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Abstract Cyclic adenosine 3, 50-monophosphate (cAMP) is

a ubiquitous second messenger regulating many biological

processes, such as cell migration, differentiation, prolifera-

tion and apoptosis. cAMP signaling functions not only on the

plasma membrane, but also in the nucleus and in organelles

such as mitochondria. Mitochondrial cAMP signaling is an

indispensable part of the cytoplasm-mitochondrion crosstalk

that maintains mitochondrial homeostasis, regulates mito-

chondrial dynamics, and modulates cellular stress responses

and other signaling pathways. Recently, the compartmen-

talization of mitochondrial cAMP signaling has attracted

great attentions. This new input should be carefully taken

into account when we interpret the findings of mitochondrial

cAMP signaling. In this review, we summarize previous and

recent progress in our understanding ofmitochondrial cAMP

signaling, including the components of the signaling cas-

cade, and the function and regulation of this signaling

pathway in different mitochondrial compartments.
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Abbreviations

cAMP Cyclic adenosine 30,50-monophosphate

ATP Adenosine triphosphate

OXPHOS Oxidative phosphorylation

mtDNA Mitochondrial DNA

ETC Electron transport chain

OMM Outer mitochondrial membrane

AC Adenylyl cyclase

TmAC Transmembrane adenylyl cyclase

sAC Soluble adenylyl cyclase

PKA Protein kinase A

CREB cAMP response element binding protein

PLC Phospholipase C

PKC Protein kinase C

PI3K Phosphoinositide 3-kinase

IP3 Inositol trisphosphate

PDE Cyclic nucleotide phosphodiesterase

AKAP A-kinase anchoring protein

IMS Intermembrane space

IMM Inner mitochondrial membrane

TOM Translocase of the outer membrane

AAC ADP/ATP carrier

MDV Mitochondrion-derived vesicles

Drp1 Dynamin-related protein 1

Mfn2 Mitofusin 2

OPA1 Optic atrophy 1

MAPK Mitogen-activated protein kinases

GSK-3b Glycogen synthase kinase 3b
SKIP Sphingosine kinase interacting protein

FRET Fluorescence resonance energy transfer

TCA Tricarboxylic acid

BiFC Bimolecular fluorescence complementation

3-MST 3-Mercaptopyruvate sulfurtransferase

CBS cystathionine b-synthase
CSE Cystathionine g-lyase

H2S Hydrogen sulfide

COXIV-1 Cytochrome c oxidase subunit IV isoform 1

COX Cytochrome c oxidase

IF1 ATPase inhibitory factor 1

ROS Reactive oxygen species
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PGC-1a Peroxisome proliferator-activated receptor

gamma co-activator 1a
NRF Nuclear respiratory factor

mtTFA Mitochondrial transcription factor A

ABC ATP-binding cassette

TPP? Triphenylphosphonium cation

Introduction

Mitochondria, unique organelles enclosed by a two-layered

membrane, produce the majority of cellular ATP in the

eukaryotic cells through oxidative phosphorylation

(OXPHOS). They also house the biosynthetic processes for

many of the cell’s building blocks, including lipids,

nucleotides, amino acids, and heme. Besides their well-

recognized roles in energy and intermediate metabolism,

mitochondria are now accepted as an important nexus for

signaling cascades involved in cell growth, proliferation,

differentiation and death [1].

Mitochondria originated from the endosymbiosis of

ancestral bacteria inside primitive eukaryotic cells,

approximately two billion years ago [1, 2]. Over their long

evolutionary history, the engulfed bacteria ceased to

function as free-living organisms, becoming instead semi-

autonomous organelles. The majority of the mitochondrial

ancestor’s genetic content was either lost or transferred to

the host nuclear genome [3], and only a small fraction was

retained in mitochondria. A typical animal cell contains

hundreds to thousands copies of mitochondrial DNA

(mtDNA), each encoding 13 essential subunits of the

electron transport chain (ETC), 2 ribosomal RNAs and 22

tRNAs required for protein synthesis inside the organelle.

The majority of the approximately 1500 mitochondrial

proteins are encoded by the nuclear genome, synthesized in

the cytoplasm and imported into mitochondria after trans-

lation [4, 5].

Mitochondria cannot be produced de novo. Instead, their

proliferation requires mtDNA replication and the addition

of lipids and proteins to the existing organelles [6, 7].

