variants
were excluded from the regression analysis. The model
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Figure 1. Soft-voting ensemblemodel for ABCA4 retinopathy functional phenotype classificationwith SVMs, Adaboost with decision trees
(Adaboost DT), and logistic regression (LR) classification algorithms.

was evaluated through leave-one-out cross-validation
and calculation of the r2 score on the unseen test
group.

Role of the Funding Source

The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing this report.

Results

Patient Demographics and Genetic and ERG
Characteristics

ERGs were available from 597 individuals with
ABCA4 retinopathy (1189 eyes), including 497 with at
least two recognized pathogenic variants. Prevalence
of different variants for the cohort is given in Supple-
mentary Table S2. According to expert (human) analy-
sis of the ERGs, the cohort comprised 344 patients in
group 1 (57.6%), 44 in group 2 (7.4%), and 209 in group

3 (35.0%). Variables of age, pupil size, sex, compli-
ance, and ERG recording system were similar for each
of the three ERG groups (Figs. 2a, 2c–f). The great-
est variability in best-correct visual acuity was seen in
those with the group 1 ERG phenotype, with those in
groups 2 and 3 having more consistently severe central
visual impairment (Fig. 2b).

There was a high degree of interocular symmetry in
the main ERG components, including DA 10 ERG a-
wave (r = .96) and b-wave (r = .96), LA 3 ERG a-wave
(r=.90) and b-wave (r= .96), and LA 30Hz ERG peak
amplitudes (r = .95). Slope coefficients for the interoc-
ular ERG components ranged from 0.99 to 1.00 given
intercept 0.

Figures 3a–c show grand averages of DA 10, LA
3, and LA 30 Hz ERGs for each of the three expert-
assigned groups. Mean amplitudes were lowest and
peak times longest for the ERG components in group
3, characterized by both cone and rod system dysfunc-
tion. Mean amplitudes were greatest and mean peak
times shortest in group 1, with group 2 patients
showing intermediate mean values. A comparison of
ERG amplitudes with age (Figs. 3d–m) suggested a
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Figure 2. Patient cohort demographics and other baseline parameters by expert-assigned electrophysiologic group. (a) Age at testing.
(b) Best-measured visual acuity at testing. (c) Pupil diameter (greater or less than 7 mm). (d) Sex. (e) “Compliance” score (5 denotes highest
technical quality recordings). (f ) ERG recording system (ESP, LED-based Diagnosys Colordome running Espion software; REV, Xenon flash
stimulator and “Observer/Reviewer” software).

reduction in all ERG components with increasing age
in groups 1 and 2 (Table 1). In group 3, no age-
associated reduction was evident in the LA 3 and LA
30HzERGs.All three groups showed greatermeanDA
10 ERG a-wave peak times with increasing age. LA 3
and LA 30 Hz ERG peak times showed greatest delays
and variability in group 3, but linear regression revealed
no evidence of age-associated worsening in this cross-
sectional analysis.

The distribution of ERG components and varia-
tion with age were further investigated for the five
most prevalent ABCA4 variants (Fig. 4). Three of
the top five variants were associated with significant
(Pearson correlation P < 0.05) negative gradients for
DA 10 b-wave amplitudes, LA 3 b-wave amplitudes,
and LA 30 Hz flicker peak amplitudes, consistent with
age-associated loss of cone and rod system function
(Fig. 3, rows 1, 2, and 4). Plots for the DA 10 and LA
3 ERG a-wave amplitudes and LA 30 Hz ERG peak
times are shown in Supplementary Figure S1. Annual
rates of ERGdecline for all ERG components are given
in Supplementary Table S3.

Classification of ERG Phenotype

An ensemble of machine learning models was used
to classify ERG phenotypes into groups 1 to 3, based
on the DA 10, LA 3, and LA 30 Hz ERGs and
the results compared with the expert analysis. In a
repeated fivefold nested cross-validation within the
ERG data set, the overall holdout test group accuracy

was 91.8% (SE, 0.17%), with an average accuracy of
96.7%, 39.3%, and 93.8% for ERG phenotype groups
1, 2, and 3, respectively, and an average κ value of
0.84. The normalized confusion matrix for each group
is displayed in Table 2 (see Supplementary Fig. S2a for
one-versus-all receiver operating characteristic [ROC]
curve).

Groups 2 and 3 were combined for a binary classi-
fication of restricted (group 1) or generalized (groups
2 and 3) disease phenotypes. In a repeated fivefold
nested cross-validation, the soft-voting ensemblemodel
achieved an average holdout test group accuracy of
93.6% (SE, 0.14%), a sensitivity of 0.91, a specificity of
0.95, and a mean area under the curve (AUC) of 0.93
(ROC curve in Supplementary Fig. S2b) for general-
ized disease. The normalized confusion matrix for each
group is displayed in Table 3.