Mitochondria also undergo constant fusion and fission to

adjust their shape and numbers in cells [8, 9]. Fusion and

fission are also critical for the positioning, movement and

even destruction of mitochondria. Mitochondrial biogene-

sis (the growth and division of pre-existing mitochondria)

and dynamics (movement and morphological changes) are

highly plastic in response to the cell’s energy demand, to

developmental cues and to environmental stimuli. The

success of such symbiosis requires carefully orchestrated

communications between the eukaryocyte host and the

prokaryocyte organelle. In the past a few years, it has

become apparent that these communications are mediated

in great part by cAMP signaling, a universal pathway

conserved in all cellular organisms.

In this review, we briefly describe the compartmental-

ized landscape of mitochondrial cAMP signaling and

discuss its regulation and diverse functions. We summarize

the established roles of cAMP-PKA signaling the outer

mitochondrial membrane (OMM) in protein import, mito-

chondrial fission and apoptosis. We also discuss the recent

evidence for cAMP signaling in the mitochondrial matrix,

as well as its effectors in the regulation of OXPHOS and

mitochondrial biogenesis. In addition, we present unre-

solved questions about intra-mitochondrial cAMP

signaling that need to be addressed in the future. Finally,

we speculate on the therapeutic potential of managing

mitochondrial cAMP signaling for diseases linked to

mitochondrial deficiencies.

Cellular cAMP signaling
and compartmentalization (Fig. 1)

cAMP, one of the first identified and most versatile second

messengers, mediates diverse cellular responses to extra-

cellular signals. Over the past decades, various mechanisms

triggering the production of cAMP have been identified, as

well as its downstream effectors. Upon the activation of

membrane receptors, downstream transducers, mainly G

proteins, activate adenylyl cyclases on the plasma membrane

(TmACs) to convert ATP to cAMP [10, 11]. Intracellular

cAMP can also be produced by soluble adenylyl cyclases

(sACs) in response to bicarbonate, calcium and the change

of ATP level [12–15]. The major downstream effector of

cAMP signaling is protein kinase A (PKA), a heterotetramer

consisting of two catalytic subunits and two regulatory

subunits. cAMP binds to the regulatory subunits, which

releases and activates the catalytic subunits [16, 17]. Acti-

vated PKA phosphorylates and activates cAMP response

element (CRE)-binding protein (CREB), a transcriptional

co-factor that initiates an array of transcriptional cascades

involved in immune response, cellular metabolism and

mitochondrial biogenesis [18–20]. Besides its role in tran-

scriptional regulation, PKA phosphorylates and modulates

the activity of ion channels [21–23], cellular motor proteins

[24, 25] and many enzymes involved in intermediate

metabolism [26]. Many signaling and regulatory proteins,

such as phospholipase C (PLC) [27], protein kinase C (PKC)

[28], phosphoinositide 3-kinase (PI3K) [29, 30] and inositol

trisphosphate (IP3) receptors [31], are also regulated by

PKA-dependent phosphorylation. These phosphorylation

events intertwine cAMP-PKA signaling with other cellular

messengers and signaling cascades, and provide multiple

feedback loops further modulating cAMP signaling [32, 33].

Intracellular cAMP level is regulated by the balanced act of
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ACs and cyclic nucleotide phosphodiesterases (PDEs),

which terminate cAMP-PKA signaling by hydrolyzing

cAMP to AMP [34, 35]. Besides the main effector PKA,

cAMP can also directly activate the exchange protein Epac

[36], the cyclic nucleotide-gated channels [37] and the

Popeye domain-containing proteins [38, 39]. Within a single

cAMP cascade, ACs, PKA, other downstream effectors and

PDEs are often tethered together by scaffold proteins, the

A-kinase anchoring proteins (AKAPs), at distinct subcellular

locations [16, 40]. The compartmentalization of these sig-

naling proteins [41–44] not only promotes the efficiency of

cAMP signaling transduction, but also allows the same

second messenger, cAMP, to mediate diverse physiological

responses.

The compartmentalized structure of mitochondria [45]

further shapes the cAMP signaling profile. The cAMP

produced by TmAC or sAC in the cytosol can freely dif-

fuse to the outer mitochondrial membrane (OMM) and

activate the local PKAs at the mitochondrial surface.

Moreover, as the OMM is readily permeable to ions and

small molecules of 5 kDa or less [46], cytosolic cAMP

might also regulate pathways inside the inter-membrane

space (IMS). The inner mitochondrial membrane (IMM),

however, is intrinsically impermeable due to a lack of

Porins [47] and a high content of cardiolipin [48]. Never-

theless, cAMP is detected in the mitochondrial matrix of

metazoans [49], which raises the questions of its origin in

the matrix, and of its potential role in the regulation of

biochemical pathways in this compartment.

cAMP signaling in the outer-mitochondrial
compartment (Fig. 2)

Metabolic switch and mitochondrial protein import

As the interface between mitochondria and cytosol, the

OMM is enriched in proteins that respond to intracellular
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Fig. 1 General cAMP signaling pathways. Intracellular cAMPs are

generated by two classes of ACs, the transmembrane AC (TmAC) and

the soluble AC (sAC). Both TmAC and sAC convert ATP to cAMP

upon stimulus. TmAC can be activated by G proteins when an

extracellular signal is received by the G protein-coupled membrane

receptor. sAC is insensitive to G-proteins but can be activated by

bicarbonate and calcium. Elevated cAMP level activates protein

kinase A (PKA), the major effector of cAMP signaling, by releasing

the two catalytic subunits (Cs) from the two regulatory subunits (Rs).

Activated PKA in turn phosphorylates and activates numerous

downstream protein targets, including the cAMP response element

binding protein (CREB), a transcriptional co-factor regulating

multiple cellular processes. Cyclic nucleotide phosphodiesterases

(PDEs) are the negative regulators that terminate cAMP-PKA

signaling by hydrolyzing cAMP to AMP. As a result, cAMP level

and signaling activity are determined by the equilibrium between ACs

and PDEs. In addition to its main effector PKA, cAMP can also

directly activate the exchange protein Epac, the cyclic nucleotide-

gated channels (CNGCs) and the Popeye domain-containing proteins

(Popdcs). Within a single cAMP cascade, ACs, PKA, other down-

stream effectors and PDEs are often tethered together by an A-kinase

anchoring proteins (AKAPs) at distinct subcellular locations
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signaling messengers regulating mitochondrial biogenesis,

morphology and removal. Mitochondrial biogenesis entails

the synthesis of approximately 1500 nucleus-encoded

polypeptides in the cytoplasm and their import to mito-

chondria [4, 5]. The translocase of the outer membrane

(TOM) complex represents the predominant pathway for

importing proteins across the OMM [4, 5]. It is also one of

the main downstream effectors of cAMP-PKA signaling

tuning mitochondrial biogenesis to metabolism [50]. Three

core components of the TOM complex, TOM70, TOM22

and TOM40, are phosphorylated by PKA in response to the

glucose-induced cAMP increase triggered by a metabolic

switch from respiratory to fermentable conditions [51–53].

Phosphorylation by PKA impairs the interaction between

TOM70 and metabolite carrier/chaperone complexes (e.g.,

AAC/Hsp70) [51], inhibits the translocation of TOM22 to

mitochondria [52] and prevents the integration of TOM40

into the OMM [53]. Thus, elevated cAMP-PKA signaling

slows down the import of mitochondrial proteins, and

fosters the metabolic switch from OXPHOS to glycolysis

in conditions of increased glucose or reduced oxygen

availability.

Stress response and regulation of mitochondrial

fission and fusion

Mitochondrial fission and fusion are indispensable for

mitochondrial homeostasis [8, 9]. In a pool of overall

healthy mitochondria, fusion mingles proteins, lipids and

metabolites among individual mitochondria, thereby miti-

gating the defects of dysfunctional ones. On the other hand,

fission enables the segregation of damaged mitochondria

from a healthy population for their eventual removal, pos-

sibly through autophagy and mitochondrion-derived vesicles

(MDV) [54–56]. Unbalanced fusion and fission can impair

mitochondrial biogenesis, cause excessive mitochondrial

fragmentation and trigger apoptosis [8, 9]. Elevated cAMP

signaling upon bioenergetic stresses like starvation can

inhibit mitochondrial fission, suspend unnecessary biogen-

esis and promote survival by sharing metabolites and
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Fig. 2 cAMP signaling in the outer-mitochondrial compartment.