Figure 5 displays the expert classification and the
machine learning phenotype prediction for each of
the most prevalent variants (present in at least five
patients), highlighting concordance between methods.

Quantification of Variant Severity

The amplitudes of the DA 10 and LA 3 a-waves
and b-waves and LA 30 Hz ERGwere predicted for the
genetic variants of study participants (inwhombiallelic
variants had been found) using an elastic net regression
model. In a leave-one-out cross-validation detailed in
Supplementary Figure S3, regression against automat-
ically measured ERG component amplitudes resulted
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Figure 3. (a–c) Grand average of DA 10, LA 3, and LA 30 Hz ERG traces within each of the three ERG phenotype groups; shaded areas
give 95% confidence intervals. (d–m) Amplitudes and peak times of the main ERG components for every patient, plotted against age, and
illustrating the data range for each of the three groups; broken lines show linear regression lines for each group (left-hand plots); histograms
illustrate parameter distributions (right-hand plots).

in an average r2 = 0.288, with r2 = 0.325 and r2
= 0.320 for DA 10 a-waves and b-waves, respec-
tively. Figure 6 displays the standardized β-coefficient
values for the 47 most common genetic variants
in the cohort. Regression analysis showed higher
coefficient values are associated with the typically
milder variants c.5882G>A p.(Gly1961Glu),18,19
c.5603A>T p.(Asn1868Ile),20 and intronic variant
c.4253+43G>A,21 while lower coefficient values
were associated with known nonsense and frameshift

variants, as well as known null-like intronic variant
c.5461-10T>C.22,23 Several missense mutations also
displayed more negative coefficients, suggesting a
more deleterious effect on ABCA4 protein function.
Supplementary Table S4 contains the standardized
β-coefficients for the 101 variants occurring in two
or more patients. For each variant, β-coefficients
were similar for all ERG components analyzed
(average correlation between ERG parameters
r = 0.82).
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Figure 4. Amplitudes of ERG components plotted against age and illustrating the data associated with the commonest genetic variants,
displayed in descending order from themost common (c.5882G>A; prevalence 22.55%) to the fifthmost common (c.4139C>T) variant (left-
handplots). Linear regression lines are shown to indicate significant correlationwith age (P< 0.05); shadedareas represent confidence limits.
Histograms illustrate parameter distributions (right-hand plots).

Table 1. Mean Rates of Change of Amplitude with
Increasing Age in Microvolts/y, in ERG Groups 1 to 3 in
the Cross-Sectional Data Set

Rate of ERG Component
Amplitude Change (μV/y)ERG

Component Group 1 Group 2 Group 3

DA 10 b-wave −1.72 −2.36 −1.75
LA 3 b-wave −0.75 −0.54 ND
LA 30 Hz peak
amplitude

−0.41 −0.22 ND

DA 10 a-wave −1.46 −1.35 −0.98
LA 3 a-wave −0.20 −0.13 ND

ND, no decline detected.

Discussion

This study investigates a uniquely large single-center
cohort of patients withABCA4-relatedmacular and/or
retinal dysfunction, characterized using international
standard ERG protocols. Different ERG phenotypes
were established across an age range of more than seven
decades and relationships to genotypes examined,

Table 2. Normalized Confusion Matrix for ERG Pheno-
type Classification into One of Three Groups, According
to Repeated Nested Cross-Validation Holdout Test Sets

Model Phenotype PredictionExpert-
Assigned
Phenotype Group 1 Group 2 Group 3

Group 1 0.97 0.015 0.013
Group 2 0.47 0.39 0.19
Group 3 0.036 0.021 0.94

Table 3. Normalized Confusion Matrix for Binary
Classification into Restricted (Mild) and Generalized
(Severe) ERG Phenotypes, According to Repeated
Nested Cross-Validation Holdout Test Sets

Model Phenotype Prediction

Expert-Assigned
Phenotype

Restricted
Disease

Generalized
Disease

Restricted disease
(group 1)

0.95 0.047

Generalized disease
(groups 2 and 3)

0.087 0.91
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Figure 5. The percentage of patients falling into each ERGphenotype group is included for the 42most frequentABCA4 variants, according
to expert analysis (left) and themachine learningmethod (right). Each row relates to all the patientswith a particular variant. The color coding
allows appreciation of the similarities and level of concordance between the two methods (high to low values are highlighted by dark to
light shading).
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Figure 6. Standardized elastic net regression β-coefficients displayed for the 47 most commonly occurring variants (in combination with
at least one other known variant), for prediction of DA 10 b-wave amplitude (●), LA 3 b-wave amplitude (�), and LA 30 Hz flicker peak
amplitude (�). Absolute DA10 a-wave amplitude (l) and absolute LA 3 a-wave amplitude (x).

through application of supervised machine learning to
ERG data and genotype–phenotype relationships.