cAMP from the cytosol or produced by sAC on the OMM can activate

the local PKA which in turn phosphorylates different targets

associated with the OMM. a PKA phosphorylation impairs the

receptor activity of TOM70 and its interaction with the metabolite

carrier/chaperone, prevents TOM22 translocation and TOM40 inte-

gration into the OMM, and eventually slows down the import of

mitochondrial proteins. b PKA phosphorylation can also block Drp1’s

translocation to the OMM surface and thus lead to reduced

mitochondrial fission. c In mammals, PKA phosphorylation inhibits

Bad’s apoptotic activity but promotes Bim’s by increasing its stability

against proteasome-dependent degradation. PKA phosphorylation of

Bax promotes its translocation to mitochondria and triggers the

release of cytochrome c (CC) and the maturation of the apoptosome,

which eventually leads to apoptosis. AKAPs tether PKA and other

proteins, e.g., Bad, on the OMM to facilitate the cAMP-PKA

targeting. They also promote different signaling specificities under the

same environmental context by providing a dynamic platform of

proteins complex in multiple combinations

4580 F. Zhang et al.

123



boosting energy metabolism [57]. Mitochondrion fission is

mediated by the dynamin-like GTPase, Drp1, which is

recruited to the mitochondrial surface and assembled into a

multimeric ring-like structure wrapping around the con-

striction points of the dividing mitochondria [58].

Phosphorylation of Drp1 by PKA blocks its translocation to

the mitochondrial surface, leading to mitochondrial elon-

gation rather than fission, which promotes cell survival

[57, 59–61]. Reciprocally, Drp1 de-phosphorylation facili-

tates Drp1 recruitment to mitochondria and promotes fission,

autophagy and apoptosis [54, 59, 62].

Under conditions of increased autophagy, a feedback

response can promote fusion and survival by activating

cAMP-PKA-dependent Drp1 phosphorylation and mito-

chondria elongation [57]. In addition to Drp1, PKA can

also phosphorylate mitofusin 2 (Mfn2) [63] and bind to

optic atrophy 1 (OPA1) [64, 65]. Both Mfn2 and OPA1 are

involved in mitochondrial fusion [9]. However, the physi-

ological significance of cAMP-PKA signaling in regulating

mitochondrial fusion remains elusive.

Apoptosis

Several apoptosis-related proteins are substrates of PKA

[66–73]. In mammals, the intrinsic apoptotic pathway is

regulated by the concerted action of anti-apoptotic Bcl-2

like proteins and pro-apoptotic BH3-only proteins [74, 75].

The pro-apoptotic proteins Bax [68, 69], Bad

[66, 67, 70, 71] and Bim [72] can all be phosphorylated by

PKA. However PKA phosphorylation on these proteins

have completely opposite consequences: IL3-induced PKA

phosphorylation of Bad inhibits its apoptotic activity [66],

and the effect is mediated through the formation of PKA-

Bad complex on the OMM [67, 70, 71]. By contrast, PKA

phosphorylation of Bax promotes its translocation to

mitochondria and triggers cytochrome c release and

apoptosis [68, 69]. In addition, PKA phosphorylation of an

isoform of Bim increases its stability against proteasome-

dependent degradation and promotes its apoptotic effect

[72].

AKAPs as mediators of cAMP signaling specificity

on the OMM

It is perplexing that a common messenger, cAMP, can

elicit such diverse and distinct responses through different

effectors on the OMM. It is now recognized that a family

of PKA-anchoring proteins, the AKAPs, bind to and target

PKA to distinct subcellular locations including the mito-

chondrial surface, the plasma membrane and the nucleus

[16, 40]. AKAPs also act as scaffold proteins that tether

PKA, PDEs, phosphatases, cytoskeleton proteins as well as

other signaling molecules, such as PKC, MAPK, GSK-3b

together, to form multi-protein signaling complexes

[16, 40, 76–79]. Multiple AKAP isoforms have been found

localized to mitochondria in metazoan [76, 78–86], and

most AKAPs localize to the OMM. Specifically, D-AKAP1

has been proved directly siting in the OMM with its

C-terminus protruding into the cytoplasm [87, 88]. The

OMM-bound AKAPs tether PKA and other signaling

molecules on the OMM [66, 78, 79, 84, 89–92]. This

spatial organization allows the signaling specificities of

different PKA pathways with a shared common messenger,

cAMP, and thereby supports versatile combinations of

mitochondrion related regulations. The sphingosine kinase

interacting protein (SKIP) is an exceptional AKAP that

recruits PKA to the IMS and the matrix of murine heart

mitochondria [86].

cAMP signaling inside the matrix (Fig. 3)

Mitochondrial biogenesis relies on the coordination

between mitochondrial and nuclear genomes [6, 7]. In

particular, the assembly of ETC complexes and mito-

chondrial ribosomes require the proper stoichiometry of

nucleus- and mitochondria-encoded components. Mito-

chondria originated from bacteria, and bacteria use cAMP

signaling to regulate motility, metabolism and DNA

replication [93]. One can therefore speculate that a local

cAMP signaling might have been retained in the mito-

chondrial matrix during evolution even though most

mitochondrial components became encoded in the nuclear

genome. Considering the emerging roles of cAMP signal-

ing in the regulation of nuclear transcriptional activity and

protein import into mitochondria, it is conceivable that

cAMP signaling might act in parallel inside the matrix to

modulate mitochondrial activities locally. Indeed, accu-

mulating evidence supports a role for cAMP signaling

inside the matrix as a necessary complement to the nuclear

regulation.

Origin of cAMP in the mitochondrial matrix

Although cAMP per se cannot freely diffuse across the

IMM from the cytosol, both biochemical assays with iso-

lated mitochondria [94, 95] and live-cell experiments using

genetic reporters [49, 96, 97] have demonstrated the pres-

ence of cAMP inside mammalian mitochondria. However,

the origin of matrix cAMP is still debated. After a brief

incubation with purified mitochondria in vitro, cAMP

readily accumulates in the mitochondrial matrix, suggest-

ing that it could be actively transported into the matrix

[94]. But recent studies using genetic cAMP reporters in

cultured human cell lines (Hela, HEK293T) and primary

rat cardiomyocytes argue that mitochondrial inner
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membrane is impermeable to cAMP [96, 97]. A model for

generating cAMP locally has hence been proposed. It

involves a mitochondrially localized sAC that can be

directly activated by HCO3
- [12] and was shown to syn-

thesize cAMP locally in response to the CO2/HCO3
-

produced in the TCA cycle in mammalian cultured cells

[95–100]. The matrix CO2-sAC-cAMP-PKA cascade is

also involved in the allosteric regulation of COX activity

by ATP in the S. cerevisiae, demonstrating a conserved

role of cAMP signaling in fine-tuning energy metabolism

[101]. However, the Drosophila and C. elegans genomes

do not encode any known sAC [102], and the prevalence of

intra-mitochondrial cAMP signaling in metazoans has been

called into question.

We recently constructed a matrix-localized cAMP sen-

sor by fusing the new generation of cAMP reporter,

ICUE3, with SOD2, a bona fide mitochondrial matrix

protein [103]. Using this construct, we demonstrated the

existence of cAMP in the mitochondrial matrix of Droso-

phila cultured cells. Given the lack of sAC in the fly

genome, our finding suggests that an unidentified mecha-

nism allows the rapid entry of cytosolic cAMP into the

mitochondrial matrix, which is consistent with a previous

biochemical study [94]. Still, the Drosophila genome

contains 14 genes that encode 38 different AC isoforms

(http://flybase.org/). We thus cannot rule out the possibility

that a matrix AC might be among them and produce cAMP

locally. Although the sources of matrix cAMP may differ

in different organisms and cell types, the presence of

cAMP in the mitochondrial matrix now appears universal.

PKA as the main effector of cAMP signaling

in the mitochondrial matrix

Protein kinase A has long been considered as the main

effector of intra-mitochondrial cAMP to regulate mito-

chondrial energy metabolism [95, 96, 104–107]. Large-

scale phosphoproteome analyses revealed that many

enzymes in the TCA cycle and ETC complex subunits were

phosphorylated at the PKA consensus sites [108, 109].

These observations suggest that PKA is one of the most

active kinases in the matrix [108, 109]. In support of this

idea, 85 % of PKA activity associated with purified mito-

chondria is derived from the mitochondrial matrix fraction
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Fig. 3 cAMP signaling in the mitochondrial matrix. The intra-

mitochondrial cAMP-PKA pathway has been proposed to fine-tune

metabolism by directly regulating the TCA cycle and respiration.