The study involved retrospective interrogation of
legacy data obtained with different instruments but
using consistent ERG protocols and considered factors
such as pupil size, technical quality of recordings, and

sex differences. The study highlights the value of adopt-
ing standard (ISCEV) ERG techniques and demon-
strates methods of optimizing data for automated
interrogation, pertinent to future studies and the possi-
bility of pooling of multicenter electrophysiologic
data.
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There was a high degree of interocular symmetry
of ERG amplitude parameters. This is a feature of
most inherited retinal diseases and may be of diagnos-
tic relevance in cases of suspected Stargardt disease,
particularly if genetic confirmation is lacking. An
inherent feature of visual electrophysiology is the
presence of physiologic noise and artifacts (e.g., due
to muscle activity or eye movements). Noise is ideally
minimized at source and binocular recordings usually
important for diagnosis, but averaging between eyes
may improve the signal-to-noise ratio, justified in the
current study by the high level of interocular symmetry
and allowing full utilization of available legacy data.

Prevalence of Different Groups and the
Spectrum of Disease

The majority of patients fell into group 1, with
almost 35% in group 3 and a small number in group 2
(7.4%). Eighty percent of patients with a group 1 ERG
phenotype have previously been shown to have stable
ERGs at 10-year follow-up, whereas a large propor-
tion in group 2 progress in time to group 3.6 This
may explain the rarity of group 2 patients. Although
the discriminating feature between groups 2 and 3
is the presence of generalized rod system dysfunc-
tion, our findings show that cone system function
(LA ERGs in Fig. 3) also differs between the two
groups, consistent with different stages of the same
progressive subtype. The distribution of parameters
over the cohort (Figs. 3d–m) suggests a continuous
spectrum of disease, with little evidence of multiple
separate peaks or modal ranges to indicate distinct
subgroups.

In cross-sectional studies of healthy individuals,
ERG amplitudes generally decline with age.24 This also
occurred in our patient cohort, particularly in groups
1 and 2. Paradoxically, some ERG components in
group 3 appeared to become larger with increasing
age (Fig. 3), but this is likely explained by younger
patients in group 3 tending to havemore aggressive and
severe disease than those presenting later in life. This
highlights a need for caution when deriving estimates
of age-related effects from cross-sectional rather than
longitudinal data.

Parameter Distributions and Variation With
Age for the Five Most Common Variants

The diverse range of ABCA4 genetic variants that
can constitute a person’s genotype is likely to underlie
much of the variability in phenotype, although trans-
acting genetic and environmental modifiers might also

exist. To investigate this, the range of ERG values
was investigated in cases harboring one of the five
most prevalent variants in our cohort (Fig. 4). The
commonest variant (top panels of Fig. 4) was associ-
ated with a relatively narrow parameter distribution
with a peak (highest counts) in the normal range,
consistent with this being a mild variant: regardless
of the variant on the other allele (whether it mildly
or severely impairs protein production or function),
dysfunction is restricted to the macula, and the normal
ERGs show an age-associated decline similar to that
seen in healthy cohorts.24 A broader distribution or
multiple peaks, including high frequencies of low
ERG amplitudes (see, e.g., third row in Fig. 4), is
consistent with variants having a more severe impact.
When paired with a mild variant on the other allele,
disease may be restricted, with normal ERGs, but when
paired with severe variants, disease is more severe. This
likely contributes to the apparent lack of age-related
ERG decline associated with some of the more severe
variants (Fig. 4). Small numbers will limit the reliability
of this analysis.

Application of Machine Learning for
Automated Group Classification

Automated group classification using a voting
ensemble showed high concordance with expert classi-
fication for groups 1 and 3, which constituted 92.6% of
the cohort. Overall accuracywas 91.8%with high speci-
ficity and sensitivity for groups 1 and 3. Sensitivity and
specificity for group 2 were low, possibly reflecting the
low number of cases (and hence far fewer cases avail-
able for training).When groups 2 and 3were combined,
based on the rationale that they reflect earlier and
later time points in a common disease trajectory,
accuracy was again high (93.6%), with high sensitiv-
ity and specificity for both classes (high AUC of 0.93).
As the groups have prognostic significance (particu-
larly group 1 compared with groups 2 and 3), this
provides proof of principle that automated machine
learning classification has great potential in this
condition.