sACs have been found in the mitochondrial matrix and produce

cAMP locally in response to the CO2/HCO3
- generated by the TCA

cycle. The matrix cAMP-PKA cascades are then activated, leading to

the phosphorylation of ETC proteins such as Complex I and Complex

IV subunits, modulating the OXPHOS and ATP production. In

addition, PKA phosphorylation of the ATPase inhibitory factor 1

(IF1) abolishes its ability to bind to and inhibit Complex V. The sACs

can also be activated by mitochondrial uptake of Ca2?. Active

mechanisms for transporting cAMP into the matrix remain to be

identified. To coordinate the OXPHOS and energy needs, the cAMP-

PKA pathways outside mitochondria can activate the nuclear CREBs

and the downstream transcription factors (PGC-1a, NRF) to promote

TFAM (mtTFA) production, mtDNA replication and eventually

mitochondrial biogenesis. On the other hand, the matrix cAMP

signaling could exert a negative regulation on this process by

increasing the PKA phosphorylation-dependent degradation of TFAM

4582 F. Zhang et al.

123

http://flybase.org/


[110]. However, FRET-based PKA activity reporters that

are targeted to the mitochondrial matrix do not respond to

the addition of membrane-permeable cAMP analogs or

bicarbonate [97]. It has been argued that the phosphory-

lation of matrix proteins at PKA consensus sites might take

place before their import to the matrix [97]. We have

developed a bimolecular fluorescence complementation

(BiFC) assay for assessing the submitochondrial localiza-

tion of proteins [103]. The assay is based on the fact that

two halves of a GFP molecule will reconstitute into a

whole, fluorescent GFP molecule only when they are in

physical proximity [111]. By applying this sensitive assay,

we demonstrated that PKA indeed locates to the mito-

chondrial matrix [103], substantiating the presence of local

cAMP-PKA signaling.

Other members of the cAMP signaling pathway

in the matrix

Besides the sACs and PKA, other components of cAMP

signaling cascade have also been identified in the matrix,

including cAMP PDE activity proteins such as PDE2A2

[100] and Prune [103]. Interestingly, PDEs can be inhibited

by hydrogen sulfide (H2S), which is produced in the matrix

by enzymes such as 3-mercaptopyruvate sulfurtransferase

(3-MST), cystathionine b-synthase (CBS) and cystathion-

ine g-lyase (CSE) in response to environmental stresses

like hypoxia [112]. These findings suggest a potential link

between the environmental stresses and cAMP signaling in

the mitochondrial matrix. In summary, almost a full com-

plement of key components of the cAMP signaling cascade

(CO2/HCO3
-, Ca2?, sAC, cAMP, PKA, PDE and H2S) has

been identified in the matrix, strongly supporting the

existence of a distinct cAMP signaling in the mitochondrial

matrix, which may have specific physiological and patho-

logical implications.

Intra-mitochondrial cAMP signaling regulates

OXPHOS

A rich body of literature has documented the phosphory-

lation of ETC complexes and enzymes in the TCA cycle by

PKA [95, 104–109, 113–116]. This observation suggests

that the cAMP-PKA pathway in the matrix may fine-tune

metabolism by directly regulating the TCA cycle and res-

piration. A rise in CO2 or bicarbonate concentration is

thought to activate a matrix-localized sAC. The sAC pro-

duces cAMP locally, which in turn activates PKA and leads

to phosphorylation of cytochrome c oxidase subunit IV

isoform 1 (COXIV-1), resulting in enhanced cytochrome

c oxidase (COX) activity and OXPHOS [95]. In yeast, a

similar phosphorylation-dependent regulation on Cox5a,

the homolog of COXIV-1, has also been reported [101].

Evidences also suggest that PKA can phosphorylate sub-

units of Complex I, which increases Complex I activity and

stability, and hence enhances respiration

[107, 113, 117–122]. Given that CO2 is the end product of

the TCA cycle, the cAMP-PKA pathway provides a feed-

forward regulation on two modules of energy metabolism:

TCA cycle and ETC complexes. Recently, Complex V

activity has also been found under the regulation of matrix

cAMP-PKA pathway [123–125]. Complex V (mitochon-

drial ATP synthase) catalyzes the synthesis of ATP through

the proton gradient generated by the ETC complexes and

executes the reverse hydrolysis when the membrane

potential falls below a threshold (pH of *6.7 or below)

[126]. An ATPase inhibitory factor 1 (IF1) is thought to act

as a ‘‘reverse rotation brake’’ for the ATP synthase motor,

preventing the ‘‘wasteful’’ ATP hydrolysis under the

anaerobic condition [126, 127]. A recent study demon-

strated that IF1 binds to Complex V and inhibits not only

its hydrolase but also its ATP synthase activity [123]. IF1

can be phosphorylated by PKA, which prevents it from

binding to Complex V, and thereby relieves its inhibitory

effects on both the hydrolytic and synthetic activities of

Complex V [123]. Thus the phosphorylation status of IF1

appears to be key in regulating the flux of glycolysis and

OXPHOS corresponding to certain physiological context

[124]. Furthermore, De Rasmo and colleagues recently

have demonstrated the importance of the sAC-cAMP sig-

naling for the organization and activity of Complex V in

isolated rat mitochondria and myoblast cultures [125].

The impact of PKA on ETC complexes appears to be

multifaceted depending on the environment cues. Under

hypoxia/ischemia condition, excess of reactive oxygen

species (ROS) induces the sequestration of PKA catalytic a
subunit into the matrix, and leads to the hyper-phosphory-

lation of Complex IV and reduced COX activity [114, 128].

PKA phosphorylation on several Complex IV subunits dur-

ing heart failure may also inhibit OXPHOS by either

disrupting the complex assembly or reducing its stability

[129]. Taken together, the intra-mitochondrial cAMP-PKA

signaling may serve as an acute and local mechanism

allowing mitochondria to rapidly adjust energy output in

response to environmental stress, and to oxygen and nutrient

availability. Under the aerobic condition, the steady stream

of CO2 produced from TCA cycle activates sAC-cAMP-

PKAcascade, which in turn tunes up the activities of the ETC

complexes by coordinating TCA cycle and ETC complexes.

While CO2 production is diminished under metabolic or

environmental stress, ROS can directly activate PKA to

inhibit ETC complexes to avoid excessive ROS production.

Of note, Ca2? can also activate sAC, the principal source of

matrix cAMP [96], highlighting a potential crosstalk and

synergy between these two common second messengers

(cAMP and Ca2?) in regulating energy metabolism.

Mitochondrial cAMP signaling 4583

123



Intra-mitochondrial cAMP signaling regulates

mitochondrial biogenesis

Regulating OXPHOS is not the only way through which

mitochondria respond to the cellular and environmental

cues. A long-term adaptation of energy homeostasis can be

achieved by modulating mitochondrial biogenesis. As

previously described, during stresses such as hypoxia and

starvation, the cAMP-PKA pathway can suppress mito-

chondrial biogenesis by inhibiting protein import and

mitochondrial fission. On the other hand, the cytosolic

cAMP-PKA pathway can also activate the nuclear CREBs

and the downstream transcription factors (PGC-1a, NRF),
which in turn activates the transcription of mitochondrial

transcription factor A (mtTFA, also abbreviated as TFAM)

and mitochondrial biogenesis [6, 130]. CREBs are also

found inside mitochondria, binding to the CREs on the

mtDNA D-loop, and directly regulating mtDNA-encoded

gene expression [131–134]. The translocation of CREBs

into mitochondria may be facilitated by chaperones like

mtHsp70 [132] or by a process that depends on both

membrane potential and TOM complex [134]. Both nuclear

and mitochondrial CREB pathways promote neuronal

survival in the brain [132, 133, 135], which is consistent

with their positive roles in mitochondrial biogenesis.

Matrix cAMP signaling could also exert negative reg-

ulations on mitochondrial biogenesis. Human mtTFA can

be phosphorylated by PKA, leading to decreased mtTFA-

mtDNA interaction and increased mtTFA degradation

[136]. Recently, we confirmed such phosphorylation in

Drosophila and found that Prune, a mitochondrial PDE,

stabilizes mtTFA by down-regulating cAMP levels in the

mitochondrial matrix, thereby promotes mtDNA replica-

tion [103]. It thus appears the cAMP-PKA signaling acts

as a ‘‘double agent’’ to fine-tune the mtTFA level. It

promotes the expression of nuclear-encoded mtTFA,

while counterbalances this action by negatively modulat-

ing mtTFA protein level through PKA-dependent

degradation in the mitochondrial matrix. Our finding

demonstrates the prevalence of mitochondrial matrix

cAMP signaling and provides a new insight into its role

in coordinating nuclear and mitochondrial regulation on

mitochondrial biogenesis.