Voting ensembles can improve variance without
increasing model bias by averaging out the diversity in
the different base models. In preliminary experiments,
the voting ensemble was found to increase accuracy
over the results of individual classifiers. Given the
modular nature of the model architecture, it is also
adaptable to the variation in numbers of ERG traces
per person and allows inference where data were only
available from single eyes, without requiring missing
data imputation.
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Expert and Machine Learning Group
Classification for the 42 Commonest Variants

The proportion of cases falling into each group for
each of the 42 commonest variants (each present in five
or more patients) was quantified, according to expert
and automated classification (Fig. 5). Cases harboring
milder variants will almost all confer a group 1 pheno-
type, irrespective of the variant on the other allele,
while the more severe variants will show high propor-
tions in both groups 1 and 3 (depending on whether
they are paired with a mild or severe variant, respec-
tively). Both expert and machine learning–derived
classifications show similar patterns by variant. A
notable exception is the c.6320G>A p.(Arg2107His)
variant: most of these cases were expert-classified as
group 2 or 3, but themore prevalent groups bymachine
learning were groups 1 and 3. The reason is uncertain,
but this outlier may relate to only 12 cases being avail-
able.

Regression-Based Quantification of Variant
Severity

An elastic net regression approach was addition-
ally used to quantify severity of the top 47 variants
by assessing effects on ERG components, indepen-
dent of any consideration of ERG group. The results
in Figure 6 are color-coded by type of variant.
Those with more positive coefficients (lines extend-
ing to symbols on the right of the chart) denote
variants that have less effect on ERG amplitudes
(thus predisposing to more restricted disease), while
those with less positive or more negative coefficients
(symbols on the left of the chart) predispose to more
generalized disease. A striking feature is that the
standardized coefficients are similar for each ERG
parameter (average r = 0.82), indicating consistency
across the different stimulus responses for a given
variant. The results are also highly consistent with
what is already known about specific milder variants,
such as c.5882G>A p.(Gly1961Glu),18,19 c.5603A>T
p.(Asn1868Ile),20 and c.4253+43G>A,21 and nonsense
and frameshift variants, including c.5461-10T>C,22,23
supporting the accuracy of this novel approach.

Previous studies have used different approaches to
quantify variant severity and derived metrics relating
to delay in disease initiation (based on perimetric or
Optical Coherence Tomography (OCT) ellipsoid zone
data).25,26 We found significant positive correlation
between our ERG-based scoring of variant severity
and these metrics (r = 0.639 and r = 0.668 for correla-
tion between our scores and the metrics of Pfau et al.25

and Cideciyan et al.,26 respectively). These correlations
are depicted in Supplementary Figure S4.

The strength of our approach is limited for the
less common variants but may prove fruitful in
future studies of larger cohorts pooled from multi-
ple centers. In future, such approaches may allow
a prediction, based on genotype, as to whether an
individual will develop disease restricted to the macula
or more widespread panretinal disease (with much
greater impact on quality of life). This would allow
more accurate prognostic advice and also inform the
timing and suitability for novel therapeutic approaches
currently in clinical trials.

Study Limitations and Future Directions

ERG data in their nature are instrument depen-
dent, prone to noise artifacts, and are relatively scarce
outside of specialist settings, presenting challenges for
training generalizable machine learning models. Imbal-
ance in ERG phenotypic groups within our ABCA4
retinopathy cohort and diversity in genetic background
may also impact generalizability through the potential
for overfitting on small subpopulations. Additionally,
the current study is limited to the analysis of ISCEV
standard ERGs recorded with gold foil electrodes at a
single visit, potentially restricting applicability to other
ERG methods. Longitudinal data could further estab-
lish the prognostic significance of the ERG phenotype
and are likely to be similarly amenable to machine
learning investigation. It would also be interesting to
extend our analysis to a larger ERG data set involving
different pathologies and to develop models through
unsupervised learning suited to identifying patterns in
large andmore complex data sets, including other types
of visual electrophysiology. There is potential, using
such techniques, to identify hitherto undefined features
inherent within the waveforms that may have clinical
significance.

Conclusion

Visual electrophysiology has long offered valuable
insights into retinal and visual pathway health and
disease, but interpretation requires significant exper-
tise and resources. Standardization of recording
methods has facilitated meaningful interlaboratory
comparisons and pooling of data, but the interna-
tional standard ERG analysis involves assessment of
relatively few components, and it is tempting to specu-
late that some clinically meaningful ERG characteris-
tics may be revealed by further automated analysis. The
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use of artificial intelligence is not new in health care,
but its application to full-field ERGs in inherited retinal
diseases is unexplored, and to the best of our knowl-
edge, this is the first study to demonstrate applicability
of machine learning directly to full-field ERG analysis
in ABCA4 retinopathy.

Data Sharing

Deidentified data used in this study are not
publicly available at present. Parties interested in
data access should contact Anthony Robson (ERG
data; anthony.robson3@nhs.net) or Omar Mahroo
(o.mahroo@nhs.net). Applications will need to
undergo ethical and legal approvals by Moorfields
Eye Hospital NHS Foundation Trust.
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