Future perspectives

Remaining mysteries in the mitochondrial cAMP

signaling pathways

The repertoire of cAMP-PKA signaling components iden-

tified both on the OMM and in the mitochondrial matrix is

growing. New regulations on mitochondrial functions by

cAMP-PKA signaling keep emerging. We now recognize

that cAMP signaling can respond to extracellular stimuli,

intracellular cues or even environmental stresses to mod-

ulate a variety of mitochondrial behaviors including energy

homeostasis, mitochondrial biogenesis and cell death. The

literature also demonstrates the great complexity of mito-

chondrial cAMP signaling. The compartmentalization of

mitochondrial cAMP signaling ensures its specificity. PKA

phosphorylation on the same protein under different envi-

ronmental or physiological context can lead to distinct,

even opposite functional consequences, further demon-

strating the complexity of mitochondrial cAMP signaling.

Meanwhile, cAMP signaling pathway in different mito-

chondrial compartments (the OMM and the matrix) can

work synergistically, and may interact with cytosolic and

nuclear cAMP signaling to achieve coordinated and bal-

anced regulations on mitochondrial functions.

The discovery of intra-mitochondrial cAMP signaling in

Drosophila not only demonstrates the prevalence of mito-

chondrial cAMP signaling in metazoan, but also reveals an

unknown regulation on mitochondrial biogenesis. However

the lack of sACs in Drosophila and C. elegans genomes

[102] presents an unsettled issue regarding the source of

mitochondrial cAMP in these organisms. It is worth

exploring whether there are unidentified AC isoforms that

localize to mitochondria in these species. Meanwhile it

remains to be determined whether there is indeed an active

transport mechanism for cAMP into the matrix.

It is noteworthy that ATP-binding cassette (ABC)

transporters have been found to work synergistically with

PDEs regulating both local and global cAMP level

[137, 138]. Recently one of the ABC B subfamily members

has been shown to export cAMP in D. discoideum [139].

Several evolutionarily related ABC B subfamily proteins

have been found localized on the IMM [140, 141]. It would

be interesting to test whether any of these ABC transporters

might contribute to the matrix cAMP transport.

sACs can be activated by direct Ca2? binding in a dose-

dependent manner [13], demonstrating a potential crosstalk

between these two most common second messengers

[32, 142, 143]. In cells that lack the active transporting

mechanism for cAMP into the matrix, Ca2? may relay the

cytosolic cAMP signaling to the matrix and activate sAC

wherein [96]. Thus the intra-mitochondrial Ca2? and

cAMP signaling may act synergistically in regulating

energy metabolism [15, 32, 96, 144]. Whether Ca2?, or

other messengers, affords coordination between cytosolic

and intra-mitochondrial cAMP signaling, awaits further

investigation. And to what extent a crosstalk between

cAMP and other signaling is achieved to regulate mito-

chondrial behaviors remains to be explored.
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Potential applications to the treatment

of mitochondrial dysfunction diseases

Given the essential role of mitochondrial cAMP signaling

in mitochondrial dynamics, biogenesis and metabolism, it

is not surprising that its misregulation can cause various

disorders, particularly in cells and tissues with high-energy

demand. For instance, displacement of AKAP121 increases

ROS production, induces apoptosis and triggers cardiac

hypertrophy in transgenic rodents [145]. Loss of AKAP

and decline of mitochondrial PKA signaling are believed to

contribute to the etiology of several brain degenerative

disease models [146]. In Drosophila, the misregulation of

the intra-mitochondrial cAMP signaling impairs mito-

chondrial biogenesis and triggers neurodegeneration [103].

On the other hand, manipulating mitochondrial cAMP

signaling might provide a handle to modulate energy

metabolism and control cell death, thereby offering

potential avenues for managing mitochondrial diseases and

neuromuscular diseases associated with mitochondrial

dysfunctions. Several compounds that modulate cAMP-

PKA signaling globally, including PDE inhibitors and PKA

inhibitors (H89), have shown promise in treating inflam-

mation, diabetes and cardiovascular disorders

[35, 147, 148]. However, their application to modulating

mitochondrial cAMP signaling locally has to be cautioned.

In particular, specific delivery of drugs into mitochondrial

compartments is necessary to avoid broad activation or

inhibition of cellular cAMP signaling. A lipophilic cation,

triphenylphosphonium (TPP?), which preferentially accu-

mulates in the mitochondrial matrix can effectively target

antioxidants and metabolic-modulating compounds to

mitochondria [149]. Peptides containing a unique aromatic-

cationic sequence motif also concentrate on the mito-

chondria inner membrane [149, 150]. It would be

interesting to test whether these molecules can be used to

deliver cAMP signaling-modulating compounds to specific

mitochondrial compartments, and thereby to improve

mitochondrial functions without interfering with other

cAMP signaling processes.
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